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§ O. Introduction 

Let g be a real semisimple Lie algebra and let a be an involutive linear 
automorphism of g. If 9={Xe g; aX=X} and q={Xe g; aX=-X},. 
we obtain a direct sum decomposition g=9+q. The pair (g, 9) is called 
a (semisimple) symmetric pair. A classification of such pairs was accom
plished by M. Berger [Be]. Then it is important to study the fine 
structure of a symmetric pair. Among other things, the restricted root 
system of a symmetric pair is to be determined. One of the purpose of 
this paper is this. Needless to say, the results of this paper will playa 
basic role in the study of Fourier analysis on a semisimple symmetric space. 
This will be treated in the subsequent papers. 

This paper deals with the study on the basic structure of a symmetric 
pair. The main part of this paper is the contents in Section I-Section 6 
and the results of Section 7, Section 8 are preparations of the subsequent 
papers. 

We explain the contents shortly. In Section 1, after giving the defi-
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nitions of the dual and associated pairs of (g, ~), we examine the relation 
between these pairs. Let () be a Cartan involution of g commuting with q 

and let g = l + P be the corresponding Cartan decomposition. If a is a 
maximal abelian subspace of p n q, we can define the set I(a) of the roots 
with respect to (g, a). It is shown in Section 2 that I(a) becomes a root 
system (cf. Theorem (2.11». This is already proved by Rossmann [Ro]. 
We call I(a) the restricted root system of (g, ~). In Section 3, we introduce 
the notion of a ((), q)-system of roots. As in the case of the restricted root 
system of a real semisimple Lie algebra, we give a sufficient condition that 
the totality of the restricted roots of the ((), q)-system of roots becomes a 
root system. As a corollary, we obtain an alternative proof of Theorem 
(2.11). The dimension of a is called the split rank of the pair (g, g). 
Needless to say, symmetric pairs. of split rank 1 are basic among general 
ones. In Section 4, for a given A E I(a), we construct the symmetric pair 
(g(A), gO» of split rank 1 which is contained in (g, g). Section 5 is devoted 
to the determination of all the symmetric pairs of split rank 1 based on the 
classification of Berger (cf. Table II). In the study of restricted roots of a 
symmetric pair, the signatures of them are important (see Def. (2.14». 
In Section 6, we determine the restricted root system as well as the signa
tures of simple roots of a fundamental system of I(a) for a general sym
metric pair. At this stage, it must be stressed that the signatures of the 
simple roots depend on the choice of the order on I(a). In order to 
develop Fourier analysis on the corresponding semisimple symmetric space, 
we need a property of the Weyl groups for various root systems. This is 
done in Section 7. Especially, Corollary (7.10) will playa fundamental 
role in the definition of principal series for the semisimple symmetric 
space (cf. [0]). In Section 8, we shall examine the Levi part of a parabolic 
subalgebra of g which is particular to the analysis on the semisimple sym
metric space. In Appendix A, we shall prove a lemma which is used in 
the proof of Lemma (7.7). Most parts of the discussion in Section 8 is 
applicable to an arbitrary parabolic subalgebra of g. By this reason, we 
give a structure of the Levi part of a general parabolic subalgebra in Ap
pendix B. The results there are rather independent of the text. 

§ 1. Semisimple symmetric pairs 

In this section, we define a semisimple symmetric pair and a semi
simple symmetric space. Our main concern is a semisimple Lie group. 
Accordingly we frequently omit the word "semisimple" and therefore we 
call them a symmetric pair and a symmetric space for brevity. The dis
cussions in this section are based on the classification of the symmetric 
pairs by M. Berger [Be]. 
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(1.1) Let g be a real semisimple Lie algebra and let q be an involu
tion of g. Then we obtain a direct sum decomposition g=fj+q, where 

(1.1.1) fj={X E g; q(X)=X} 

q={X E g; q(X) = -X}. 

We call (g, fj) a (semisimple) symmetric pair in this paper. 
Let (g, fj) and (g', fj') be symmetric pairs. In this paper we define that 

they are isomorphic if there exists a Lie algebra isomorphism ifJ of g to g' 
such that ifJ@=fj'. We note that this definition differs from the one in 
[Be]. 

A symmetric pair (g, fj) is irreducible if the representation of fj on q is 
irreducible. If otherwise, (g, fj) is reducible. 

(1.2) It follows from [Be] that there exists a Cartan involution (j of g 
such that (jq=a(j. Let g=f+j:J be the Cartan decomposition correspond
ing to (j. Since (jq is also an involution of g, we obtain another direct sum 
decomposition g = fj'" + q'" with respect to (jq, where 

(1.2.1) 
lj"'={X E g; (ja(X)=X} 

q"'={X E g; (jq(X) = -X}. 

We here note the following relations 

(1.2.2) lj"'=(f n fj) + (j:J n q) 

q"'=(f n q)+(j:J n fj). 

On the other hand, if ge is a complexification of g, we extend q and (j to 
ge as C-linear involutions. Then we define 

(1.2.3) 

It is clear that gd is another real form of ge. We consider the restrictions 
of (j and q to gd and denote them by the same letters. Then a is a Cartan 
involution of gd. Moreover if we put 

(1.2.4) 

fd=(f n fj)+.f=t(j:J n fj) 

j:Jd=.f=tun q)+(j:Jn q) 

fjd=(fn fj)+.f=t(fn q) 

qd=.f=t(j:Jn fj) + (j:J n q), 

then gd = fd + j:Jd (resp. gd = fjd + qd) is a direct sum decomposition of gd 
corresponding to q (resp. (j). We note here that fd is a maximal compact 
subalgebra of gd. 
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Definition (1.3) (cf. [BeD. The pair (go" go,) (resp. (gd, gd» is called the 
associated (resp. dual) symmetric pair of (g, g). Here we put go, = g. 

(1.4) We frequently use the notation (g, gy = (go" go,) and (g, g)d= 
(gd, gd). Moreover (g, g)a<l = (gad, gad) means the dual of (g, g)a and lad 
does a maximal compact subalgebra of gad for a Cartan involution of gad 
commuting with the involution for ga<l. Other notation are in proportion 
to these. Then it is clear that (g, g)aa and (g, g)d<l are isomorphic to (g, g). 

In this paper we frequently identify any two symmetric pairs con
tained in the same isomorphic class. Accordingly, for example, the dual 
and associated pairs of the given one mean the pairs isomorphic to the 
ones defined definitely in Definition (1.3). 

We give some remarks on the relations between the associated and 
dual symmetric pairs. By an easy computation, we find the following 
relations 

g=ga, g<l=gda, ga<l=ga<la=adad, 

9 = gdad = gada, gd = gad, go, = gda 

(1.4.1) q=.J"=Tqdad=.J"=Tqada, qd=.J"=Tqad, qa=.J"=Tqda 

f=fa, fd=f da, fad=fada=fdad 

1:1=1:10" 1:1d=1:1da , 1:1ad=1:1dad=1:1ada. 

In particular, for any symmetric pair (g, g), we have the relation (g, g)ada = 
(g, g)dad and the following diagram (1.4.2): 

(1.4.2) 

It rarely occurs that if (g, g) is irreducible, all the six pairs in the diagram 
(1.4.2) are not isomorphic to each other (cf. (1.16». 

(1.5) Next we consider the homogeneous space of a semisimple Lie 
group connected with a symmetric pair. 

Let Ge bea connected complex semisimple Lie group whose Lie 
algebra is ge introduced in (1.1). Let G be an analytic subgroup of Ge 
corresponding to g. If there exists an analytic automorphism jj of G such 
that jj(exp X)=exp (aX) for any X e g, we say that 0' is lifted to G and call 
jj the lifting of 0' • We give here a simple lemma. 

Lemma. If Ge is simply connected or is the adjoint group of ge, the 
involution 0' is lifted to the group G. 
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Proof Since a is a C-linear involution of ge, it suffices to show that 
a is lifted to Ge. 

First assume that Ge is simply connected. If g is an element of Ge, 
there exist elements XI'" ',Xr of ge such that g=(expXI)·· ·(expXr). 
Then we define a(g)=(expaXI)·· ·(expaXr)' Since Ge is simply con
nected, a(g) is uniquely determined by g and does not depend on the 
choice of XI' .. " X r • It is clear that a is an analytic isomorphism of G e. 
The automorphism a of G e is the required one. If Z is the center of G e, 
then a clearly stabilizes Z. This implies that a induces an automorphism 
of the adjoint group Ge/Z of ge. Hence the lemma is proved. 

(1.6) In this paper we always assume that the involution a of g is 
lifted to G. This depends on the choice of Ge and therefore does not hold 
in general. We give here a counterexample. 

Example. Let g' = .0t(2, R) and put g = g' EElg'. We define an involu
tion a ofg by a(X, Y)=(Y, X) ("IX, Y E g'). Let G=SL(2, R)XPSL(2, R). 
Then it is clear that g is the Lie algebra of G but a is not lifted to G. 

(1.7) For brevity, we denote the lifting of a by the same letter. We 
define Ga={g E G; a(g)=g} and denote by (Ga)o the identity component 
of Ga. We now take a closed subgroup H of G such that (Ga)o~H~Ga. 
Then we define a homogeneous space G/H of G. 

Definition. A homogeneous space G/H defined in the above way is 
called a semisimple symmetric homogeneous space of G. Unless otherwise 
stated, we call this a symmetric space for brevity. 

(1.8) As in the case of Lie algebras, we can define associated and 
dual symmetric spaces of the given G/H. But in this case, associated and 
dual symmetric spaces are not uniquely determined because the choices of 
the closed subgroups whose Lie algebras are fja and fjd are not unique. 
But as to an associated symmetric space of G/ H, we can define a standard 
one (cf. [MaJ). We now construct this. 

Let (J be a Cartan involution of G commuting with a and let g = f + lJ 
be the Cartan decomposition of g corresponding to (J. Then we can define 
the maximal compact subgroup K of G whose Lie algebra is t It is clear 
that every element of Kn H stabilizes lJ n q. This implies that Ha = 
(Kn H) exp (lJ n q) is a closed subgroup of G. By definition, Ha is con
tained in GOa and fja is the Lie algebra of Ha. Hence GjHa is a symmetric 
space. 

Definition. The symmetric space GjHa is called the a&sociated sym
metric space of G/H. 
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(1.9) Examples. 
In this paragraph, we give some examples of symmetric pairs and 

symmetric spaces. 

Example (1.9.1). Let g be a compact semisimple Lie algebra and let 
a be an involution of g. Then we define a symmetric pair (g, fj) for a. 
Let G be a connected Lie group whose Lie algebra is g. Assume that a is 
lifted to G. Then we can define a closed subgroup H of G as we did in 
(1.7). The pair (g, fj) is called a compact symmetric pair and G/H is called 
a compact symmetric space or a Riemannian symmetric space of the com
pact type. 

Example (1.9.2). Let G be a connected linear semisimple Lie group 
and let K be a maximal compact subgroup of G. If g is the Lie algebra 
of G and if f is that of K, then the involution a corresponding to the pair 
(g, f) coincides with the Cartan involution for f. We call (g, f) and G/K a 
Riemannian symmetric pair and a Riemannian symmetric space of the 
non-compact type, respectively. As is easily seen, the dual of (g, f) coin
cides with (g, f). 

Example (1.9.3). Let (g, f) be a Riemannian symmetric pair and let 
g=f+p be a corresponding direct sum decomposition of g. We take a 
maximal abelian subspace o-p of p and denote by 2(o-p) the root system of 
(g, o-p). Then we can define a symmetric pair (g, fe) for any signature e of 
2(o-p) in the following way (cf. [O-S]). 

Let e be a signature of roots of 2(o-p). This means that e is a mapping 
of 2(o-p) to {I, -I} with the following conditions: 

(1.9.3.1) {
e(a+,B)=e(a)e(,B) if a,,B, a+,B e 2(ap), 

e( -a)=e(a) for any a e 2(o-p). 

If () is the Cartan involution of g for (g, f), we can define an involution 
(}e of g associated with () and e as we did in [O-S]. Namely, (}.(X)= 
s(a)(}(X) for X e g(ap; a) with a e 2(o-p) and (}.(X)=(}(X) for X e ZeCo-p). 
Then we obtain a direct sum decomposition g=f.+!J. for (}e' The pair 
(g, fe) is the required one. 

If G is a connected Lie group with the Lie algebra g, we can choose 
a (not necessarily connected) closed subgroup K. of G whose Lie algebra 
is f. in a standard manner. We have developed a deep analysis on the 
symmetric space G/Ke in [O-S]. 

Example (1.9.4). Let G' be a connected linear semisimple Lie group 
and put G=G'XG'. Then we define an involution a of Gby a(g, h)= 
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(h, g) (g, h E G'). Putting H = G" = {(g, g) E G; g E G'}, we obtain a sym
metric space G/H. Needless to say, in this case G/H is isomorphic to G' 
by the correspondence (g, h)H-+gh- l • This means that the group G'itself 
is regarded as a symmetric homogeneous space of the product group G' X 
G'. 

Let g' be the Lie algebra of G' and g that of H. Then g = g'E8g' is 
the Lie algebra of G and (g, g) is the symmetric pair corresponding to G/H. 
In this case q={(X, -X); X E g'}. Clearly g and q are identified with g'. 

Example (1.9.5). Let G and K be as in Example (1.9.2). Let Gc be 
a complexification of G and let Kc be a connected closed complex sub
group of Gc such that G n Kc coincides with K. Then we can define a 
symmetric space G c/ Kc. This is a dual to the one defined in Example 
(1.9.4). 

(LlO) In the rest of this section, we closely discuss on the irreducible 
symmetric pairs. First we give a simple lemma. 

Lemma (LlO.l). Let (g, g) be a symmetric pair and let t be a maximal 
compact subalgebra of g. Assume that fc and gc are isomorphic. Then 
(g, g) is self-dual. Moreover, in this case, (gaa, gad) is self-associated. 

Proof We may take f so that the involutions for the pairs (g, g) and 
(g, f) are commutative (cf. (1.2». Let g=g+q=f+1:J be the direct sum 
decompositions of g. Then by definition, fd = (f n g) + -v'=t (1:J n g) is a 
maximal compact subalgebra of gd. Since fd is a compact real form of 
gc, it follows from the assumption that f~fd. Hence due to [He 2, Ch. X, 
Th. 6.2], we conclude that gd~g. 

Next we show that ga~g. Since gd=(fng)+-v'=t(fnq), due to 
the assumption we find that the maximal compact sub algebras of g and gd 
are isomorphic. This combined with [He 2, Ch. X, Th. 6.2] implies that 
gd ~ g. 

