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nothing to prove. In the case If(p = q), we will give a proof of (ii) in 
Lemma (A. 2) of Appendix. On the other hand, we can show (iii) by an 
argument similar to that in Case (c). 

Case (e). A symmetric pair satisfying this condition but not treated 
in Cases (a)-(d) is contained in one of the following classes. 

IIII (m: even), IIIf (m: even). 

From now on we restrict our attention to the pairs contained in these 
classes. As in Case (c), we take X E gceJ; a) and Y E geeL - Ba) so that 
X + Y E g. Put g' =exp (X +BY). Multiplying X + Y by a constant if 
necessary, we may assume that Ad (g') J i is the reflection with respect to 
a. Under the assumption, we find that a± Ba, a± aa, a± Baa $ ,S(i). 
This implies that any two of g', B(g'), a(g') and Ba(g') commute with 
each other. We put g=g'B(g')a(g')Ba(g'). Then it is easy to see that 
g E K and g normalizes L Ct~ and j. Hence (i) is shown. Next we prove 
(ii). In the case III (m: even), it is clear that Ba-=l=-a for any a E ,sCi). 
This implies that 's(J)0=(} and therefore we have nothing to prove. In 
the case lIlt (m: even), we will give a proof of (ii) in Lemma (A. 2) of 
Appendix. Last we show (iii). Put ,u=t(a-Ba-aa+ Baa) E's(a). 
Then <,u,,u) =i<a, a). Noting this, we see from the assumption that 
SaSOaSqaSOqa(Y)=Y-2(,u(Y)/<,u,,u»)Y,, for any YECt. Hence Ad(g)Ja= 
SaSOaSqaSOqa J a is the reflection on ct with respect to ,u. 

Let (g, lj) be an irreducible symmetric pair of split rank I. Then by 
the classification given in Section 6, we find that (g, lj) is contained in one 
of the classes given in Cases (a)-(e). Hence the lemma is completely 
proved. 

(7.8). Let (g, lj) be a symmetric pair of general rank. Let 7JT(a) be a 
fundamental system of roots in 's(a). For each fundamental root 2 E 7JT(a), 
we consider the symmetric pair (gO), lj(2)) (cf. § 4). This is of split rank l. 
Then it follows from Lemma (7.6) that there exists an element g E K such 
that Ad(g) normalizes J(2), al2) and jO), that Ad (g) J aO) is the reflection 
with respect to 2 and that Ad (g) J J(2) leaves M/B, a)+ invariant. Here 
MM, a)+ is the set defined for the pair (g(2), lj(2)) similar to M(B, a)+ for 
(g, lj). For this g E K, we have the following lemma. 

Lemma (7.8.1). (i) Ad(g) normalizes L ap and j. 
(ii) Ad(g)Ja is the reflection with respect to 2-
(iii) Ad (g) J j leaves the set 's(j); ='s(1)0 n 's(1)+ invariant. 

Proof (i) and (ii) follow from the remark before the lemma. In 
fact, for example, we show that Ad (g)i =J. Let 1(2).1 be the orthogonal 



Restricted Root System 483 

complement of i(A) in i. Then it follows from the definition of g that 
Ad(g) leaves each element of 1(A)-1 invariant. Hence Ad (g)i =1. 

We are going to prove (iii). Let P E 2m: and put 

Since {}p=p, {}(p-ap)=p-ap for any p E M. This combined with the 
condition (C) implies that (}p=p. Hence Mc2(J):. Let Ri(1~,i~P) 
be the connected components of 2(i)o which intersect with M. On the 
other hand, let Ri (p<i~r) be the connected components of 2(J)o which 
do not intersect with M. Put21=Uf~1Ri and2,=Ui>pR i . Then it 
follows from the definition that 21 n 2(i; A) = <) or 21 c 2(i; A), First 
assume that 21 n 2(J; A) = <). Then it is clear that w(p) = p. Here w = 
Ad (g) I i· On the other hand if 2 1c2(i; A), it follows that MCMM, a)+. 
Hence we see from the discussion before the lemma that ):;;{p) E Ml{}, a)+ 
for any p E M. Here w=Ad(g)li. This implies that w(p) E 2m:. We 
have thus proved that w(2m:) =2m:. q.e.d. 