We have thus proved that (g, g)d is isomorphic to (g, g). 
Last we show that (g, g)ad is self-associated. The above discussion 

implies that (g, g)da~(g, g)a and (g, g)dad~(g, g)ad. Now we remember 
that (g, g)aaa~(g, g)ada (cf. (1.4». Hence (g, g)ad~(g, g)aaa. This means 
that (g, g)aa is self-associated. q.e.d. 

(Lll) In [O-S], we defined a symmetric pair (g, f.) by using the no
tation there (cf. Example (1.9.3». Since fc~(f.)c, Lemma (LlO.l) implies 
that (g, f.) is always self-dual. We consider (g, f.)a and (g, f.)ad. Com
paring the classification in [Be] with that in [O-S], we observe that a good 
many symmetric pairs are obtained in this manner. We now assume that 
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.g is real simple. Then the properties of the three pairs (g, f.), (g, f.)a, 
{g, l.)aa become different according as the complexification of g is simple 
or not. Taking this into account, we are going to determine the dual and 
associated pairs of a given one. For this purpose, it is preferable to 
decompose the symmetric pairs into some classes. First we treat the pairs 
of the forms (g, f.) in (1.12). Next we do those of the forms (gc, g) in 
(1.13). Most pairs of the forms (gc, g) are reduced to the previous ones. 
But in this case, the dual and associated pairs are very explicitly decided. 
By this reason, we distinguish those from the previous ones. Last we treat 
the pairs in (1.14)-(1.16) which are not obtained from the previous two 
cases. 

(1.12) Type (f.): (g, lj), where g is real semisimple and lj is isomorphic 
to a subalgebra f. of g defined as in Example (1.9.3). 

We consider an irreducible symmetric pair (g, lj) or Type (t.). We 
fust note that such a pair is completely classified (cf. [O-S, Appendix]). 
As is noted in (1.11), (g, lj) is self-dual in this case. Hence due to (1.4.2), 
we obtain the following diagram: 

( k) associated ( ka ) dual ( a k) g, <) ~-----+ g, <) +-( __ ~) ga ,<) 

LJ . LJ 
dual associated 

Therefore if g, lj, lja and gaa are given, we can easily determine the three 
pairs (g, lj), (ga, lja), (gaa, ljaa). Here we use the relations (gaaa, ljaaa)::::: 
(gaa, ljaa) and ljuau = lj. If (g, lj) is a Riemannian symmetric pair of the 
non-compact type, it follows from the definition that (g, lj)U = (g, g) and 
(g, lj)aa coincides with the compact dual of (g, lj). As to these pairs, the 
reader isrefered to [He 1]. On the other hand, we will treat in (1.13) such 
a pair (g, lj) that g itself is complex simple. Thus let (g, lj) be an irreducible 
symmetric pair of Type (t.), where gc is simple. For such a pair (g, lj), 
we shall give in Table I the complete informations on the Lie algebras g. 
lj, lju and gaa. 

Remark. In Table I, t denotes -f=1R, the Lie algebra of one di
mensional compact torus. Other notation follow [He 1] and [O-S, 
Appendix]. 

(1.13) Type (C, R): (gc, g), where g is a real semisimple Lie algebra 
and gc is the complexification of g. 

First we give a simple lemma. 

Lemma (1.13.1). 
(1) (gc, g) is self-dual. 
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Table I. (g, ~): Type (r,) and gc is simple 

Symbol 9 ~ ~a gat! 

Ai,/2j;;?;l+ 1) ~I(I+1, R) ~0(1+1-j, j) $[(1+1-j, R) 
~u(l+l-j, j) HI(j, R)+R 

Aij2j;;?;I+1) ~u*(21+2) ~ll(l+l-j, j) $u*(21+2-2j) 5u(21+2-2j,2j) 
+~u*(2J)+R 

BCi':'}, 2, l(j;;?; 1) ~u(l+m, I) ~u(l+m-j, j) ~u(l+m-i, I-j) 
~u(21+m-2j, 2j) Hu(l- j, j)+t Hu(j, j)+t 

Ci:}(2j;;?;l) ~u(l, I) ~u(l- j, J) ~u(l-j, I-j) 
~u(21-2j, 2j) Hu(l-j, j)+t Hu(j, j)+t 

C2,1 I,A llu(l, I) ~I(I, C)+R ~ 9 

B m ,l ~o(l+m, 1) ~o(l+m-j, j) ~o(l+m- j, 1- j) 
~0(21+m-2j, 2j) l,j Ho(l-j, j) Ho(j, J) 

D}j2j;;?;l) ~o(l, I) ~o(l-j, j) iSo(l-j,l-j) iJo(21-2j,2j) Ho(l-j, j) Ho(j, j) 

Dz'A iJo(l, I) ~u(l, C) iSl(l, R)+R ~0*(21) 

Ct;j(2j;;?;l) iJo*(41) iJu(21-2j,2j)+t iSo*(41-4j) 
~0(41-4j, 4j) 

+~0*(4j) 

C 4,1 I,A ~0*(41) ~u*(21)+R lJ 9 

BC4,4,1 iSo*(41+2) . ~0':'(41+2-4j) ;80(41+2-4j,4j) I,} ~u(21+1-2J,2J)+t Ho*(4j) 

C};j(2j;;?;l) ~p(l, R) iSu(l-j, j)+t iJll(l-j, R) 
~'f!(l- j, J) Hll(j, R) 

C1,1 I,A ;8'f!(I, R) ~1(1, R)+R ~ 9 

BC4m,4,3 ;8p(l+m, I) ~p(l+m-j, j) ~iJ(l+m-j, I-j) ;8iJ(21+m-2j,2j) I,; + i8ll(l-j, j) HiJ(j, j) 

Ci;](2j;;?;l) ;8iJ(l, I) ~iJ(l- j, j) ;8iJ(l-j,l-j) 
~iJ(21-2j, 2j) 

+~iJ(l-j, j) +~iJ(j, ]) 

C 4,3 I,A ~iJ(l, I) ~iJ(l, C) ~u*(21)+R ~p(21, R) 

E~,A C6(6) ~iJ(4, R) ;81(6, R) 
C6(2) +181(2, R) 

E~,D C6(6) i8iJ(2,2) !8o(5,5)+R C6(-14) 

F 2,1 
4,B C6(2) ~u(4, 2)+!8u(2) i80(6,4)+t e6(-14) 

F 2,1 
4,0 C6(2) !.lu(3, 3)+181(2, R) ~ 9 

BC8,6,1 2,A e6(-14) !.lo*(IO)+t !.lu(5, 1)+i8I(2, R) e6(2) 
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Symbol 

BCS,6.1 
2,B 

E~,A 

E~,D 

m,E 

~,l 
4,0 

CS,l 
3,A 

CS,l 
3,B 

E~,D 

E~,E 

FS,l 
4,0 

FtB 

F!,o 

BCS,1 
l,A 

G~ 

eS(S) 

eS(-24) 

eS(-24) 

14(-20) 

92(2) 

T. Oshima and J. Sekiguchi 

(Continued from Table I) 

9 

~o(8, 2) +t 1) 9 

14(-20) ~o(9, 1)+ R e6(-U) 

~(8, R) 1) 9 

~u(4, 4) ~o(6, 6)+~(2, R) e1(-5) 

~o(8, 4)Hu(2) 1) 9 

~o"(12)+~(2, R) 1) 9 

e6(-l4) +t ~o(lO, 2)+1$(2, R) e1(-5) 

~o(8, 8) 1) 9 

~o*(16) e1C1l +~(2, R) eS(-24) 

e1(-5) +~u(2) ~o(12, 4) eS(S) 

f1(-26) +~(2, R) 1) 9 

~jl(2, 1)+~u(2) ~o(5, 4) 14(-20) 

~jl(3, R)+~(2, R) 1) 9 

~o(8, 1) 1) 9 

~(2, R) HI(2, R) 1) 9 

(2) Let f be a maximal compact subalgebra of g and let fa be its com
plexification. Then (go, fa) is associated to (go, g). 

(3) (gEBg, g) is dual to (go, fd. Here we identify g with the diagonal 
subalgebra {(X, X); X E g} of gEBg. 

(4) (gEBg, g) is self associated. 

We give a real simple Lie algebra g. Then Lemma (1.10.1) and 
Lemma (1.13.1) imply the following diagram. 
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associated dual 
(gc, g)~--+(gc, fc) ~( ~~~) (gffig, g) 

LJ LJ 
dual associated 

As is noted in [O-S, Appendix], the pair (gc, g) is reduced to the one 
of Type (f,) if and only if g has a compact Cartan subalgebra. 

There are a few symmetric pairs which are not obtained in the above 
procedure. We now describe these pairs. 

(1.14) We consider the following symmetric pairs. 

Type 

A~f:J?(P-i, q-j) 

BD~f:J?(P-i, q-j) 

g 

~u(p, q) 

~o(p, q) 

~p(p, q) 

~u(i, ])Hu(p-i, q-])+ v' -lR 

~o(i, ])Ho(p-i, q-j) 

~p(i, J)Hp(p-i, q-j) 

If X denotes one of A, BD or C, we find that the following relation holds: 

X (i+j,p+q-i-j) dual X(p,q) associated () 
(i,p-i)(j,q-j) ( ) (i,j)(p-i,q-j) ( )X(f::t-j)(P-i,j) 

If the pair of type X~f:J?(P-i,q-j) is self-dual, then p=i+j or q=i+j and 
in this case the pair is reduced to the one of Type (f,). 

(1.15) Next we find that if 1>2 and if i is an odd number such that 
1 ~ i ~ I, the following relation holds: 

(£;0*(4/), £;u(2/-i, i)+-/=1R)~ dual 

1 associated 

(£;0*(4/), £;0*(41- 2i) + £;0*(2i)) 

1 dual 

(£;0(41- 2i, 2i), $u(2/- i, i) + -/=1 R) ~ associated 

We note here that the case when i is even, the pair ($0*(4/), $u(2/-i, i)+ 
-/=1R) is reduced to the one of Type (t) (cf. [O-S, Appendix]). 

Remark ([O-S], p. 79]). Let (g, lj) be an irreducible symmetric pair. 
Let f be a maximal compact subalgebra of g. Assume that gc is simple 
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and fje~ fe. Then (g, fj) is not of Type (fe) if and only if (g, fj) is iso
morphic to (.00*(4/), .?u(2/-i, i)+-I=1R) for an odd integer i. 

(1.16) Last we consider the following Lie algebras. 

g gd gad ~ ~a ~d 

iJI(21, R) iJu*(21) su(l, I) iJlJ(l, R) iJI(l, C)+v-1R IJo*(21) 

C6(6) C6(-26) C6(Z) f4(4) iJU*( 6)+ iJu(2) iJP(3, 1) 

C7(7) C7(-Z5) C7(-5) c6(2)+v=IR i!o*(12)+ !Su(2) su(6,2) 

Then we find that the following relation holds. We stress that any two of 
the six pairs below are not isomorphic to each other. 

( 'h) associated ( 'h a ) dual (ad 'h d) g, <) +---------+ g, <) +------+ g ,<) 

1 dual 1 associated 

(gd, fjd) +--~(gd, fja) +------+(gad, fj) 
associated dual 

§ 2. The restricted root system of a symmetric pair 

(2.1) Retain the notation in Section 1. Let (g, fj) be a symmetric 
pair and let Ct be a maximal abelian subspace of tJ n q. In this section, we 
define the root subspaces of g with respect to Ct and examine their ele
mentary properties. In particular we shall show in Theorem (2.11) that 
the totality of the roots with respect to (g, Ct) becomes a root system. We 
call this the restricted root system of the symmetric pair (g, fj). 

Lemma (2.2). 
( i ) If Ctp is a maximal abelian subspace of tJ containing Ct, then Ctp is 

(J-stable. 
(ii) If i is a maximal abelian subspace of q containing Ct, then i is {}

stable and consists of only semisimple elements of g. 

Proof ( i ) Let X be an element of Ctp• Then we put X = Xl + Xe 
with Xl E fj, X 2 E q. Since fj and q are {}-stable, we find that Xl E fj n tJ and 
Xz E tJ n q. It follows from the assumption that [Xl> Y]+[X2, Y] = [X, Y] 
=0 for any Y E Ct. But [Xl> Y] E q and [X2' Y] E fj. Thus we have [Xi' Y] 
=0 (i= 1,2). In particular X 2 E tJ n q and commutes with Ct. Therefore 
the assumption implies that X 2 E a. Then Xl = X - X2 E ap• Hence both 
Xl and X 2 are contained in Ctp • Then a(X)=a(XI)+a(X2)=XI -X2 E Ctp • 

(ii ) We can prove that i is {}-stable by an argument similar to the 
one in the proof of (i). Hence it suffices to show that each element of i 
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is semisimple. First we note that i = f n i + j:l n j is a direct sum decom
position. Let X be an element of i. Then there are Xl E f n i and Xz E 

j:l n i such that X = Xl + Xz• By definition, we find that both Xl and Xz are 
semisimple and [Xl> Xz] =0. This implies that X is semisimple. q.e.d. 

Remark (2.3). It is widely known that any maximal abelian subspace 
of j:l consists of only semisimple elements of g. But the claim for q similar 
to this one does not hold in general. Namely there exists a symmetric 
pair (g, g) and a maximal abelian subspace 0 of q such that 0 contains an 
element which is not semisimple. We give here a simple example. 

Let g = ~r(2, R) and define an involution q of g by 

o{X) = (1 O)X(I 0) o -I 0-1 
('IX E g). 

Then q = {(~~); x, y E R}. If we take 0 = {(g ~); X E R}, then 0 is a 

maximal abelian subspace of q but consists of only nilpotent elements of g. 

Lemma (2.4). (i) Let a be a maximal abelian subspace of j:l n q. If 
ap (resp. D is a maximal abelian subspace of j:l (resp. q) containing a, then 
[ap, iJ=O. 

(ii) Let I and I' be Cartan subalgebras of g such that each of I and I' 
contains maximal abelian subs paces of j:l, q and j:l n q. Then they are conju
gate under the action of Kn (Gu)o. 

Proof First prove (i). It follows from Lemma (2.2) that ap is q

stable and i is 8-stable. Hence to prove the lemma, it suffices to show 
that [ap n g, in f] =0. Let X E ap n 9 and Y E in f. Then it is clear that 
[X, Y] is contained in j:l n q and commutes with a. Since a is maximal 
abelian in j:l n q, we find that [X, Y] E a. But for any Z E a, we have 
<[X, Y], Z>=<X, [Y, Z]>=O. Hence [X, Y]=O. 