Let W(a) = {Al> "',Al}andforeach i(l~i~l), we take an element 
gi E K satisfying the conditions (i)-(iii) in Lemma (7.8.1) for A=Ai • We 
now consider the subgroup W(a) of K generated by g), .. " gl' Then it 
is clear that W(a) is a finite group. Moreover we put 

Z(a)={g E W(a); Ad (g) I a=id}. 

Then it follows that W(a)/Z(a)::::: W(a). 
We next consider the group W(ap).. Clearly W(ap). is generated by 

the reflections with respect to the roots of 2(ap).. Let {PI> .. " pp} be a 
fundamental system of 2(ap).' Then by definition, api = Pi (1 <i ~ p). 
For any pi' there exists Pi E2(J) such that api=pi and Pi-{}Pi=2pi' 
Then it follows from Lemma (7.6) that there exists hi E K n (G·)o satisfying 
the conditions described there. Let W(ap). be the subgroup of K generated 
by h), .. " hp- Then W(ap). is clearly contained in H. We put Z(ap). = 
{g E W(ap).; Ad (g) I ap=id}. Then W(ap)./Z(ap).::::: W(ap) •. 

Theorem (7.9). For any w E W·(ap), there exist g E W(a) and h E 
W(ap). such that Ad (hg) I ap=w. 

Proof By definition, w normalizes a. Hence w I a E W(a). Then 
there exists g E W(a) such that Ad(g)la=wla. We now put w' =Ad(g)lap • 

Clearly w' is contained in W(ap). Since WW'-1 leaves each element of u 
fixed, there exists h E W(up). such that Ad (h) I up =WW'-1. Then Ad (hg) I ap 

= wand the theorem is proved. q.e.d. 
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Corollary (7.10). Let wj=e, w2, "', Wr form a complete system of 
the representatives of the coset W(ap; H)\ Wu(ap). Here we put 

Then for any i, there exists a representative Wi E N K(ap) of Wi such that the 
following conditions hold: 

This is a direct consequence of Theorem (7.9) and the definition of 
Wu(ap). 

(7.11) In the course of the discussions in the paragraph (7.8), we 
have shown by considering the case where ()=a the following claim which 
seems to be known. 

Proposition (7.11.1). There exists a finite subgroup W of K satisfying 
the following conditions: 

(i) Each element of W normalizes both I and ap. 
(ii) If Z ={g E W; Ad (g) I ap=id}, then WIZ coincides with the Weyl 

group W(ap). 

§ 8. A parabolic subalgebra connected with a symmetric pair 

In this section, we introduce a standard parabolic sub algebra 1Ju of g 
which plays a basic role in Fourier analysis on the symmetric space as a 
minimal parabolic subalgebra does a role in Fourier analysis on a Rieman­
nian symmetric space. 

(8.1) First we recall a minimal parabolic subalgebra of g. A 
standard one is given by m+ap+n, where 

In the study of a symmetric pair, we frequently need another parabolic 
subalgebra of g. A standard one is defined by 1Ju =ZB(a)+n., where we 
put nu = 2:::.0'(0)+ g(a; ;(). It is clear that 1Ju is actually a parabolic sub­
algebra ofg. Let 1Ju=mu+au+nu be a Langlands decomposition of 1Ju. 
We may assume without loss of generality that aucap and mu is generated 
by m and {g(ap; ;(); ;( E 2(ap)u}. 

In this section, we closely study the structure of the reductive sub­
algebra mu' In particular we will show in Theorem (8.8) that [m., mu] = 
g(a)+u(a)+mu is a direct sum decomposition, where g(a) is a semisimple 
Lie algebra of the non-compact type and uCa) and mU are semi simple Lie 
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algebras of the compact type with some additional conditions. Moreover 
we shall show in (8.9) that there is a duality between g(a) and u(a). 

(8.2) We fix a «(), a)-order on sCi) and compatible orders on S(ap), 

SCi) andS(a) as we introduced in Section 2. Let W(i) be the «(), a)-fun­
damental system of SCi). 

It follows from the argument in [W, p. 23] that SCi). is a root system 
and W(}) n S(D. is a fundamental system of S(D.. It is clear that (}(S(i).) 
=S(J).. Let S 1, ••• , S r be the totality of the irreducible components of 
S(J).. We divide St (1 <i~r) into two sets by the condition whether 
a I ap::;t:O for some a ESt or not. For the sake of convenience, we may 
assume that if 1 <is:.p, then alap='i=O for some a E Si and if p<i~r, then 
a I ap=O for any a E Si. Then we put <(}) = Uf=l Si and [()] =W(i) n <(}). 
It is clear from the definition that [()] is a fundamental system of the root 
system < (}). We denote by gC< (}»c the sub algebra of gc generated by 
{gc(l; IX); IX E <(})}. 

Lemma (8.3). We put g(a) =g( <(}»c n g. Then g(a) is generated by 
{g(ap ; A); A E S(ap).} and is semisimpie of the non-compact type. Further­
more g(a) is contained in lj. 

Proof First recall that 

Then it follows from Lemma (2.8) that 

(8.3.1) 

Comparing this equality with the definition of <(}), we conclude that g(a) 
contains the subalgebra g(a), of g generated by {g(ap; A); A E S(ap).}. It 
follows from [W, Lemma 1.2.3.14] that g(a), is semisimple of the non­
compact type. Let g(a)~ be the complexification of g(a), in gc. Then we 
find from the definition that the root system of g(a)~ coincides with <(}). 
Hence g(a), must coincide with g(a). It follows from Lemma (2.7) and 
the equality (8.3.1) that g(a) is contained in lj. Hence the lemma is com­
pletely proved. 

(8.4) By exchanging the roles of ap and j, and those of () and a, we 
define [a], <a) and g«a»c similar to [()], <(}) and g«(}»c. 

Lemma (8.5). (i) The Lie algebra g«a»c is generated by 

{gel; IX); IX E SCi), IXlap=O, IXlj::;t:O}. 
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(ii) We put u(a)=g«o»)cng. Then u(a) is semisimpie of the com­
pact type and is contained in m. 

Proof First remark that if a is a root of .1'(Do, then gc(f; a) is 
contained in mc. Noting this, we can prove the lemma by an argument 
quite similar to that of Lemma (8.3). Hence we do not enter into its 
proof. q.e.d. 

(8.6) It is clear that .1'(Do n .1'(1), is a root system and weD n .1'(1)0 
n .1'(1), is its fundamental system of roots. Let .1'(0, 0')1' .. " .1'(0, a)k be 
the irreducible components of .1'(1)0 n .1'(i),. We may assume that .1'(0, a)i 
(ls::.i<j) are orthogonal to both [0] and [a] but .1'(0, a)i (j<i~k) are 
not to [0] and [a]. Then we put 

j 

(0, a) = U .1'(0, a)i, [0, a] = (0, a) n Wei). 
i=l 

It follows that [0, a] is a fundamental system of (0, a). We denote by 
(m')c the subalgebra of gc generated by {gc(f; a); a E (0, a)} and put 
m'=gn(m')c· 

Lemma (8.7). m' is semisimple of the compact type and is contained 
in mn g. 

Proof It is clear that m' is contained in m and is semisimple. 
Hence to prove the lemma, it suffices to show that m' is contained in g. 
If a E [0, a], then a(OX) =a(aX) =a(X) for any X E I. This in particular 
implies that a(gc(I; a))=gc(I; a). If there exists an element X(*O) of 
gc(I;a) such that aX=-X, then X is in qc and commutes with the 
maximal abelian subspace ic of qc. This implies that X E ic, which is a 
contradiction. Since dimc gc(f; a)= I, we find that aX =X for any X E 

gc(I; a). Hence m'eg. q.e.d. 

Theorem (8.8). (i) If Z(m,) is the center ofm., then 

Z(m,)={Y E In f; a(Y)=O for any a E .1'(J)0,,}. 

(ii) [m" m,] =g(a)+u(a)+m' is a direct sum decomposition and g(a), 
U(a) and m' commute with each other. 