Next prove (ii). For brevity, we put ap = In j:l, i = In q, a = In j:l n q, 
a~=I'nj:l, 1'=I'nq, a'=i'nj:lnq and L=Kn(GU)o. Since ga=gnf+ 
j:l n q is a Cartan decomposition and since a and a' are maximal abelian 
subspaces of j:l n q, we find that a and a' are L-conjugate. Hence we may 
assume that a = a'. Let Oij be the centralizer of a in g. Then it follows 
from the definition that ap n 9 and a~ n 9 are maximal abelian subspaces of 
Oij n j:l. Hence we also find that ap and a~ are L-conjugate. Then we may 
assume that ap = a~. Let m be the centralizer of ap in f and let m = m+ + 
m_ be the direct sum decomposition for the involution q. Then it follows 
that in f and l' n f are maximal abelian subspaces of m_. Since (ro, m+) 
is a symmetric pair of the compact type, we find that i and l' are L-
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conjugate. Hence we may also assume that j=j'. Last we consider the 
centralizer 5 of Ctp + j in g. Since the semisimple part of 5 is compact and 
since both i and i' are Cartan subalgebras of 5, we easily conclude that i 
and i' are L-conjugate. q.e.d. 

(2.5) We take Ctp and j which satisfy the conditions in Lemma (2.4). 
Let i be a Cartan subalgebra of g containing both Ctp and j. We have 
shown in Lemma (2.4) that such a Cartan subalgebra exists uniquely up to 
a conjugation of Kn (G")o. We fix L Ctp and j from now on. It follows 
from the definition that j contains a maximal abelian subspace of m n q, 
where m is the centralizer of Ctp in f-

Using j and Ct, we define the rank and the split rank of the pair (g, lj). 

Definition (2.5.1). We call1'=dimj and l=dimCt the rank and the 
split rank of the symmetric pair (g, lj), respectively. 

If c is a real reductive Lie algebra, we denote by r(c) the real rank of 
c. Then for a given symmetric pair (g, lj), the rank and the split rank of 
(g, lj) are r(gd) and r(lja), respectively. Noting this, we can easily deter
mine the rank and the split rank for each pair appeared in the diagram 
(1.4.2). The results are summarized in the following table. 

Table (2.5.2) 

rank split .rank 

(g, lJ) r(gc!) r(lJa) 

(g, lJ)a r(gac!) r@ 

(g, lJ)ac! reg) ref)) 

(g, l))ac!a r(gc!) r(l)c!) 

(g, lJ)c!a r(gad) r(fJc!) 

(g, lJ)d reg) r(fJa) 

Remark (2.5.3). If the pair (g, lj) is the one defined as in Example 
(1.9.4). Use the notation there. Then I' and I coincide with the rank 
and the real rank of the Lie algebra g', respectively. 

(2.6) If a is a O-stable linear subspace of L we denote by a* the dual 
of a and by iie (resp. at) a complexification of ii (resp. a*). For any 
element.i1. of ii~, we put 

ge(a; .i1.)={X E ge; [Y, XJ=i1(Y)X (VY E a)} 

g(a; i1)=ge(ii; .1) n g. 
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An element k;l=O of a~ is called a root of (g, a) if and only if ge(a; l):;l=O 
and we denote by Sea) the totality of the roots of (g, a). By the Killing 
form < , ) on ge, we always identify a~ with ae. In particular we may 
regard M as a linear subspace of i~. It is clear from the definition that 
S(a~) and SO) are the root systems of the Riemannian symmetric pairs 
(g, f) and (get, fet), respectively. 

In the following, we give some basic lemmas on the root subspaces of 
(g, a~). 

Lemma (2.7). Let l be an element of S(ap) and assume that l I a=O. 
Then g(a~; l) is contained in fj. 

Proof Let X be an element of g(a~; l). Since a(l) = l, it follows 
that X -a(X) is also contained in g(a~; .:t). On the other hand, Z = 
(X - a(X)) - O(X - a(X)) is contained in j:J n q and the assumption implies 
that [Z, a]=O. Therefore we find from the definition of a that Z ea. 
But for any Ye a, we have that <Z, Y)=4<X, Y)=O. Then Z=O. This 
implies that X-aX e fng(ap ; l)=O, that is, X-aX=O. Hence we con
clude that X is contained in fj and the lemma is proved. 

Lemma (2.8). Leta bea root ofS(i). lfala=O, then alap=O or 
alj=O. 

Proof Let a e S(i) such that a I a = 0. We assume that a I a~:;l= ° and 
ali:;l=O and lead a contradiction. For any Xeje and Yege(i; a), we 
have [X, Y]=a(X)Y. On the other hand, it follows from Lemma (2.7) 
that ge(f; a) is contained in fje. Hence we see that [X, Y] e qe. Then 
[X, Y]= -a([X, Y])= -a(X)Y. This implies that a(X) =0 for any X e ie. 
We have thus a contradiction. q.e.d. 

Lemma (2.9). Let l, p e S(a~) and assume that <.:t, p)<O. Then for 
any X e g(a~; l) (X:;l=O) and Ye g(a~; p) (Y:;l=O), we have [X, Y]:;l=O. 

Proof We put H= -[X, OX]; Then it is clear that Heap. Hence, 
multiplying X by a non-zero constant if necessary, we may assume from 
the first time that 

(2.9.1) [H, X]=2X, [H, OX] = -20X, [X, OX] = -H. 

Then it is easy to see that 

(2.9.2) [H Y]=2 <l, p) Y. 
, <l,.:t) 

Assuming that [X, Y]=O, we lead a contradiction. Let r be a sub
algebra of g spanned by H, X and OX. Then it follows from (2.9.1) that 
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r is isomorphic to ~r(2, R). We consider the representation of r on the 
vector space g induced from the adjoint representation of g. Then due to 
the assumption, we find that Y is a highest weight vector of the represen
tation of r. This implies that [H, Y] = c Y with a non-negative constant c. 
But owing to (2.9.2), we see that 2«A, f1.)/(A, A»=C>O. Hence (A, f1.»0. 
This contradicts the assumption. This means that X does not commute 
with Y. q.e.d. 

Remark. Hisayoshi Matumoto pointed out that the results of Lemma 
11 (iii), (iv) in [Ma, p. 344] are true but their proofs given there are incor
rect. Lemma (2.9) is equivalent to Lemma 11 (iii) in [Ma]. The proof of 
Lemma 11 (iv) is given by an argument similar to that in Lemma (2.9). 

Lemma (2.10). Let A be an element of ..r(ap) and assume that (O'(A), A) 
<0. Then O'(A) = -A. 

Proof Assuming that O'(A) * -A, we lead a contradiction. Needless 
to say, if O'(.<)=A, then (O'(A), A)= (A, A) >0 and therefore we have a 
contradiction. Hence we may assume that O'(A)*±A. Let X(*O) be an 
element of g(ap ; A) and put Z = [X, O'(X)]. Then Lemma (2.9) implies that 
Z*O. On the other hand, Z is obviously contained in g(ap ; A+O'(A» n q. 
However, since the assumption in Lemma (2.7) holds for A+O'(.<), Z must 
be contained in 9. This is a contradiction. q.e.d. 

Theorem (2.11). The set ..r(a) becomes a root system of rank dima. 

Remark. This theorem is already obtained by Rossmann [Ro, Th. 5]. 
But for the sake of completeness, we give here a proof of it. We will treat 
the related topics to Theorem (2.11) in Section 3. 

Proof Let A be a root of ..r(ap) such that A I a*O. Then due to 
Lemma (2.10), we find that A satisfies one of the following conditions: 

(i) O'A=-A, 
(ii) (A,O'A)=O, 
(iii) (A, O'A) >0. 

Then we can prove the theorem by an argument similar to that in [W, pp. 
21-22]. There ..r(ap) is assumed to be reduced. But this condition is not 
used there. q.e.d. 

Definition (2.12). We call ..r(a) and its elements the restricted root 
system of the symmetric pair (g, 9) and the restricted roots, respectively. 

(2.13) Let A be an element of ..r(a). Since 80' leaves g(a; A) invariant, 
we obtain a direct sum decomposition 
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(2.13.1) 

by putting g±(a; A)={X E g(a; A); {)a(X) = ±X}. Moreover we put 

(2.13.2) m±(A)=dimR g±(a; A) 

m(A)=m+(A)+m-(A). 

449 

Definition (2.14). For any A E Sea), we call m(A) and (m+(A), m-c.m 
the multiplicity and the signature of A, respectively. 

(2.15) Let (g, fj) be a symmetric pair and (gd, fjd) its dual. We take 
a maximal abelian subspace a (resp. ad) of tJ n q (resp. tJd n qd). By defi
nition, tJ n q=tJd n qd. Hence we may assume that a = ad. Let Sea) 
(resp. SCad»~ be, the restricted root system of (g, fj) (resp. (gd, fjd». Then 
we have the following lemma. 

Lemma (2.15.1). The root systems Sea) and SCad) coincide. More
over for any A E Sea), the signature of A coincides with that of A regarded as 
an element of SCad). 

Proof Let A be an element of Sea). Then by definition, g+(a; A)= 
fja. n g(a; A) = fjda. n gd(a; A) and g- (a; A) = qa. n g(a; A) =,f=t qda. n 
gd(a; A). These imply that A E SCad) and the signatures of A regarded as 
a root of Sea) and that of SCad) coincide. The converse is also true. 

q.e.d. 

(2.16) We give here some remarks on the multiplicities and the sig
natures of restricted roots. 

(1) ForanYAES(a), we put R(ap;A)={aES(ap); a\a=A}. Then 
it follows from the definition that 

(2) We introduce a quadratic form on the root space g(a; A) for any 
restricted root A E Sea) by 

Q~(X)= - (X, aX) for any X E g(a; A). 

Then the signature of the quadratic form Q~(X) on g(a; A) coincides with 
(m+(A), m-(A». 

(3) We have already introduced the signature of roots in [O-S] (cf. 
Example (1.9.3) in § 1). The signature in Definition (2.14) is regarded as 
a generalization of that in [O-S]. We now explain this. Let (g, f) be a 
Riemannian symmetric pair and let S(ap) be the root system of (g, 0. We 
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take a signature e of I(ap) as we did in Example (1.9.3) of Section 1. Let 
(). be the corresponding involution of g. Then we define a symmetric pair 
(g, f.). In this case, it follows from the definition that a coincides with ap• 

By an easy computation, we find that 

QNX) = e(A)Q!(X) 

Here () denotes the Cartan involution for f. This means that for a root 
A e I(ap), e(l) = 1 (resp. e(A)= -1) if and only if the quadratic form Qf'(X) 
on g(ap ; 1) is positive definite (resp. negative definite). In this sense, the 
signature defined above is a generalization of that in [O-S]. 

(2.17) The following lemma will be useful in the determination of 
m+(l) and m-(l). . 

Lemma (2.17.1). Let 1 be a root of I(a). If 21 e I(a) and m-(21) 
>0, then m+(l)=m-(A). 

Proof It follows from the assumption that there exists an element 
Z:;t:O of g(a; 21) such that q(}Z= -z. Using Z, we define a linear endo
morphism p of g(a; 1) by p(X)=[(}X, Z] for any X e g(a; 1). It is clear 
that p(g±(a; l»Cg"(a; 1). Hence to prove the lemma, it suffices to show 
that p is injective. Assume that X e g(a; 1) and p(X) = 0. Then [Z, 
[(}Z, X]] =0. Since [Z, X]=O, it follows that [[Z, (}Z], X]=O. On the 
other .hand, [Z, (}Z] e j:l n q and [Z, (}Z] commutes with a. These imply 
that [Z, (}Z] ea. Then O=[[Z, (}Z], X]=l([Z, (}Z])X. Since l([Z, (}Z]) 
*0, we conclude that X=O. q.e.d. 

§ 3. The (0, a)-system ofroots 

Let (g, 1) be a symmetric pair. We use the notation defined in the 
previous sections without notice. Let I(i) be the root system with respect 
to (g, D. Then () and q induce involutions on I(i). We denote them by 
the same letters. Needless to say, () and q commute with each other. 
They may satisfy additional conditions. Hence it is natural to ask the 
problem to give conditions on () and q such that they are actually induced 
from a symmetric pair. In this section, we treat this problem. 

(3.1) Let V be a finite dimensional real vector space. Let I be a 
root system in V (cf. [W, p. 8]). There exists a positive definite non
degenerate symmetric bilinear form <" . > on V which is invariant under 
the Weyl group of I. We fix.this form. Let V* be the dual of V. Then 
V* is identified with V by the inner product <" . >. In the sequel, we 
frequently identify V and V*. 
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Let () and a be linear involutive isometry of V with (}::;t: 1, a::;t: 1. In 
the sequel, we always assume that (}2=a2=2. That is, the pair (2,0) 
(resp. (2, a» is a O-system of roots (resp. a-system of roots) (cf. [W, p. 21]). 
In addition, if Oa=aO, we call the triple (2,0, a) (or simply 2) a (0, a)
system of roots. 

We put V(O) = {v E V; Ov= -v}, V(a) = {v E V; av= -v} and V(O, a) 
= V(O) n yea). For any v E V, we define ru(v)=i(v-Ov), ru(v) = !(v-av) 
and r(v)=t(v-Ov-av+Oav). Then it is clear that ro<v) E V«(}), ru(v) E 

Yea), rev) E V(O, a) for any v E V. Using these notation, we define 

2(O)={rO<a); a E 2, re(a)::;t:O} 

2(a)={ru(a); a E 2, r.(a)::;t:O} 

2«(}, a)={r(a); a E 2, r(a)::;t:O}. 

(3.2) Let 2 be a root system in V and let a be an involution of V 
such that a2=2. We consider the following conditions for 2 and a: 

(Nu) a+aa ~ 2 for any a E 2. 

(GNu) If a is a root of 2 such that <a, aa) <0, then aa= -a. 

Lemma (3.2.1). Let 2 be a a-system of roots in V. If the condition 
(Nu) holds, so does the condition (GNu). 

Proof Let a E 2. We assume that <a, aa)<O and aa::;t: -a. Then 
it follows from [W, Prop. 1.1.2.1] that a+aa is a root of 2. This contra
dicts the condition (Nu). q.e.d. 

As was already shown in Lemma (2.10), involutions a satisfying the 
condition (GNu) naturally appear in the course of the examination of sym
metric pairs. The classification of such involutions will be .treated in 
another paper. 

Lemma (3.3). Let 2 be a a-system of roots in V. (We do not assume 
that 2 is reduced). If the condition (GNu) holds, then 2(a) is a root system. 

Replacing Lemma (2.10) with the condition (GNu), we can prove 
Lemma (3.3) by an argument similar to that in Theorem (2.11). 

Theorem (3.4). Let (2, 0, a) be a (0, a)-system of roots in V. We 
assume that the conditions (No) and (Nu) hold. Moreover we assume that 

(C) Let a E 2. Ifr(a)=O, then re(a) =0 or ru(a) =0. 

Then 2(0, a) is a root system in V(O, a). 
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Proof. It follows from (No) and [W, Prop. 1.1.3.1] that 2(0) is a root 
system in V(O). Since Oa=aO, we see that a induces an involution on 
V (0) which we denote by the same letter. Then 2(0) is a a-system of 
roots in V(O). If the condition (GNq ) holds for 2(0) and a, it follows from 
Lemma (3.2.1) that 2(0; a) is a root system in V(O, a). 

Hence it suffices to show the following. 

(3.4.1) If a E 2 satisfies the conditions (a) ria)::;t:O and (b) <ria), 
a(ria») <0, then a(ria» = -ria). 

We are going to prove this statement in the cases (i) <a, Oa)<O, (ii) 
<a, Oa) >0 and (iii) <a, Oa) =0, separately. 

(i) The case where <a, Oa) <0. 
In this case, it follows from the condition (No) that Oa= - a. Then 

(b) is equivalent to the condition <a, aa) <0. Hence the condition (Nq ) 

implies the claim. 
(ii) The case where <a, Oa) >0. 
It follows from (a) and [W, Prop. 1.1.2.1] that f3=a-Oa is also a root 

of 2. Since f3=2ria), the conditions (b) and (No) imply the claim. 
(iii) The case where <a, Oa)=O. 
We note that (b) is equivalent to the condition (b/) <a, aa) < 

<a,Oaa). If <a, aa)<O, then (Nq ) implies that aa== -a and therefore 
we have nothing to prove. Hence we may assume that <a, aa»O. On 
the other hand, if Oaa=a, it is clear that a(ria» = -ria). Hence we 
may also assume that Oaa::;t:a. Then <a, Oaa) «a, a). Since a, aa and 
Oaa are of the same length, the conditions O:S:<a, aa) < <a, Oaa) implies 
that < aa, a) = 0. Here we used the properties of roots explained in [W, p. 
10]. Since <a, Oaa) >0, it follows from [W, Prop. 1.1.2.1] that f3=a-Oaa 
is a root of 2. It is clear that r(f3)=f3-0f3-af3+0af3=0. Then the 
condition (C) implies that 013=13 or af3=f3. If 013=13, then a-Oa+aa
Oaa=O. On the other hand, if af3=f3, then a+{}a-aa-Oaa=O. In 
both cases, by taking inner product, we find that <a, a) - <a, (}aa) =0. 
This contradicts the assumption Oaa::;t:a. 

Hence the theorem is completely proved. 

Remark (3.5). Let (2, 0, a) be a (0, a)-system of roots. We assume 
that the conditions (No) and (Nq ) hold. Under the assumption, the con
dition (C) is not necessary to the condition that 2(0, a) is a root system. 
We give here an example of a (0, a)-root system (2,0, a) that (No) and 
(Nq ) hold, that 2«(}, a) is a root system but the condition (C) does not hold. 

Let 2={±ah ±a2, ±(al+a2)}U{±f3b ±f32' ±(f31+f3J} be a root 
system of type A2 X A2. Let 0 be an involution on 2 defined by Oa1 = -132' 
0131 = - a 2 and let a be that defined by aat == - f3t (i = 1, 2). In this case, 
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it is clear that (No) and (N.) hold and that :see, a) is a root system of type 
Al but the condition (C) does not hold. Actually, we see that ea(a 1+a2) 

= -(a l +a2) but e(al +(2)::;t:al +a2, a(al + az)::;t:al +az• 

Definition (3.6). Let (:S, e, a) be a (e, a)-system of roots. If the con
ditions (No), (N.) and (C) hold, we call it a normal (e, a)-system of roots. 

(3.7) We give here a remark on the role of Theorem (3.4) in the 
study of the restricted root system of a symmetric pair. Let (g, fj) be a 
symmetric pair and let 1 be a Cartan subalgebra of g satisfying the con
ditions as we introduced in (2.1). We put 10=-i=1Ct'nl)+ap' Then 
every root of :sci) takes real values on 10' We now identify V with io and 
:s with :seD and write the restrictions of the complex linear extensions of 
the involutions 0 and a on g to V by the same letters. Then it follows 
that:S is a normal (e, a)-system of roots in V. In fact, the conditions (No) 
and (N.) are easily checked (cf. [W, Lemma 1.1.3.6]) and the condition (C) 
is a direct consequence of Lemma (2.8). It is now clear that Theorem 
(2.11) is a special case of Theorem (3.4). 

(3.8) From now on, we introduce an order on the root system 
:s which meets our purpose. First recall a a-order on:S. An order on 
:s is called a a-order if aa is negative for any positive root a of :s satisfying 
r.(a)::;t:O (cf. [W, p. 23]). Similarly we can define a e-order on:S. In 
general, a e-order on :s is not a a-order. But under the condition (C), 
we can define an order on :s which is both a a-order and a e-order. To 
define a standard one, we take elements Y_ E Vee, a), Y+ E V(O) n V(a)l., 
Z_ E V(a) n V(e)l. and Z+ E V(e)l. n V(a)l.such that for any root a E :S, 
we have 

(3.8.1) ja(Y+) =O=?a I Vee) n V(a)l. =0, 

a(L) =O=?a I Vee, a) =0, 

a(Z+)=O=?al V(e)l.n V(a)l.=O, 

a(L)=O=?al V(e).Ln V(a)=O. 

Here V(O)l. and V(a).L denote the orthogonal complements of V(O) and 
V(a) in V, respectively. Then we define an order on :s such that a root 
a of :s is positive if and only if one of the following conditions holds: 

(3.8.2) 

(i) a(L»O, 

(ii) a(L)=O and a(Y+»O, 

(iii) a(L)=O and a(Z_) >0, 

(iv) a(L)=a(Y+)=a(Z_)=O and a(Z+) >0. 
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Due to the condition (C), we find that if a(L)=O, then a(Y+)=O or 
a(Z_) =0. Hence we can safely define an order on I in view of the con
dition (3.8.2). We call such an order a (0, a)-order on I. It is clear 
from the definition that a (0, a)-order is both a O-order and a a-order. 
For a given (0, a)-order on I, let ?Jf be its fundamental system of positive 
roots. Then?Jf is called a (0, a)-fundamental system of I+. 

The following lemma is a direct consequence of the definition of the 
(0, a)-order on I. 

Lemma (3.8.3). Let V be one of the subs paces V(O, a), V(O) n V(a)l., 
V(O)l.n yea) of V. Let a and (3 be roots of I such that al V=(31 V::;t:O. 
Then a >0 if and only if (3 >0. 

Let V be the one as in Lemma (3.8.3). For the sake of convenience, 
we denote by I(V) the root system on V induced from I. That is, for 
example if V = V(O, a), then I(V)=I(O, a). We can safely define a 
compatible order on the root system I(V) such that a root A of I(V) is 
positive if and only if there is a positive root a of I satisfying a I V =A. 
We denote by I+ and I(V)+ the totality of the positive roots in I and 
I(V), respectively. Then we find the following. 

(3.8.4) I(V)+ ={al V; a E I+}-{O}. 

(3.9) Let (I, 0, a) be a normal (0, a)-system of roots in V. Let a 
be a root of I such that r(a)::;t:O. Then a satisfies some conditions. We 
now examine these conditions in detail. Let a be as above. We examine 
in Lemma (3.10) the case where O(ru(a» = -ru(a) and that where a(ria» 
= -ria) and also examine in Lemma (3.11) the case where O(ru(a»::;t: 
-ru(a), a(ria»::;t: -ria). 

Lemma (3.10). Let a be a root of I such that r(a)::;t:O. 
(i) Assume that a+Oa-aa-Oaa=O. Then one of the conditions 

(1)-(6) given below holds. 
(ii) Assume that a-Oa+aa-Oaa=O. Then one of the conditions 

(1')-(6') given below holds. 
(1) Oa=aa= -a. 
(2) Oa= -a, (a, aa) =0. 
(3) Oa= -a, (a, aa) >0. 
(4) Oa=aa, (a, Oa) =0. 
(5) Oa=aa, (a, (}a) >0. 
(6) (a, Oa) =0, (a, aa) >0. 

(1')=(1). 
(2') aa= -a, (a, Oa) =0. 
(3') aa= -a, (a, Oa) >0. 
(4')=(4). 
(5')=(5). 
(6') (a, aa) =0, (a, Oa) >0. 

Proof (i) First consider the case where (a,Oa)<O. Then (No) 
implies that Oa= -a. In this case, we derive (1), (2), (3) from the cases 
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<a, aa) <0, <a, aa) =0, <a, aa) >0, respectively. 
Next assume that <a, fJa) =0. If <a, aa) <0, then aa= -a. This 

combined with the condition a+fJa-aa-fJaa=O implies that fJa= -a. 
This contradicts the assumption. Hence, in this case, we have <a, aa) ;;::::0. 
If <a, aa) =0, by taking the inner product, we find that <a, a) - <a, fJaa) 
=0. Since a and fJaa are of the same length, it follows that fJaa=a. 
Then (4) follows. On the other hand, if <a, aa) >0, then (6) follows. 

Last consider the case when <a, fJa) >0. It is clear from the as
sumption that aa=l= -a. Since a, fJa, aa and fJaa are of the same length, 
we see that 2<a, fJa) = <a, a) and the equation <a, a) + <a, fJa) - <a, aa) 
- <a, fJaa) =0 which follows from the assumption implies that <a,aa) 
>0 and fJaa=a. Then (5) follows. 

Exchanging the roles of fJ and 0', we can prove (ii) similarly. q.e.d. 

Lemma (3.11). Let a be a root of J: such that r(a)=I=O and that 
a(ro(a)) =1= -ruCa), fJ(r.(a)) =1= -r.(a). Then a satisfies one of the following 
conditions. 

(7) <a, fJa) =0, <a, aa) >0, <a, fJaa) =0. 
(7') <a, fJa) >0, <a, aa) =0, <a, fJaa) =0. 
(8) <a, fJa) = <a, aa) =0, <a, fJaa) <0. 
(9) <a, fJa) = <a, aa) = <a, fJaa) =0. 

Proof If <a, fJa) <0, then the condition (No) implies that fJa = -a. 
This contradicts the assumption. Hence <a, fJa) ~O. By the same reason, 
we find that <a, aa) ~O. 

We now show that <a, fJaa) ~O. If otherwise, we have <a, fJaa) >0. 
The assumption implies that fJaa =1= a. Hence it follows from [W, Prop. 
1.1.2.1] that f3=a-fJaa E J:. Then r(f3) =0 and the condition (C) implies 
that fJf3=f3 or 0'13=13. We may assume fJf3=f3. Then a(ruCa)) = -ruCa). 
This is a contradiction. Therefore <a, fJaa) <0. We have thus shown 
that 

(3.11.1) <a, fJa) ;;::::0, <a, aa) ~O, <a, fJaa) <0. 

Now assume that <a, fJa) >0. Then f3=a-fJa E J:. Since r(a) =1=0, 
0'13=1=13. On the other hand, we have that <13,0'13) =2<a, aa) -2<a, fJaa). 
If <a, aa) = <a, fJaa) =0 does not hold, then <13,0'13) >0. This implies 
that r = 13 - af3 E J:. Then r(r) =4r(a). This contradicts the condition 
that J: is a root system. We have thus proved that if <a, fJa) >0, then 
<a, aa) = <a, fJaa) =0. This combined with (3.11.1) implies the lemma. 

(3.12) Let (J:, fJ, a) be a normal (fJ, a)-system of roots and let 1fT 
be a (fJ, a)-fundamental system for J:. For brevity, S(J:, 1fT, fJ) denotes 
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the Satake diagram for the triple C~, lJf, (}). Similarly, S(2, lJf, a) denotes 
that for (2, lJf, a). Put lJf({})={ru(a); a E lJf}. This is a fundamental 
system for the root system 2({}). Then we can define a diagram S(2({}), 
qt({}), a) for the triple (2({}), lJf({}), a) as the Satake diagram is done for the 
above case. For the sake of convenience, we call this the Satake diagram 
for (2({}), lJf({}), a). 

The purpose of this paragraph is to explain a method to determine 
the Satake diagram S(2({}), lJf({}), a) from the information on S(2, lJf, a). 
In fact, it is easy to check the following facts concerning S(2({}), lJf({}), a) 
from the normality assumption for (2, {}, a). 

(3.12.1) The node corresponding to 2 E lJf({}) is black if and only if 
there exists an a E lJf such that ro{a)=2 and that the node of S(2, lJf, a) 
corresponding to a is black. 

(3.12.2) Let 2, f.1. E lJf({}) and assume that 2=1=f.1.. Then the nodes 
corresponding to 2 and f.1. are connected by an arrow if and only if there 
exist a, ~ E lJf such that r u(a) =2, r o(m = f.1. and that the nodes of S(2, lJf, a) 
corresponding to a and ~ are connected by an arrow. 

We give here an example for the Satake diagram of (2({}), a) in the 
case where (2, {}, a) comes from a symmetric pair. 

Consider the symmetric pair (g, lj)=(e6 (-14), 0u(5, 1)+0[(2, R»). Re
tain the notation of the previous sections. Let 2 be the root system of 
gc. Then the type of 2 is Ea. Take a ({), a)-fundamental system lJf for 
2. Then the Satake diagrams S(2, lJf, (}) and S(2, lJf, a) are given as 
follows: 

S(2, lJf, (}): 

S(2, lJf, a): 6--·--I--·~"'O 

It follows from (3.12.1) and (3.12.2) that the Satake diagram S(2({}), 
lJf({}), a) is given as follows: 

S(2({}), lJf({}), a): o~a:::::;>;>---.o . 

It is easy to check that the involution a on 2({}) satisfies the condition 
(GNq ) but does not (Nq ). 

We are going to give a complete list for the Satake diagrams which 
are obtained by the procedure explained above but are not the ones for 
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a-normal systems of roots. We may restrict our attention to the irreduci
ble root systems which come from symmetric pairs. Then the result is 
given as follows: 

( I ) Bz (I: even) ~ --0 ~o 

(I)' BCz (1: even) ~ ---0 1 >0 

(II) Cz (1)1) 0----0-- ~ -¢=e 

(II)' BC! (1)1) 0----0-- ~ --e:=:;>. 

(III) F4 ::J >..--...-0 

In fact, the symmetric pairs given below are examples with the Satake 
diagrams given above. 