Proof It is easy to check (i). We are now going to prove (ii). By 
definition, Zg(a) is generated by I and {gc(f; a); a E .1'(I)o,,}. Then due to 
the definition of g(a), u(a) and m', we find that (m,)c=(g(a)+u(a)+m' 
+Z(m,))c. (Cf. Lemma (4.1.1) and the proof of Theorem (B.6).) Hence 
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if we &how that g(a), u(a) and m· commute with each other, the claim in 
(ii) follows. By definition, it is clear that m· commutes with both g(a) 
and u(a). We now prove that g(a) and u(a) commute with each other. 
It follows from Lemmas (8.3) and (8.5) that g(a)c = g«8»)c (resp. u(a)c 
=g«a»)c) is generated by {gc(J;a);aE(2:'(J)-2:'(J)u)n2:'(J).} (resp. 
{gc(]; a); a E (2:'(1)- 2:'(J).) n 2:'(J)u}). This implies that if we show that 

(2:'(1) - 2:'(})u) n 2:'(J). and (2:'(}) - 2:'(1).) n 2:'Cl)o 

are orthogonal, then [g(a), u(a)] =0. If not so, there exist 

a E (2:'(J) - 2:'(1)u) n 2:'(1). and ,8 E (2:'(1) - 2:'(1).) n 2:'(1)0 

such that <a, ,8):::f:.0. We may assume that <a,,8) >0. Then it follows 
from [W, Prop. l.l.2.1] that a-,8 is a root of 2:'(J). Moreover we have 
(a-,8)la~=ala~:::f:.O, (a-,8)ij=-,8ij:::f:.O, (a-,8)la=O. This contradicts 
Lemma (4.1.1). Hence (2:'(J) - 2:'(J)0) n 2:'(1). and (2:'(J)- 2:'(D.) n 2:'(1)0 are 
orthogonal and therefore [g(a), u(a)] =0. We have thus proved the theo­
rem completely. 

(8.9) We recall the symmetric pair (gd, ljd) dual to (g, lj). Then 
there is a kind of duality between Zg(a) and Zgd(a). From now on, we 
explain this duality. First we put 

Then due to Theorem (8.8), we have a direct sum decomposition 

(8.9.1) 

Here we used that a is contained in a.. In fact, it follows from the defini­
tion that a. ={Y E a~; A(Y)=O for any A E 2:'(ap)a}. Putting 

g(a)d=u(a)cngd (=gdng«8»)c) 

u(a)d=g(a)cngd (=gdng«a»)c) 

(a·)d =.v=I t· 
(±.)d =.v=I a·, 

we obtain a direct sum decomposition of Zgd(a): 

(8.9.2) 

Moreover we have that 

(8.9.3) g(a)d is of the non-compact type, 
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(8.9.4) 

(8.9.5) 

(8.9.6) 
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u(a)d is compact, 

(m")c n gd =m", 

(13")c n gd = a". 
There exists a duality between the decompositions (8.9.1) and (8.9.2). We 
now explain this duality. 

Proposition (8.9.7). Ifwe decompose Zga(a) as we didfor Zia) of the 
form (8.9.1), we obtain the decomposition (8.9.2) and the correspondence 
of the factors are given by 

g(a)---+g(a)d, u(a)---+u(a)d, m" ---+m", 

13"---+13", t"---+(t")d, a"---+(a")d, a---+a. 

Proof It is easy to check the correspondence relations between 
g(a), g(a)d, u(a), u(a)d and mO. 

The center a of Zia) coincides with Z(m")+a". Since a" is contained 
in j:l and since it follows from Theorem (8.8) that Z(m")cf, we find that 
anfng=13", 13nfnq=t", 13ngnj:l=a", 13nj:lnq=a. These imply the 
rest of the claim. q.e.d. 

Owing to the duality between g(a) and u(a) given in Proposition 
(8.9.7) and the argument before in this section, we find the following. 

Proposition (8.9.8). (i) The restriction of () to g(a) is a Cartan in­
volution of g(a). 

(ii) The restriction of a to u(a) is non trivial on each simple factors 
ofu(a). 

(iii) The restrictions of () and a to m" are trivial. 

Proof The claim (i) follows from the definition of g(a) and [W, 
Lemma 1.2.3.14J. Due to the duality between g(a) and u(a), we see that 
(ii) is reduced to (i). The claim (iii) follows from Lemma (8.7). q.e.d. 

(8.10) In Table VI, we collect all the informations on the sub­
algebras g(a), u(a), etc. for all the symmetric pairs of split rank 1. There 
we use the notation m~=m"+13" for short. (In Table VI, we omit the 
symmetric pairs of Type (f.).) 