(I) (~o(2p, 4n-2p), ~u(p, 2n-p)+-V=1 R) p<n, 1 =2p. 

( I)' (~u(2p, 2n-2p), ~lJ(p, n- p» 2p<n, 1 =2p. 

(II) (~o*(4n), ~o*(2p)+~o*(4n-2p» p<n, 1 =n. 

(II)' (~o*(4n+2), ~o*(2p)+~o*(4n-2p+2» p<n, I =n. 

(III) (e6(-14), ~u(5, 1)+~r(2, R». 
§ 4. A reduction to the case of split rank 1 

(4.1) Let (g, fj) be a symmetric pair. Retain the notation in the 
previous sections without notice. 

First collect here some notation which will be used in this and the 
subsequent sections. 

2(i)u={a E 2Ci); ajup=O} 

2(i)u ={a E 2Ci); a j j =O} 

2(i)u,u={a E 2(}); aja=O} 

2(ap)u={a E 2(ap); aja=O} 

2(j)u={a E 2Ci); aja=O} 

It is clear from the definition that each of these sets is a root system. 
As to 2(i)u,u, we have the following lemma which is a direct consequence 
of the condition (C). 

Lemma (4.1.1). 2(})0,u is the disjoint union of (2(})-2(i)0) n 2(i)u, 
(2(i) - 2(i)u) n 2(i)0 and 2(})0 n 2Ci)u' 
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Let A e .E(a) and let a be one of L ap and i. Then we define the 
following sets. 

R(a; A)={a e .E(a); a I a=A} 

R(a; A) = the union of R(a; mAl such that meR and mA e .E(a). 

For any a e .E(i), we define ria), r.(a) and rea) as we did in (3.1). 
A subset M of .E(l) is said to be connected if M is not decomposed 

into two mutually orthogonal parts. Similarly we define the notion of 
O-connected, a-connected and (0, a)-connected subsets of .E(i). A subset 
M of .E(i) is said to be O-connected (resp. a-connected, (0, a)-connected) if 
and only if OM =M (resp. aM =M, OM =aM =M) and M is not decom
posed into mutually orthogonal O-invariant (resp. a-invariant, (0, a)
invariant) subsets. Since a acts on .E(ap) and 0 acts on .E(l), we can simi
larly define connected and a-connected subsets of .E(ap) and connected and 
O-connected subsets of .Em. 

Lemma (4.2). Let A be a root of .E(a). Then R(i; A) is (0, a)-con
nected. 

Proof It is clear that O(R(f; A»=a(R(i; A»=R(f; A). 
We first consider R(ap ; A) instead of R(i; A). For any p., Ii e R(ap ; A), 

we show that <p., Ii) * ° or <p., ali) * 0. In fact, it follows from the defini
tion that <p.-ap., li-ali)=mn<A, A)*O. (Here m, n are the integers 
defined by p.-ap.=mA, li-ali=nA.) This implies that <p., 1i)*<P., ali) 
and therefore <p., 1i)*0 or <p., ali) *0. Now we take an element p. e 
R(ap ; A) and fix it once for all. Putting N={1i e R(ap ; A); <p., 1i)*0}, we 
find that R(ap;A)=NUaN. We take an element aeR(i;A) such that 
a I ap = p.. If [j is an element of R(i; A), then [j I up is contained in N or in 
aN. If [jlup eN, it follows that <a-Oa,[j-O[j)*O. This implies that 
<a, [j) *0 or <a, O[j) *0. On the other hand, if [j I up e aN, by an argument 
similar to the above, we find that <a, a[j)*O or <a,Oa[j)*O. Putting 
M={[j e R(f; A); <a, [j)*0}, we eventually conclude that 

R(i; A)=MU OM U aM U OaM. q.e.d. 

(4.3) It is clear that .E' =R(i; A) U .E(l)o,. is a closed subsystem of 
.E(i). Namely,.E' is a root system and satisfies that 1) if a e .E', then 
-a e.E' and that 2) if a, [j e.E' and a+[j e.E, then a+[j e.E' (cf. [Ar, p. 
7]). Let .E(i; A) be the (0, a)-connected component of .E' containing 
R(i; A). Then there exists an irreducible closed subsystem .E of .E(i) such 
that .E(i; A) =.E U O.E U a.E U Oa.E. 
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(4.4) Similar to (4.3), we see that R(ap ; 2) U 27(ap). is a closed sub
system of 27(ap). Denote by 27(ap ; 2) the a-connected component of 
R(ap ; 2) U 27(ap). containing R(ap ; 2) (for the definition of the a-component, 
see [Ar]). 

We note here the following well-known statement (cf. [ArD. 

(4.4.1) If R is a closed subsystem of 27(D such that 8R=R, then 
r oCR- 27(i)o) is a closed subsystem of 27(ap). Furthermore if R is 8-con
nected, then r oCR - 27(Do) is connected. 

Lemma (4.5). roC27(i; 2)-27(J)0)=27(ap ; 2). 

Proof For any a E 27(i; 2)- 27(J)o, we see that 

r oCa) E R(ap ; 2) U 27(apt. 

Hence it follows that 

roC27(J; 2)-27(J)0)~R(ap; 2) U 27(ap) •• 

Since (4.4.1) implies that roC27(i; 2)-27(J)o) is a closed subsystem of 27(ap), 

it is clear that 

Hence if we show that r oC27(J; 2) - 27(Do) is a-connected, the lemma follows. 
We are going to prove that roC27(i; 2)-27(J)0) is a-connected. We 

use the notation in (4.3) without notice. Then 27(J; 2) =27 U 827 U a27 U 8a27 
and 27 is an irreducible closed subsystem of 27(J). First assume that 827 = 
27. It follows from (4.4.1) that a(27 -27(i)o)=a27 -27(J)0. Then we find 
that roCa27 -27(J)o)=a(roC27 -27(J)0)). Hence roC27cJ; 2)-27(J)0) is a-con
nected. Next assume that 827 n 27 =f1. Since 8(27 -27(J)0) =827 -27(J)0, 
it also follows from (4.4.1) that r oC27 - 27(J)0) is an irreducible closed sub
system of 27(ap). Then by an argument similar to that in the previous 
case, we conclude that r oC27(i; 2)- 27(Do) is a-connected. q.e.d. 

(4.6) Denote by 27(j;2)the a-connected component of R(j;2)U27(j)0 
containing R(i; 2) (cf. (4.4)). Then the following lemma is shown by an 
argument similar to that in the proof of Lemma (4.5). 

Lemma. r.(27(i; 2)-27(i).) =270; 2). 

Theorem (4.7). For any 2 E 27(a), we denote by g(2) the subalgebra of 
g generated by {g(ap ; fJ); fJ E R(ap ; 2)}. Then we have the following. 

( i ) g(A) is a semisimple Lie algebra of the non-compact type and 
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8(g(A» ='=O"(gO» =g(A). 
(ii) (0) = 01 g(A) is a Cartan involution oj g(A). Let g(il) = fO) + ,pO) 

be the corresponding Cartan decomposition. 
(iii) 0"0) =0"1 g(A) is an involution oj gO). And O"(A) is non-trivial on 

each simple Jactors oj g(A). Let g(A) = 90) + q(A) be the corresponding 
direct sum decomposition. 

(iv) aO) =a n gO) is a maximal abelian subspace oj ,pO) n q(il). And 
dimRaO) = 1. 

(v) aiA) = a~ n g(il) is a maximal abelian subspace oj ,pO) containing 
a(A). 

(vi) leA) = j n g(A) is a maximal abelian subspace oj q(A) containing 
cO)· 

(vii) 10) = I n g(A) is a Cartan subalgebra oj g(il) containing both aiil) 
and j(il). 

Proof Let lJT(a~) be the fundamental system of 2(a~). (Needless to 
say, we may assume that the orders on 2(1), 2(a~), 2(j) and .t(a) are so 
taken that they are compatible.) Then we see that lJT(a~) n 2(a~; A) is 
a fundamental system of 2(a~; A). Hence it follows from [W, Lemma 
1.2.3.14] that gO) is semisimple of the non-compact type and O(A) is a 
Cartan involution of gO). Moreover [W, Lemma 1.2.3.15] implies that 
a~O) = a~ n g(A) is a maximal abelian subspace of ,peA). Since 0" leaves 
2(a~;A) invariant, we find that O"(gO»=gO). These show (i) and (ii). 

By definition, g(a; A) is contained in gO). Since 00" leaves g(a; A) 
invariant, we can take an element X E g(a; A) (X*O) such that OO"X =X or 
OO"X=-X. Then it is clear that Y=[X, OX] (*0) is contained in 
a n .j:J0) n q(A) = aO). In particular this implies that 0"0) is not trivial on 
gO). By multiplying Y by a non-zero constant if necessary, we may 
assume that A( Y) = 1. We now show t4at aO) = RY. Let Z E aO) such 
that A(Z) =0. Fix apE 2(ap ; A). If O"p=p, then p(Z)=t{f1-+O"p)(Z)=O. 
On the other hand, if O"P*P, we have that p-O"p=2A. Then p(Z)= 
!(f1--ap)(Z) =A(Z) =0. Accordingly, we find that p(Z) =0 for any p E 
2(a~; A). This implies that Z=O and therefore a(A)=RY. We have thus 
shown (iv). Now (v) is clear. 

Let g(A)e be the complexification of gO) in ge. For any a E 2(1; A), 
let Xa (*0) be an element of ge(L a). It follows from Lemma (4.5) that 
(0)e is generated by {Xa; a E 2(i; A)}. Then it is clear that the subspace 
I'O)e of gO)e spanned by ([Xa, X_a]; a E 2(i; A)} is a Cartan subalgebra 
of g(A)e. Since i'O)e is contained in ie, we find that i'(A)c~ iO)c. Since 
i(A) is abelian, this implies that i'(A)e = jO)e· Hence i(A) is a Cartan 
sub algebra of gO). This proves (vii). 

We have proved that 2(i; A) is the root system of (gO)e, lCA)d. It 
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follows from the arguments in (4.3) that 2:(i; A) is (8, a)-irreducible. We 
use the notation there. First assume that a2: =2:. If a is trivial on 2:, it 
follows that a is trivial on r 0(2: - 2:(1)0)' This implies that a I g(A) is trivial. 
But we have already remarked that there exists Y E peA) (Y:;t=O) such that 
a Y = - Y. This is a contradiction. Hence a is not trivial on 2:. In this 
case it is clear that gO)c is simple. Hence we conclude that a(A) is non
trivial on the simple Lie algebra gO). Next assume that a2: n 2: =~. Let 
g'(A) be the subalgebra of g(A) generated by {g(ap ; p); pEr eC2: - 2:(1)o)}' 
Then it follows that gO)=g'(A)+ag'(A) is a direct sum decomposition and 
clearly a is not trivial on each simple factor of g(A). Hence (iii) is proved. 

Finally we show (vi). Let (gd, fjd) be the dual of (g,9) defined III 

(1.2). Let gd(A) be the subalgebra of gd generated by 

{gd(a:; p); p E 2:(a:; A)}. 

Here we put a:=a+,;=T(fnj). By definition, (a:)c=ic and therefore 
2:(a~; A) = 2:(j; A). Then by an argument similar to the above one, we 
find that a: n gd(A) is a maximal abelian subspace of pd n gd(A). Since 
iO)c=(a: n gd(A»C' we conclude that i(A) is a maximal abelian subspace 
of q(A). Thus (vi) is proved. q.e.d. 

(4.8) In the above discussions, we have shown the following state
ments. 

(4.8.1) Use the notation in Theorem (4.7). Assume that g is of the 
non-compact type. Then g is generated by {g(a; A); A E 2:(a)}. In par
ticular, if (g, fj) is of split rank 1, then g is generated by gO) and g( -A), 
where A is the simple root of 2:(a). 

(4.8.2) Let (g,9) be a symmetric pair. Assume that (g, fj) is irre
ducible. Then the restricted root system 2:(a) is irreducible. 

§ 5. The irreducible symmetric pairs of split rank 1 

Needless to say, the irreducible symmetric pairs of split rank 1 are 
basic among general symmetric pairs. By this reason, it is preferable to 
study them. This will be done in this section. 

(5.1) The irreducible symmetric pairs of split rank 1 are enumerated 
in Table II. (We follow the notation in [He 1].) We can prove this claim 
by deciding the split ranks of all the irreducible symmetric pairs. As was 
noted in (2.4), for a given symmetric pair (g, 9), its split rank is identified 
with the real rank of fj". 

Let (g, fj) be an irreducible symmetric pair of split rank 1 and let 
(gd, fjd) be its dual. In Table II, we always take so that r(gd)::;::r(g). Then 



462 T. Oshima and J. Sekiguchi 

Ta ble II. Irreducible symmetric pairs of split rank 1 

11 : (~o(p+ 1, q+ 1), ~o(p+ 1, q» 

I~: (i3o(p+q+l, 1), ~o(p+lHi3o(q, 1)) 

12: (i8u(p+l, q+l), i8u(p+l, qHv=---IR) 

I~: (~u(p+q+l, 1), ~u(p+lH~u(q, IHv=IRJ 

Is: (i8\l(P+ 1, q+ 1), i8\l(p+ 1, qH'8\l(I» 

It: (i3p(p+q+ 1, 1), i3p(p+ IHIl\l(q, 1» 

I!: (f4(-20) , i30(9» 

I!: (f4(-20), '80(8, 1» 

II1 : (!Jf(m+2, R), 1l!(m+1, RHR) 

m: ('8u(m+l, 1), '8o(m+l, 1» 

II2: (~\l(m+2, R), Il\l(m+l, R)H\l(I, R» 

IIg: (i3lJ(m+l, 1), i3u(m+l, 1Hv-1R) 

IT3: (f4(4]' i30(5, 4» 

lIt: (f4(-20], i3\l(2, IHllu(2» 

III1 : (i80(m+2, C), i30(m+1, C» 

I1If: (~o(m+l, IHi3o(m+l, 1), '80(m+1, 1) 

I1I2 : (i3!(m+2, C), i3f(m+1, CHC) 

IIIg: ('8u(m+l, IH!Ju(m+l, 1), '8u(m+1, 1» 

IlIa: ('8\l(m+2, C), i/p(m+ 1, C)H\l(I, C» 

lIlt: (i8\l(m+l, I)H\l(m+1, 1), i3\l(m+l, 1» 

1114: (f4, ~0(9, C» 

lIlt: (f4(-20) +f4(-20), 14(-20) 

IV1 : (i30*(2(m+2», i30*(2(m+l)Hi30*(2» 

IVf: (~0(2(m+l), 2), llu(m+1, IHv-lR) 

IV2: (i3u*(2(m+2», iiiu*(2(m+l)Hiiiu':'(2HR) 

IVg: (~u(2(m+1), 2), i3\l(m+l, 1» 

IVa: (e6(-26], '80(9, 1) + R) 

IVt: (e6(-14), 14(-20) 
V 1 : ('8f(3, C), ~f(3, R» 

V 2 : (~u(3, 3), '8\l(3, R» 

vg: (~u*(6), ~f(3, CHv=!R) 

Va: (e6(2]' 14(4) 

vt: (e6(-26), '8u':'(6Hiiiu(2» 

we observe that r(gd) < 2. If r(gd) = 1, then (g, fj) is contained in one of 
the classes I and II. On the other hand, if r(gd) = 2, then (g, fj) is contained 
in one of the classes III, IV and V. If X denotes one of I-V, X d denotes 
the class of the dual pairs to those in X. 

Let (g, fj) be an irreducible symmetric pair of split rank 1. We use 
the notation in the previous sections. By the assumption, the restricted 
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root system I(a) coincides with {±l} or {±l, ±21}. Here 1 denotes a 
unique positive simple root of I(a). We always fix it in this section. 

(5.2) The irreducible symmetric pairs of split rank 1 and of Type (t.) 
are contained in 11 - I 4• We give here concrete correspondences. Needless 
to say, a symmetric pair of Type (t.) is self-dual. 

(5.2.i) 

(5.2.i)' 

(5.2.ii) 

(5.2.ii), 

(5.2.iii) 

I/q=O)=If(q=O): (§o(p+ 1,1), §o(p+ 1)) 

I/p=O)=If(p=O): (§0(1, q+ 1), §0(1, q)) 

I2(q=0)=Ig(q=0): (§u(p+ 1, 1), §u(p+ 1)+,;=1 R) 

I2(p=0)=Ig(p=0): (§u(l, q+ 1), §u(1, q)+-i=T R) 

Is(q=O)=Iff(q=O): (§1J(p+ 1, 1), §1J(p+ 1) + §1J(1)) 

(5.2.iii)' Is(p=O)=Iff(p=O): (§1J(1, q+ 1), §1J(1)+§1J(I, q)) 

(5.2.iv) I~: (f4(-20)' §0(9)) 

(5.2.iv)' I!: (f4(-20)' §0(8, 1)) 

(5.3) Special isomorphisms. 
Because of the isomorphisms in [He 2, p. 519], there are some overlaps 

in Table II in addition to those described in (5.2). We derive the follow
ing isomorphisms. 

(5.3.i) 

(5.3.ii) 

(5.3.iii) 

(5.3.iv) 

(5.3.v) 

(5.3.vi) 

II(p= 1, q=O)=It(p= 1, q=0)=I2(p=q=0)=Ig(p=q=0) 

II=(p=O, q= 1)=If(p=O, q= 1)=IIICm=O)=IIfCm=O) 
= IV/m =0) = IVfCm=O) 

I/p=3, q=O)=IsCp=q=O) 

If(p=3, q=O)=Iff(p=q=O) 

II(p= 1, q=2)=II2(m=0) 

IfCp= 1, q=2)=IIg(m=0) 

(5.3.vii) IV/m=2)=IVf(m=2) 

(5.3.viii) IV2(m=0)=If(p=3, q= 1) 

(5.3.viii), IVg(m=0)=II(p=3, q= 1) 

(5.4) We consider the sets R(i; 1) and Rei; 21). If a is a root of Iei) 
contained in RCl; 1) U R(i ; 21), then we have already shown that a satisfies 
one of the conditions (1)-(9) and (1')-(9') in Lemmas (3.10) and (3.11). 
Hereafter we frequently use this notation without any comments. By 
definition, we find that if a satisfies one of the conditions (2)-(5), then 
-aa is different from a but -Ba or Baa coincides with a. On the other 
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hand, if a satisfies one of the conditions (6)-(9) in Lemmas (3.10) and 
(3.11), then any two of the quartet (a, -Ba, -aa, Baa) are mutually dif
ferent. Even if a satisfies one of the conditions (1')-(9') instead of (l)-{9), 
the situation is not changed. 

We give in Table III the number of roots satisfying the condition (1), 
that of pairs satisfying one of (2)-(5), and that of quartet satisfying one of 
the conditions (6)-(9) for each irreducible symmetric pair of split rank 1. 

Table III. Classification of roots 

Class m(l) m(2) m(3) m(4) m(5) m(6) n(l) n(2) 

II (p+q: odd) min(p, q) o 

II (p+q: even) 0 min (p, q) 0 

o o o 
Is o o o 

o o o 
o o m 

o o 2m 

lIs o o 4 

Ip-ql-l 
2 

Ip-ql 
2 

o o 

o o 

o Ip-ql min(p,q) 

o 

o 

o 2lp-ql 2min(p,q) 1 

o 4 o 
o o o 1 

o o o 1 

o o o 1 

o 

o 

o 

3 

o 

3 

Class m(2) m(6) m(7) m(8) m(9) n(l) n(2) n(4) n(9) 

mt (m: odd) o o 

mt (m: even) o o o 

o o m 

o o 2m 

o o 4 

IVt (m: odd) o 1 o 

IVt (m: even) o o o 
o o 2m 

o o 4 

o o o 
o o o 

Va o o o 

o 

o 

o 

o 

m-l 
2 

m 
2 

o 

o 

o 

o 

o 

o 
o 0 0 

o 

o 

1 

1 

o m-l 0 

o m 1 o 
o o o 1 

o o o 
1 o o o 
2 o o 1 

4 o o 3 

o o 

o o 

o o 

o 1 

o 3 

o o 
o o 

o 
3 o 
1 o 
1 o 

o 
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There we pay attention mainly to the symmetric pairs contained in the 
classes I, II, IIId, IVd, V. We give here comments on the notation used 
there. The number m(i) (1 <i< 9) means that of the roots, the pairs or 
the quartets of roots contained in ReI; A) and satisfying the condition (i). 
Similarly n(i) means that of the roots, the pairs or the quartets contained 
in R(i: 2A) and satisfying the condition (i). Hence the multiplicity meA) 
of A and that of m(2A) are obtained from the following formulas: 

~ 9 

m(A)=m(I)+2 L:: m(i)+4 L:: m(i) 
i=2 i=6 

m(2A) = n(I) + 2n(2) + 2n( 4) + 4n(9). 

As to the dual of the given symmetric pair, these informations are 
obtained by replacing m(i), n(j) with m(i'), n(j'), respectively. Here m(i') 
and nU') are the numbers defined similarly as m(i) and nU). 

(S.S) We give here some observations which are obtained from 
Table III. 

(S.S.O) Let (g, lj) be a symmetric pair of split rank 1 satisfying the 
condition: Oa = aa for any a E R(i; A). Then (g, lj) is one of the pairs in 
It (p=O or q=O) (i=I, 2,3) and Ii (j=I, 2). In these cases, O=a and 
the pairs are of Type (f.). 

(S.S.I) The pairs in It and It (i = 1, 2, 3, 4) are characterized by the 
condition: There exists a root a of 2Ci) contained in R(i; A) such that Oa 
=aa. 

(S.5.2) The pairs in II (Ip-ql <1), lIt (i=I, 2, 3) are characterized 
by the condition: Oa= -a for any a E 2(i). This is clear from the reason 
that g is a normal real form in this case. 

(S.S.3) The pairs in lIlt (i = 1, 2, 3) are characterized by the condi
tion: <a, Oa) = <a, Oaa) = ° for any a E 2(i). This follows from the reason 
that g is a complex semisimple Lie algebra. 

(S.S.4) The pairs in It (p=q>2), IVt (i=I, 2, 3) are characterized 
by the condition: <a, Oa) = <a, Oaa) for any a E R(i; A} and 2(i) is con
nected. 

(5.S.5) The pairs in 110 It (p+q: even) and Vi' vt (i=I, 2, 3) are 
characterized by the condition: <a, Oa)=<a, aa)=O for any a E R(i; A). 

Lemma (5.6). Let a be a root of 2(i) such that fl=al a:;t=O. 
(i) Assume that Oa:;t=aa and aa= -a. Then the subspace 

of g(a; fl) is two dimensional and is spanned by such vectors X and Y that 
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8aX=X and 8aY= - Y. 
(ii) Assume that any two of the quartet (a, -Oa, -aa, Oaa) are 

mutually different. Then the subspace 

of g(a; p) is four dimensional and is spanned by such vectors Xi' Yi (i = 1, 2) 
that OaXi =Xi and Oa Yi = - Yi (i = 1,2). 

Proof (i) Assume that a E .E(i) satisfies Oa=/=aa and aa= -a. 
Let Z E ge(J; a), Z =/= o. Then its complex conjugate with respect to g is 
contained in ge(i; -Oa). In this case, aa= -a and therefore OaZ E 

ge(i; -Oa). Hence by multiplying Z by a constant if necessary, we may 
assume that OaZ is the conjugate of Z. Then X=Z+OaZ and Y= 
-I=1(Z-OaZ) are a required basis of g n (ge(J; a)+ge(i; -Oa)). 

Next prove (ii). As in the case of (i), there exist X E ge(J; a) and 
Y E ge(i; - Oa) such that X + Y and -1=1 (X - Y) form a basis of 
g n (ge(i; a)+ge(i; -Oa)). Then 

X 1=X+ Y+Oa(X+ Y), 

Y1=X - Y -8a(X - y), 

Xz=-I=1 (X - Y +Oa(X - Y)), 

Yz=-I=1 (X - Y -Oa(X - Y)) 

are required ones. q.e.d. 

Proposition (5.7). Let (g,9) be a symmetric pair of split rank 1 and 
let p E .E(a). If Oa=/=aa for any a E R(i; p), then m+(p)=m-(p). 

Proof This is a direct consequence of Lemma (5.6). 

(5.8) Last we explain Table IV. Let (g, 9) be an irreducible sym
metric pair of split rank one. Let W(j) (resp. W(ap)) be the Oa-funda
mental system of .EO) (resp . .E(ap)) for the given order. Then we can 
define a diagram for the pair (.E(ap), Oa) similar to the Satake diagram 

Table IV 

(.l'(j), 00) (.l'(op), 00) (m+(A) 
m-(A) 

m+(2A)) 
m-(2A) 

0 • . . . ----«==>. 
(P=l=q) 

0 

(~ g) 11 o~ (p=q=l) 

0 
• (p~q>i)-< 

12 0 0 0 .-==>. (2P 2q &) 



(E(j), 8u) 

o 

o 

o 

o 

o 

r---o 

~o 

lIla ~o 

e::::::>o 

-===>0 

IVa 

Restricted Root System 

(Continued from Table IV) 

0>--.... >--

o 

• ...... -".--0 

• a::::::=;:-~ 

0>--__ >--

(m: odd) -===->-

• "'0 J< o • 

•• __ 1=~;>t • .-----<O 0-_.- ...-==--;-. 
(m: odd) 0-_.-
(m: even) 

,r--
o • ---<._-"'-i0 

• ;,----..0 

0-0 
(m=2) 

(~ 6) 

(1 ~) 

(~ D 

467 

for a real form of a complex semisimple Lie algebra. We give this one in 
Table IV. Similarly we can define a diagram for the pair (20), Oa). This 
is given in the left-hand side of that for (2(ap),Oa). Accordingly, to 
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obtain these informations on the dual (gd, 1)d), it is sufficient to look at the 
one whose () and a, i and ap are changed into a and (), ap and i, respec
tively. We also collect the signatures of.:l. and 2.:l. in Table IV. 

§ 6. Determination of the restricted root system 

This section is devoted to a determination of the restricted root system 
of a general symmetric pair. 

(6.1) Let (g, 1)) be a symmetric pair. As usual, let a be the involu
tion for (g,1)) and let () be a Cartan involution of g commuting with a. 
Let a be a maximal abelian subspace of tJ n q and let Sea) be the restricted 
root system of (g, 1)). For a signature e of Sea), we define an involution 
a, from a by 

{
a(X) 

a ,(X) = e(.:l.)a(X) 
for X E Zg(a) 

for X E g(a; .:l.), .:l. E Sea) 

where ZuCa)={X E g; [X, a]=O} (cf. Example (1.9.3)). Let g=1),+q, be 
the direct sum decomposition of g corresponding to a '0 By definition, a. 
commutes with () and a is also a maximal abelian subspace of tJ n q •. 
This implies that Sea) is also the restricted root system of (g, 1).). However, 
the signatures of the restricted roots are changed in general. Namely, if 
(m+(.:l., e), m-(.:l., e)) denotes the signature of .:l. E Sea) as a root of (g, 1).), 
then (m+(.:l., e), m-(A., e)) = (m+(.:l.), m-(.:l.)) in the case where e(.:l.) = 1 and 
(m+(A., e), m-(.:l., e)) = (m-(.:l.), m+(.:l.)) in the case where e(.:l.) = -1. We note 
here that the complexifications of 1) and 1). are isomorphic (cf. [O-S, 
Lemma 1.3]). 

For a symmetric pair (g, 1)), we denote by F«g, 1))) the totality of 
symmetric pairs (g, 1).) for all signatures e of Sea) and call it an e-family of 
symmetric pairs (obtained from (g, 1))). 

It is clear from the definition that if (g, 1)) is irreducible, so is each 
member of F«g, 9)). 

(6.2) It is not clear whether for different signatures e, e' of Sea), the 
pairs (g, 1),) and (g, 1).,) are isomorphic or not. If (g, 1)) is a Riemannian 
symmetric pair, then F«g,1))) consists of those pairs defined in Example 
(1.9.3). On the other hand, we find from the classification that if m+(.:l.) 
=m-(.:l.) for any .:l. E Sea), all the pairs of F«g, 1))) are isomorphic to each 
other. For example, this is actually the case when (g, 1)) = (§[(2[+ 2, R), 
§tJ(l + 1, R)) (cf. Table V). In general, 1) is a reductive Lie algebra and 
let 1) = 1)c + 1)n + 3(9) be the direct decomposition, where 1)c (resp. 1)n) is a 
semisimple Lie algebra of the compact (resp. non-compact) type and 
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s(lj) is the center of lj. Then for the sake of convenience, we call ljn the 
non-compact part of lj. 

Lemma (6.3). Let (g, lj) be a symmetric pair and let ~(a) be its 
restricted root system as above. Let 1Jf be a fundamental system for ~(a) 
and let W(a) be the Weyl group of ~(a). Assume that m+(2»m-(il) for 
any 2 E 1Jf. Then m±(w2)=m±(2) for any 2 E ~(a) and WE W(a). In 
particular, m+(2»m-(2) for any 2 E ~(a) such that t2 ~ ~(a). 