(8.11) We take a connected Lie group G and its closed subgroup H 
as we did in Section 1. We put ft = (}(n). Let Ap, Nand N be analytic 
subgroups of G corresponding to ap, nand ft, respectively. Moreover we 
take the maximal compact subgroup K of G whose Lie algebra is f. Then 



Restricted Root System 489 

Table VI 

g(a) u(a) nt~ dim t" dima a 

11 S30(p, q) 0 0 0 0 

I't I 0 S3o(p+q) 0 0 0 

12 S3u(p, q) 0 v=rR 0 0 

Id 2 0 !lu(p+q) v--1R 0 0 

Is ~\l(p, q) 0 !il\l(1) 0 0 

la 
3 0 !il\l(p+q) S3\l(1) 0 0 

.-~-.--.-.- ----

III ~l(m, R) 0 0 0 
---- ._---_._---------- -----------------

lit 0 i8u(m) 0 0 

112 ~\l(m, RHiii\l(1, R) 0 0 0 0 

IIg 0 iii\l(m)H\l(1) 0 0 0 
--~----~----~~---~------~-.,-~------,--"------" ... ---,---- ,.---

lis 180(4,3) 0 0 0 0 
-----.~-. --~---.--- .. --

IIff 0 180(7) 0 0 0 

IIII ~o(m, C) 0 0 0 

lIlt 0 i3o(mHi3o(m) 0 0 

1112 iii1(m, C) 0 v=TR 

I1Ig 0 !ilu(mH!ilu(m) V=1R 

IlIa ~\l(m, CH!8\l(1, C) 0 0 0 

IlIff 0 2!il\l( m H 2iil\l(1) 0 0 

114 180(7, C) 0 0 0 

lIlt 0 180(7) + ~0(7) 0 0 1 

IVI ~0*(2m) l.lu(2) 0 0 0 

IVt 1.l1(2, R) !ilo(2m) 0 0 0 

IV2 ~u*(2m) l.lu(2H!ilu(2) 0 0 
----------~ 

Ivg 181(2, C) i1iu(2m) 0 0 
.. ~---"-------------.-------------~~---

IVg 0 130(8) 0 0 1 
_._._._--_."---_._------ -------.--.-------,-~---.------

Ivff 180(7, 1) 0 0 0 

VI 0 0 v-lR 

V2 !il1(2, CH!il1(2, R) 0 0 0 

Vd 
2 0 3~u(2) 0 0 

Va 130(5,3) 0 0 0 

va 
3 0 !l0(8) 0 0 

----_._._-------.-
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G=KApN is an Iwasawa decomposition of G. As usual, we put M= 
ZK(Ap), M* =NK(Ap). Clearly m is the Lie algebra of M. The P=MApN 
is a minimal parabolic subgroup of G. Now we define a parabolic sub­
group p. by 

p.= U PwP. 
weW('pl, 

Here w denotes a representative of w in M*. Let p. = M.A.N. be the 
Langlands decomposition of p. with A.cAp. It follows from the defi­
nition that 1:J., m., a. and n. are the Lie algebras of p., M., A. and N., 
respectively. We put N. = (}(N.) and denote by G(q), U(q)o, M', T" and 
Z' the analytic subgroups of G corresponding to g(q), u(q), m·, t· and 0·' 
respectively. Moreover we put U(q) = U(u)o(K n exp (./=Tap))' 

Lemma (8.12). 
(i) G(q)~H, U(u)~M, M·~M. 

(ii) M. = U(u)G(u)M·T"Z·. 

Proof. Since Z(m.) is contained in m, the claim (i) follows from 
Lemma (8.3), Lemma (8.5) and Theorem (8.8), and (ii) does from (i), the 
definition of U(q) and [W, Lemma 1.2.4.5]. q.e.d. 

Lemma (8.13). For any w E W'(ap), we take an element w of M* 
such that w=wM. Then HwP. =HwP. 

Proof. It follows from the assumption that Ad(w)(g(q))=g(u). 
Hence due to Lemma (8.12), we find that 

HwP.~HwG(u)P=HG(q)wP=HwP. 

The converse inclusion relation is obvious. q.e.d. 

Remark (8.14). Since the set HwP. only depends on WE W'(ap), we 
frequently write HwP. or HwP instead of this set. 