Proof Let (g, lja) be the associated pair of (g, lJ), namely, lja = t n lJ 
+P n q (cf. § 1, (1.2.1». Let lJ~ be the non-compact part of lJa. Then (J 

and e stabilize lJ~. Let lj~ = fn + Pn be the Cartan decomposition for e. By 
definition, a is also a maximal abelian subspace of Pn. The assumption 
implies that m+(A) > 0 for any 2 E 1Jf. On the other hand, it follows 
that for any 2 E ~(a), m+(2) is the multiplicity of 2 as a restricted root of 
lJ~. Then we find that m+(w2)=m+(A) for any 2 E ~(a) and WE W(a). 
But it is clear that m(w2) = m(2) for any 2 E ~(a) and W E W(a) (cf. Lemma 
(7.2) (ii». Hence we also find that m-(w2)=m-(2). Since for any 2 E 
~(a), with t2 ~ ~(a), there exists aWE ~(a) such that w2 E 1Jf, the claim 
follows. q.e.d. 

Definition (6.4). A symmetric pair (g, lJ) is called basic if m+(2) > 
nr(2) for any 2 E ~(a) such that t 2 ~ ~(a). 

It is clear from the definition that any Riemannian symmetric pair is 
basic. 

Proposition (6.5). Let F be an I:,-family of symmetric pairs. Then 
there exists a basic symmetric pair of F unique up to isomorphisms. 

Proof It suffices to prove the claim when each symmetric pair of F 
is irreducible. Hence we may assume that F contains only irreducible 
symmetric pairs and show the existence and the uniqueness. 

(Existence) Let (g, lJ) E F and let ~(a) be the restricted root system of 
(g, 'fj). Take a fundamental system 1Jf ={Aj, .. " 2l} of ~(a). We may 
assume that m+(2i»m-()'i) if i~k and m+(Ai)<m-(2J if i >k. Let I:, be 
a mapping of 1Jf to {l, -l} defined by 1:,(2 i) = 1 if i <k and 1:,(2i) = -1 if 
i >k. By definition, I:, is uniquely extended to a signature of ~(a) (cf. 
[O-S, Def. 1.1]). Denote it by the same letter. Then it is clear from 
the definition and Lemma (6.3) that (g, 'fj,) is basic. 

(Uniqueness) Uniqueness of a basic symmetric pair contained in F 
follows from the classification of irreducible symmetric pairs. q.e.d. 

(6.6) Let (g, 'fj) be a basic irreducible symmetric pair and let F be 
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the c-family obtained from (g, lj). Let 2(a) be as above. Here we recall 
the following (cf. [O-S, Appendix]). 

(6.6.1) Let c be any non-trivial signature of 2(a). Then there exist 
a fundamental system lJf of positive roots of 2(a) and a unique A E lJf such 
that c(A) = -1 and c(fl) = 1 for fl E lJf -{A}. 

Let lJf = {AI' .. " Al } be a fundamental system for 2(a) and fix it once 
for all. Noting that (g, lj) is basic, we may assume that m+Oi»m-(Ai) 
(i~I') and m+(Ai)=m-(Ai ) U>I'). Then we have the following observa
tion. 

(6.6.2) Put 2'(a)=(2l~1 RAi) n 2(a). Then 2'(a) is an irreducible 
root system and its fundamental system is lJf'(a) = {AI' "', Ad. 

For l<i<I, let Ci be the signature of 2(a) such that c;(Aj) = 1 ifj=l=i 
and Ci(A;) = -1. Then (6.6.1) implies the following. 

(6.6.3) Let (g, 9') be any symmetric pair contained in F. Then 
there exists an i (1 < i < I) such that (g, 9') is isomorphic to (g, lj.,). 

In the case where the c-family F contains a Riemannian symmetric 
pair, namely, each of F is of Type (f.), the mutually non-isomorphic pairs 
contained in F is determined in [O-S, Appendix]. In the general case, 
by the choice of simple roots, we have the following observation. 

(6.6.4) If I' < i::;;: I, then (g, lj.,) is isomorphic to (g, lj). On the other 
hand, if i < I', then (g, lj.) is not basic. Furthermore, it frequently occurs 
that (g, lj.,) and (g, lj'j) are isomorphic to each other even if i =1= j and 
i,j<I'. 

(6.7) We consider a pair (g, lj) of Type (f.) in the sense of (1.12). 
In this case, as is noted in (2.16) (3), the restricted root system of (g, lj) 
coincides with that of the Riemannian symmetric pair (g, f), where f is a 
maximal compact sub algebra of g. It is also noted there that the signature 
of each restricted root of the system is easily determined (cf. (2.16) (3)). 

(6.8) Next we consider a symmetric pair in Example (1.9.4) of 
Section 1. Let (g, lj) be such a pair. In this case, there is a real semisimple 
Lie algebra g' such that g=g'EBg' and lj:::::g'. Let g' =f' +j:J' be a Cartan 
decomposition of g' and let 0' be the corresponding Cartan involution of 
g'. Then putting l'=f'EBf' and j:J=j:J'EBj:J', we have a Cartan decomposi
tion g = f + j:J of g. If a~, is a maximal abelian subspace of j:J', then a = 
{(X, -X); X E av} is that of j:J n q. It is clear that the restricted root 
system 2(a) of the pair (g, lj) coincides with the restricted root system 
2(av) of g'. For any root A of 2(a~,), we denote by g'(a~,; A) the root 
space of A in g'. Then it follows that g±(a; A) = {(X, ±O'X); X E g'(a~,; A)}. 
Hence we find that if m'(A)=dimR g'(ap'; A), then m+(A)=m-(A)=m'O). 
As is noted before, (g~, l'~) is dual to (g, lj). Hence Lemma (2.15.1) implies 
that the restricted root system of (g~, f~) coincides with that of (g, lj). 
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(6.9) We collect in Table V the restricted root systems of all the 
irreducible symmetric pairs such that they are neither of the compact type 
nor of Type (f.). The arguments in (3.12) playa fundamental role in the 
course of the determination of the restricted root system of a given sym
metric pair. In Table V, we also collect the signatures of the simple roots 
and those of their multiples. Let (g, fj) be an irreducible symmetric pair 
and let .r(a) be its restricted root system. Then as is already remarked 
in (6.6.1), there exist a fundamental system W(a) for .r(a) and a simple 
root A E W(a) such that m+(p.»m-(p.) for any f1 E W(a)-{A}. In Table V, 
we take such W(a) and A. The choices of W(a) and A are not unique (cf. 
[O-S, Appendix] and (6.6)). The results of Sections 4 and 5 play funda
mental roles in the course of the determination of the signatures. 

We give here some remarks on Table V. It follows from Lemma 
(2.15.1) that for a given symmetric pair (g, fj), the restricted root system of 
(g, fj)d coincides with that of (g, fj). Hence we set them in the same row 
in Table V. It is useful to know fj4 from (g, fj) and (g, fj)d (cf. Table (2.5.2)). 
In some cases, one of (g, fj) and (g, fj)d is self-associated. In this case we 
always write the self-associated pair in the lower part of the frame. On the 
other hand, in some cases, each of (g, fj) and (g, fj)d is not self-associated. 
It is preferable to give an information on fj4 in these cases. First if (g, fj) 
is of Type (C, R), then fj4 is a complexification of a maximal compact 

(~l(21+2, R), ~j:J(I+ 1, R» t 
(~u*(21+2), ~o*(21+2» 

(~1(21, R), ~l(l, C)+ v -I R) t 
(~u(l, I), ~o*(21» 

(~l(21, R), ~l(l, R)Hl(l, R)+ R) 
(~u(l, I), ~o(l, I» 

(~l(l+I, R), ~l(p, R) 
+~l(l-p+l, R)+R) 

(~u(p, I-p+ 1), ~o(p, I-p+ 1» 

(~u*(41), ~u*(21)+~u*(21)+ R) 
(~u(21, 21), ~p(l, I» 

(~u*(41), ~1(21, C)+ v-1R) t 
(~u(21, 21), ~j:J(21, R» 

Table V 

W(a) 

0-- • --0 

1 I 

0-- . --o¢:= 
1 1-1 I 

0-- • • • --0=:::';>0 
1 p-l p 

(p < 1/2) 

0-- --0<===0 

1 1-1 I 

(m+(Ai) 
m-('<;) 

m+(2Ai») 
m-(2Ai) 

(~ 8) 

o 8) (b8) 
(i<l) (i=l) 

G 8) (? 8) 
(i<l) (i=l) 

G 8) (/-2P 
1-2p ?) 

(i<p) (i=p) 

(! 8) G 8) 
(i<l) (i=l) 

(! 8) G 8) 
(i<l) (i=l) 
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(Continued from Table V) 

(~u*(21), \lu*(2p) Hu*(21-2pH R) 
(~u(2p, 2/-2p), ~j:l(p, I-p» 

W(a) 

0--- • • • -0::=::::>0 
1 p-l p 

(p<I/2) 

(1 8) 
(i <p) 

( 4(1 2p) 31) 
4(/-2p) 

(i=p) 

(i3u*(41+2), i3f(21+1, C)+ v-1R)t 0---

(i3u(21 + 1, 21 + 1), i3j:l(2/+ 1, R» 1 
. -0::=::::>0 (1 8) (1 D 

/-1 I (i</) (i=i) 

(i3u(/, i), i3u(p) Hu(l, /-p) 

+v-lR) (l~p</) # 
(i3u(p, 21-p), i3u(IHi3u(p, I-p) 

+v-lR) 

(13u(l, I), FJu(k, p-k) 
Hu(l-k, l-p+kH v -lR) # 

(?,u(p, 21-p), ~u(k, i-k) 
+(lu(p k, I p+kH v-I R) 

(i3u(r, p+q-r), i3u(pHi3u(r, q-r) 

+v=TR) # 
(?,u(p, q), ?'u(r)-Hu(p, q-r) 

+V-IR) 

(13u(r, p+q-r), ?'u(k, p-k) 
+i3u(r-k,q-r+kHv -IR) 

(i3u(p, q), iilu(k, r-k) 
Hu(p-k, q-r-l-kH v=I R) # 

(\lu(r, p+q-r), i3u(r, p-r) 

+£iu(qHv=TR) # 
(£iu(p, q), £iu(rH!3u(p-r, q) 

(£ij:l(l, i), £iu*(21HR) 
(?'!J(21, R), ?,j:l(/, C» 

+v-1 R) 

0--- . 

1 

0---
1 

-0::=::::>0 
p-l P 

(~ 8) (~H=~~ 6) 
(i<p) (i=p) 

(2 0) (0 0) (2(l-P) 1) ° ° 2 ° 2(i-p) ° 
(i<p,i*k) (i=k) (i=p) 

(~ 8) (~~~=~~ 6) 
(i <r) (i=r) 

(2 0) (0 0) (2(p-r) 1) ° ° 2 0 2(q-r) ° 
~~ (i<r,i*k) (i=k) U=r) 

(~ 8) (~~~=~~ b) 
(i<r) (i=r) 

(~ 8) (i 8) 
(i</) (i=1) 

0-- -----o¢=:o ---- "------- 1 /-1 I 
(£ij:l(21, R), Ilj:l(/, RHi3!J(l, R» (~ 8) G 8) 
(i3j:l(I,i), i3u(I,IHV-IR) 

(i3j:l(/, R), i3j:l(p, R)Hj:l(I-p, R» 
(\lj:l(p, I-p), i3u(p, I-pH v -IR) 

0-- • • • -<:r:=:::>o 
1 p-l p 

(p<(l+1)/2) 

(i<i) (i=l) 

(~ 8) (~~i=~~~ 1) 
(i<p) (i=p) 

(40 °0) (44«11 _p p) 30) (iJj:l(I, I), ~~(pHi3!J(l, I-p» ~ 

(B\l(p, 21-p), ;s!J(lHi5j:l(p, l-p» (i <p) (i=p) 
0--- ---0:::=>0 ---.:. ______ _ 

-C!3-\l(-I,-I)-, -i5j:l-(k-,-p--k)----- 1 p-l P 

(4 0) (0 0) (4(I-p) 3) +!3j:l(/-k,l-p+k» # 
(i3j:l(p,21-p), i3j:l(k,l-k) 

+\lj:l(p-k,l-p+k» 

° ° 4 ° 4(I-p) ° 
(i<p,i#) (i=k) (i=p) 
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(Continued from Table V) 

(~ll(r, p+q-r), iSll(pHiSp(r, q-r» # 
(iSll(P, q), iSll(rHiSll(p, q-r» 

(iSll(r, p+q-r), iSp(k, p-k) 
Hll(r-k, q-r+k» # 

(~p(p, q), ~lJ(k, r-k) 
+S3iJ(p-k, q-r+k» 

(i'llJ(r, p+q-r), S311(r, p-r) 
+i8lJ(q» # 

(~ll(P, q), jglJ(rHi8lJ(p r, q» 

(1$0(1, I), ;3o(p)Ho(l-p, I» # 
(00(p,21-p), S3o(p,l-p)Ho(I» 

(~o(l, I), fJo(k, p-k) 
+iSo(l-k,l-p+k» # 

(iSo(p,21-p), iSo(k,l-k) 
+iSo(p k,1 p+k» 

(£10*(41), ~0*(2IH£lo*(21» 
(~0(21, 21), ~u(l, IH v' -1R) 

(~0(21, 21), 01(21, RH R) 

(00*(41), !S0(2l, C» 

0--

1 

IF(ct) (m+(Ai) 
m-(Ai) 

m+(2Ai») 
m-(2Ai) 

(6 8) (4(P r) 
4(q-r) 6) 

(i<r) (i=r) 

~o (4 0) (0 0) (4(p-r) 3) 
~ ° ° 4 ° 4(q-r) ° 

r-1 r (i<r,i*k) (i=k) (i=r) 

(6 8) (4(q-r) 
4(p-r) 6) 

(i <r) (i=r) 

(6 8) (l p 0) 
l-p ° 

0-- • • • ----==>0 (i <p) (i=p) 
1 p-l p ~----=~-----

(k<p<l) 

0--

(1 0) (0 0) (l-p 0) ° ° 1 ° I-p ° 
(i <p, i*k) (i=k) (i=p) 

(i 8) (6 8) 
--0¢= _(_I <_1_) __ (i_=~_I) __ _ 

i-I I (~ 8) (? 8) 
(i <I) (i=1) 

(~0(21+1,21+1), lll(21+1,RHR) r
(iSo*(41+2), iSo(21+1, c» 

--0:=::>0 
1~-1 I (i 8) G ?) 