Lemma (8.15). We take representatives WI> "', Wr of the set 

as in Corollary (7.10). Thenfor each i (1 <i<r), HwiP. is an open subset 

ofG and 

Moreover the union Ui=l HwiP. is dense in G. 
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Proof This follows from Lemma (8.13) and [Ma, Prop. 1]. 

Lemma (8.16). If A H = exp (av n lj), we have 

HnPq=(Mq nH)(Aq nH) 

=ZKnH(a)AHZAa). 

491 

Proof By definition, we have that H n Pq = H n Pq n a(Pq). On the 
other hand, a(MJ=M., a(Aq)=Aq. Hence we find that 

Hn Pq n a(Pq)=(Mq n H)(Aq n H)(Nq n a(Nq) nH). 

Since l'(av)+ is (la-compatible, it follows that N q n a(Nq) = {e}. Therefore 
we have 

Noting that H=(KnH)AH(NnH) is an Iwasawa decomposition of H, 
we find that 

On the other hand, since Lemma (2.7) implies that ZNnH(a/=ZN(a), it 
follows that 

q.e.d. 

Proposition (8.17). 
(i) G=KAH=HAK. 
(ii) Let k i E K, ai E A, hi E H (i = 1,2) and assume that k1a1h 1 = 

kzazhz. Then we have 

kl1kz=hlh:;1 E Kn H, 

a1 = (kl1kz)az(kl1k2)-1. 

Proof (i) follows from [F-J] and eii) is shown by an argument 
similar to that in [O-S]. 

Appendix A. A lemma on the root systems 

In this Appendix, we show a lemma which is used in the proof of 
Lemma (7.7). 

(A. 1) Let (g, lj) be an irreducible symmetric pair. Retain the nota-
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tion in the text. Let SCi) be the root system of g. We introduce a (0, a)­
compatible order on SCi) and fix it. For any a E SCi), we denote by Sa 

the reflection with respect to a. We now put 

M(O, a)+ ={fi E ScJ)+; Ofi=fi, afi=l=fi} 

as in Section 7. 

Lemma (A. 2). (i) If (g, '9) is contained in the class It(p+q: even, 
p=l=q, p, q >0), there exists a E SCi) satisfying the conditions: 

(i.I) 

(i.2) 

Oa=aa, <a, Oa> =0. 

(ii) If (g, '9) is contained in the class It (p = q), there exists a E S(i) 
satisfying the conditions: 

(ii.I) 

(ii.2) 

<a, Oa> =0, aa= -a. 

(iii) If (g, '9) is contained in the class lIlt (m :even), there exists a E 

.x(i) satisfying the conditions: 

(iii.! ) 

(iii. 2) 

(iv) If (g, '9) is contained in the class IVz, there exists a E SCi) satisfy­
ing the conditions: 

(iv.I) 

(iv.2) 

Oa=aa, <a, Oa> =0. 

sasoaCM(O, a)+)=M(O, a)+. 

Proof (i). In this case, g=~o(p+q+l, 1) and '9=~o(p+l)+ 
~o(q, 1). Put I =(p+q +2)/2 and r=min (p, q)+ 1. By the assumption, 
I<r<l. Then the root system SCi) is of type D l • Let 7JI"={a1, ••• , a l } 

be a fundamental positive system of SCi). Let io = J"=t (f n i) + Up. Then 
as was already remarked in (3.7), every root of SeJ) is real-valued on io. 
By taking a suitable orthonormal basis {e1, ••• , el } on the dual vector 
space i:1' orIo, we may put ai=ei-ei +1 (1:;;;i<1) and al=el-1+el. We 
may assume that 7JI" is a (0, a)-fundamental system. Then it is clear from 
the definition that the Satake diagram of (X(i), (-0)) and that of (SCi), 
(-a)) are given by 
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(2<1), ( - (}»: ~a'-l 0 • • • al a2 ar ar+l a'-2 a, 

~a'_l 
(2(J), (-a»: 0--<>- --0 • al a2 ar ar+1 al-2 at 

Then it is clear that M({}, a)+ ={±(ei ± ej ); 1 <i <j, i <r}. In particular, 
if r = 1, then M(e, a)+ =0 and therefore we have nothing to prove. Hence 
assume that r > 1. We take a = e 1-e!. Then it is clear that ea = aa = 
-el-e1 and <a, ea)=O. Moreover, by direct computation we find that 
s.(M(e, a)+)=M({}, a)+. 

Proof of (ii). The proof of (ii) is quite similar to that of (i). Hence 
we omit it. 

Proof of (iii). Let (g, l) be a symmetric pair contained in the class 
IIIt(m: even). Then g=§o(m+l, 1)+§o(m+l, 1) and l)=§o(m+l, 1). 
In this case 2(}) has two irreducible components and each of them is of 
type D z, where 1= (m + 2)/2. Let 2 be one of the irreducible components 
of 2(i). Retain the notation in the proof of (i). Let W = {ai, ... , all 
be a fundamental system for 2. Then we may assume without loss of 
generality that W U aW is a (e, a)-fundamental system of 2(i). Ifwe denote 
the restriction of e to 2 by the same letter, the Satake diagram of (2, ( - e» 
is given by 

In this case, M(e, a)+ =MU aM, where M ={±ei±ej ; l<i<j}. Put 
a=el-e1• Then it is clear that <a, {}a)=<a, aa)=<a, (}aa) =0. On 
the other hand, we find by direct computation that s.so.(M)=M and this 
implies (iii.2). 

Proof of (iv). Let (g, l) be a symmetric pair contained in the class 
IV2• Then g=§u*(2(m+2» and l)=§u*(2(m+ 1»+§u*(2)+R. In this 
case 2 (i) is of type A I, where I = 2m + 3. By taking a suitable choice of 
a basis, we may take W ={a i =ei -e i +1 (1:::;:i.~1)} as a fundamental system 
for 2(1). We may assume that this is (e, a)-compatible. Then the Satake 
diagram of (2Ci), (-{}» and that of (2(}), (-a» are given by 

(2(i), (- (}»: 

(2(i), (-a): 
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From this, it is clear that M(O, q)+ ={e1-e2, eZ-eZ+1}' We take a=e1-eZ" 
Since Oa=qa= -e2+eZ+h it follows that (a; Oa> =0. On the other hand, 
we see that saSUa(el-e2)=eZ-el+l' Hence sasua(M(O, q)+)=M(O, q)+. 

We have thus proved the lemma completely. 

Appendix B. A decomposition of the Levi part of a parabolic subalgebra 

(B.l) Let g be a semisimple Lie algebra. As usual, G denotes a 
connected linear semisimple Lie group with its Lie algebra g. Let g=t+ 
ap+n be its Iwasawa decomposition. Let 0 be the Cartan involution of 
g corresponding to f. In this appendix, we study a fine structure of 
the Levi part of a parabolic subalgebra of g. We already studied such 
a fine structure of the parabolic subalgebra lJ. in Section 8. The result of 
this section is weaker than this but as a corollary, we obtain a procedure 
to determine the Satake diagram of the Levi part of an arbitrary parabolic 
subalgebra. The result of this appendix seems to be known (cf. [Mm]). 

(B.2) Let i be a Cartan subalgebra of g containing ap. Let 2(i) and 
2(ap) be the root systems of i and ap, respectively. We fix compatible 
orders on 2(i) and 2(ap) and denote by 2(i)+ and 2(ap)+ the sets of 
positive roots with respect to these orders. Let Wei) and W(ap) be the 
fundamental systems for 2(i) and 2(ap), respectively. Let W be the Weyl 
group of (g, ap). 

(B.3) Let e be a subset of 7Jf(ap). We denote by We the subgroup 
of W generated by the reflections with respect to the roots in e. Let gee) 
be the subalgebra of g generated by {g(ap ; A); A E (e>}, where 

(e> =( EB Ra) n 2(ap). 
aEa 

It follows from [W, Lemma 1.12.3.14] that gee) is semisimple. We note 
that (e> is the root system of the pair (g(e), ap n gee»~. 

(BA) We define 

aa={Y E ap; a(Y)=O for any a E e}, 

ma=g(e)+m, 

nil" = E g(ap ; A). 
lEI(op)+-(a) 

Let Ae, (Me)o, Nt be the analytic subgroups of G corresponding to ae, 
me, nt, respectively. Moreover put Me = (Me)oZ(ap), where Z(ap)= 
exp (,J"=t ap) n K (K is the maximal compact subgroup of G with its Lie 
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algebra f). If Pa =PWaP, where P is the parabolic subgroup of G with 
its Lie algebra m+Ctp+n+, then Pe=MeAaNt is its Langlands decom­
position. 

(B.5) We define 

2(i)0 = {,u E 2(i); ,u I Ctp =O}, 

2(J)0,e ={,u E 2(1); ,u I Cta =O} ={,u E 2(i); ,u I Ctp E <e) u {On, 

2(i; e)={,u E 2(I)0,e; <A,,u) =0 for any A E 2(i)0,e-2(i)o}' 

It is clear that 2(i; e) is a root system. We define subalgebras m(e) and 
oe of g by 

oa={Y E in f; ,u(Y)=O for any ,u E 2(J)o,e}' 

Theorem (B.6). (1) oe is the center of me· 
(2) me=g(e)+m(e)+oe is a direct sum decomposition. 

Proof It is easy to see that oe is the center of me' 
We are going to prove (2). It follows from the definition that 

Now let,u E 2(i)0 and A E 2(J)0,e-2(i)0 be such that <A,,u) =1=0. We may 
assume that <l,,u) < 0 without loss of generality. Then it follows from 
[W, Prop. 1.1.2.1] that A+,u E 2(J)0,e. Since [gc(}; -1), gc(J; l+,u)]= 
gcG; ,u), we see from the definition that gc(J; ,u) is contained in g(e)c, the 
complexification of gee). This implies that 

.z::; gc(}; ,u)cg(e)c+m(e)c 
J1EI(1)o,e 

and therefore that 

Hence to prove the theorem, it suffices to show that gee) and m(e) com­
mute with each other. For this purpose, take a E 2(i; e) and [3 E 2(J)0,e 
-2(J)0. By definition, <a, (3)=0. Assume now that [gc(J; a), gc(J; (3)] 
=f={0}. Then a+[3 E 2(J)0,a-2(i)0 and therefore <a, a+(3)=<a, a) =1=0. 
This contradicts the definition of 2(i; e). Accordingly, g(e)c and m(e)c 
commute with each other. Therefore the theorem is completely proved. 

(B.7) From now on, we discuss on the Satake diagram of 
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[m(6), m(6)]=g(6)+m(6) 

and the dimension of De. For this purpose, we give the indices of the 
simple roots in the following manner. 

W(i)={ah ... ,aR }, 

W(JHi2(i)o={a i E Wei); R(6)<i<R}, 

w(i)n2(i)o,e={a, E W(i); R«(), 6)<i:S;:R}. 

Here R(6) are R«(),6) are certain numbers such that R«(), 6):S;:R(6)~R. 
Then 

W(i)n2(J; 6)={a i E Wei); (1) R(6)<i:S;:R, 

(2) a i is contained in the connected component of the Dynkin 
diagram of {a j ; R«(), 6)<j ~R}}. 

Let S(W(i); -()) be the Satake diagram of the (-())-system of the 
roots (2(i), (-())). We erase all the white circles corresponding to the 
roots a i E Wei) such that a i I Ctp $ 6 and also erase the lines and arrows con­
nected with the vanished circles. Then we obtain a new Satake diagram. 
It is easy to prove the followings. 

I. dim De = The number of arrows which are erased in the procedure 
above. 

II. The Satake diagram of the semisimple Lie algebra [m(6), m(6)] 
is the one obtained in the procedure above. 

(B.8) We give here an example. 
We consider the simple Lie algebra e6(-14)' The Satake diagram and 

the Dynkin diagram for the restricted root system are given by 

Here ~i =a i I Ctp (i = 1,2). 

dim3e The Dynkin diagram of [me, me] [me, mEl] 

• • • !3u(4) 

• I • 130(7,1) 

o '" "0 0 • • • !3u(5, 1) 

'" ""'0 0 • ! • o C6e-H) 
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Remark (B.9). Let (g, fj) be a symmetric pair and let a be the in­
volution for it. Take a Cartan involution (j of g commuting with a and 
use the notation in the text without notice. 

If we take 8=.l'(up)an7Jl"(up), then Pa=P(J, .l'(Up)a = (8), .l'(J)D,a= 
.l'(f)D,(J, g(a)=g(8), u(a)+ma=m(8), oa+t"=o(J' Needless to say, we 
find that in this case, Theorem (8.7) give a finer structure than Theorem 
(B.6). 
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