(i</) (i=l) 

(iSo*(41+2),i$o*(2p) (20) (2(21-2P+1) 1) 
Ho*(41-2p+2» 2 ° 2(21-2p+l) ° 

(llo(2p,41-2p+2), ___ (i<p) (i=p) 
llu(p,21-p+l)+v'-lR) ~ r- ... ~; _______ _ 

. (llo*(41), llo*(2pHi30*(41-2p» (i 8) (4(I-p) 1) 
(iSo(2p,41-2p),0u(p,21-p) (p;;;;l) 

+v'-lR) 

(<lo(r, p+q-r), !.lo(pHiSo(r, q-r» # 
(!.lo(p, q), !.lo(rH!.lo(p, q-r» 

(i<p) 

(6 8) 
(i <r) 

4(I-p) ° 
(i=p) (p"",l) 

(p-r 0) 
q-r ° 
(i=r) 

(iSo(r, p+q-r), !.lo(k, p-k) 
+iSo(r-k, q-r+k» # 

(iSo(p, q), iSo(k, r-k) 
0-- • 

1 
. --==;>0 (6 8) (? 8) (~=~ 8) 

r-1 r 
Ho(p-k, q-r+k» 

(i8o(r, p+q-r), iSo(r, p-rHiSo(q» ~ 

(iSo(p, q), <lo(r) Ho(p-r, q» 
----

(O<k<r<q<p) 

(i<r,i*k) (i=k) (i=r) 

(6 8) (b=~ 8) 
(i <r) (i=r) 

----
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(Continued from Table V) 

(1$0*(41+4), i$u(I,21+IHv'-IR ## 
self-dual 

W(a) 

(6 8) (~ b) 
(i<l) (i=l) 

--<J::::=:?o--------
1'-1 1 (6 8) (~ 8) (~ b) 

------------ 0--
(i$o*(41+4),i$u(2p+1,21-2p+I) 1 

+v'-IR) ## 
self-dual (2p;?,l) 

(eO(Ol> i$u*(6Hi$u(2» t 
(eO(2), i$p(3, 1» 

------------ o---a==>o---D 
(eO(O), 1$(6, RHi$l(2, R» 
(eO(2), i$p(4; R» 

(e6(o),i$o(5,5HR) 
(eO(-U), BP(2,2» 

(eO(Ol> f4(4» t 
(eO(-26), \llJ(3, 1» 

(eO(-H), i$u(5, 1HI$I(2, R» 
(eO(2l> 1$0*(IOH v' -lR) 

123 4 

0=:::>0 
1 2 

0----0 
1 2 

------------0=:::>0 
(eO(2l> 1$0(6,4)+ v' -IR) 
(eO(-Ul> l$u(4,2Hl$u(2» 

(eO(2), f4(4» t 
(eO(-20l> l$u*(6Hl$u(2» 

(e6(-20l> 1$0(9, I)+R) 
(eO(-14), f4C-20» 

(e1(1l> 1$0*(I2)Hlu(2» t 
(e1C-5), l$u(6,2» 

1 2 

o 

o 

-------------- o---a==>o---D 
(e1(1), i$o(6,6HI$I(2, R» 
(e1Hl> l$u(4,4» 

(e1(1), eO(2) +v'-lR) t 
(elH5), l$u(6,2» 

(el(l), eO(O) + R) 
(el(-25l, l$u*(8» 

1 2 3 4 

0=:::>0----0 
1 2 3 

(i<l,ii=p) (i=p) (i=1) 

(6 8) 0 8) 
(i=I,2) (i=3,4) 

(~ 8) (6 8) ({ 8) 
(i=I) (i=2) (i=3,4) 

G 8) (1 ~) 
(i=I) (i=2) 

(~ 8) 

(i 8) (~ 6) 
(i=1) (i=2) 

(~ 8) (~ b) 
(i=I) (i=2) 

(6 8) (~ 8) 
(i=I,2) (i=3,4) 

(~ 8) (6 8) (~ 8) 
(i=1) (i=2) (i=3,4) 

(6 8) (~ 8) 
(i=l) (i=2,3) 

(? 8) (~ 8) 
(i=l) (i=2,3) 
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(Continued from Table V) 

(g, lj) 
W(a) (m+(}.t) m+(2}.t») 

(gd, ljd) m-(}.t) m-(2At) 

(e7H5), 110(10, 2)+~t(2, R» (~ 8) (~ ~) 
(e7(-5h eS(-14) +.y -lR) (i=l) (i=2) 

==,>0 

(~ 8) (~ ~) (e7H), eS(2) +.y -lR) t 1 2 

(e7(-25), lIo*(12)+i3u(2» (i=l) (i=2) 

(eS(-24), 110(12,4» (~ 8) (1 8) 
(eS(8), e7(-5)+;3u(2» (i=1,2) (i=3,4) 

0 ==>0---0 
(? 8) (~ 8) (1 8) (eS(S), e7(7) +;31(2, R» 1 2 3 4 

(eS(-24), ;30*(16» (i=I) (i=2) (i=3,4) 

(f4(4), ;30(5,4» (1 ~) (f4C-20), ;31>(2,1)+;3u(2» 0 

(;3t(21, C), !3u*(21» 0-- ---0<==0 (~ 8) (~ 8) 
self dual 1 1-1 I (i <I) (i=I) 

(iJl(21, C), i3l(21, R» (~ 8) (~ 8) 
self dual 

(i <I) (i=l) 
0-- . -==>0 

~) (i31(21+ 1, C), i3l(21+ 1, R» 1 /-1 I (~ 8) (~ 
self dual 

(i <I) (i=/) 

(;30(21+2, C), ;30(21+1,1» (~ 8) (i 8) 
self dual 

(i <I) (i=l) 
0-- ---==>0 

(~0(21+2, C), !30(2p+ 1, 21-2p+ 1» 1 1-1 1 (~ 8) (~ 8) (~ 8) 
self dual 

(i <I, i*p) (i=p) (i=l) 

(es, t6(-26) (~ 8) (~ 8) 
self dual (i=1,2) (i=3,4) 

~o---o 

(ea, eS(6) 1 2 3 4 (~ 8) (~ 8) (~ 8) 
self dual (i=l) (i=2) (i=3,4) 

subalgebra of fj (cf. (1.13». The remaining cases are those treated in 
(1.12), (1.14)-(1.16). We give a mark # (resp. ##, t) in the first column 
for the case (1.14) (resp. (1.15), (1.16». Hence we can determine the Lie 
algebra fja by referring to Table T, (1.14)-(1.16) in these cases. 

(6.10) Finally we give a remark on the restricted root systems. 
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Let g be a real semisimple Lie algebra of the non-compact type. 
Then its restricted root system and the multiplicity of a given restricted 
root are defined. Accordingly, for a given real semisimple Lie algebra, 
we can uniquely define a root system each root of which has a multiplicity. 
Moreover it is known that if g and g' are real semisimple Lie algebras 
whose restricted root systems coincide with the given one including their 
multiplicities of roots, then g and g' are isomorphic. 

However the claim analogous to the above one does not hold for the 
restricted root systems of the symmetric pairs. That is, for a given sym
metric pair, we can define its restricted root system and each restricted 
root has the signature defined as in Definition (2.14). But these do not 
characterize the symmetric pairs. More precisely, it is clear from Lemma 
(2.15.1) that the restricted root system of a symmetric pair coincides with 
that of its dual pair including their signatures of roots. Moreover there 
exist symmetric pairs such that they are not isomorphic and are not dual 
to each other and that not only their restricted root systems but also the 
signatures of the corresponding restricted roots coincide. We give here 
such examples. For brevity, we only consider the symmetric pairs of 
split rank 1. By comparing the signatures of roots in Table IV, we find 
that the signatures of the roots of the pairs in (6.10.1) coincide. 

(6.lO.1) 

(§o(p+ 1, 1), §o(p+ 1, p») 

(§0(2p+ 1, 1), §o(p+ 1) + §o(p, 1» 

(§0(p+2, C), §o(p+ 1, C» . , 
dual 

(§o(p+ 1, I)+§o(p+ 1, 1), §o(p+ I, J». / 

The claim also holds for the pairs in (6.10.2). 

(6.10.2) 

(§u(p+I,p+l), §u(p+l, p)+-I=1R) , 
dual 

(§u(2p+ 1, 1), §u(p+ 1)+ §u(p, 1)+ -1=1 R) / 

(§0*(2(p + 2», §0*(2(p + 1» + §0*(2) 

(§0(2(p+ 1),2), §u(p+ 1, 1)+-1=1 R). 

§ 7. The WeyI group of a symmetric pair 

(7.1) We have introduced some root systems. We next study the 
Weyl groups of these root systems and in particular discuss on the relations 
between them. To begin with, we introduce some notation. 

(7.1.1) Notation. 
W(up)=NK(up)/ZK(up): The Weyl group of 2(up). 
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W(ap),=The Weyl group of ..r(ap),. 

W'(ap)={w E W(ap); w(a)=a}. 
W(ap; H)=NKnH(ap)/ZKnH(ap)' 
W(a): The Weyl group of ..r(a). 
W(j)o: The Weyl group of ..r(1)0. 
W°(j)={w E W(j); w(a)=a}. 

Under the above notation, we obtain the following lemma. 

Lemma (7.2). 
(i) W(ap),S;;;; W(ap; H)S;;;; W'(ap). 
(ii) W'(ap)/W(ap),~ W°(j)/W(j)oC::: W(a). 

477 

Proof (i) We first show that W(ap),S;;;; W(ap; H). Take an element 
A of ..r(ap),' Then it follows from [W, Lemma 1.1.3.9] that there exists an 
element X of g(ap; A) such that exp (X +8X) is contained in NK(ap) and it 
is a representative of the reflection s.1 with respect to A. On the other 
hand, combining Lemma (2.7) with the assumption on A, we find that 
g(ap; A) is contained in fj. This implies that s. E W(ap ; H). 

Next we show that W(ap; H)c W'(ap)' Let w be an element of 
W(ap; H). For any X E a, we express wX =XI +X2 (Xl E a, X 2 E ap n fj). 
Then we see that 

8(wX)=w(8X)= -wx. 

8CXl + X 2) = -XI+X2• 

These imply that X 2=0. Hence we conclude that wa=a. 
(ii) It follows from Lemma (2.10) and [W, Prop. 1.1.2.1] that for 

any element A of ..r(ap)-..r(ap)" we have one of the following conditions: 
(1) 8aA=A, (2) <8aA, A)=O, (3) 8aA+A E ..rCap). If S.1 and So,. represent 
the reflections of A and 8aA, respectively, we find that the reflection on a 
with respect to p=A I a coincides with SA I a (resp. (sh'A) I a, sHo,.1 a) in 
the case (1) (resp. the case (2), (3)). Hence it follows that the map W'(ap) 

->- W(a) defined by w->-w I a is surjective. The kernel of this map is 
obviously {w E W(ap); w I a = id}. We can show that this set coincides 
with W(ap). by an argument similar to that of [W, Lemma 1.1.3.4]. q.e.d. 

Lemma (7.3). We assume that ..r(a) satisfies the following condition: 
For any A E ..r(a) (iA $ ..rCa), we have m+(A) >0 or m+(2A) >0. 
Then W(ap ; H) = W'(ap). 

Proof Any element of W(a) has a representative g in NKnH(a) 
because the assumption implies that W(a) is the Weyl group of the root 
system of (fj", a). Since Ad (g)(ap n fj) is a maximal abelian subspace in 
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Z~(a)nlJ, there exists g' E ZxnH(a) with Ad(g'g)(apnfj)=apnfj. This 
implies that W(ap; H)jW(ap)a-::J W(a). Now the lemma follows from 
Lemma (7.2). q.e.d. 

Remark (7.4). Let (g, fj) be an irreducible symmetric pair of split 
rank one and let .:t be the positive simple root of 2(a). Then it follows 
from Table II that if m+(.:t) =m+(2.:t) =0, (g,fj) is isomorphic to the pair 
(~o(l + 1, 1), ~o(l, 1» for some I. 

Lemma (7.5). Let a be a root of 2(i) and let X, Y( *0) be an element 
of ge(i; a) and that of ge(i; -a), respectively. Then for any A E J, we 
have 

Ad (exp (X+ Y»A=A+(cosh C-I)Ha- sinh C a(A)(X- Y). 
C 

Here Ha is the element ofie such that a(H) = <Ha, H> for any HE ie and 
C=(2a(Ha)<X, y»1/2. 

Proof Easy. (Cf. [He 2, p. 286].) 

Lemma (7.6). Let a be an element of 2(i) such that aa=a and .:t= 
a I ap * 0. Then there exists an element g of K n (Ga)o such that 

(7.6.1) Ad(g)i=J, Ad (g)ap=ap, Ad (g)i=i 

and that Ad (g) I ap=s(A; ap), where for any p. E 2(ap), s(p.; ap) denotes the 
reflection on ap with respect to p.. 

Proof We prove the lemma in the cases (i) <a, Oa><O, (ii) <a,Oa> 
=0 and (iii) <a, Oa> >0, separately. 

First consider the case (i). It follows that Oa= -a. Hence g(i; a) 
(*0) is contained in g(ap ; .:t). We take an element X (*0) of g(i; a) and 
put g=exp (X + OX) E G. Multiplying X by a non-zero constant if neces
sary, we may assume that 2<a, a><X, OX> = _7':2. Then in virtue of 
Lemma (7.5), we find that 

(7.6.2) for any Y E i. 

It follows from (7.6.2) that Ad (g) I ap=s(.:t; ap). By definition, it is clear 
that g E K. On the other hand, the assumption aa=a combined with 
Lemma (2.7) implies that aX=X. Hence g is contained in (Ga)o. Then 
we find that Ad (g)i=j. We have thus proved the lemma in this case. 
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Next consider the case (ii). Then it follows from the condition (No) 
that a± Oa <F .E(i). In this case, we take non-zero X E ge(i; a) and Y E 

gc(i; - Oa) such thaJ X + Y E g. Then by virtue of the remark above, we 
find that [X, Y]=O, [X,OY]=O. Since 

[X+ Y, OX+OY]=[X, OY]-O[X, OY], 

we see that <X+ Y, OX+OY)=2<X, OY). Then <x, OY)<O. Noting 
this, we may take X and Y so that -2<a, a)<X, OY)=1C2• Now we put. 
g=g'O(g'), where g' =exp (X +OY). Lemma (7.5) implies that Ad (g)i =i 
and Ad(g)li=s(a;l). Since g=exp(X+Y+OX+Oy), it also follows 
from Lemma (7.5) that Ad(g)a~=a~ and Ad(g)la~=s(A; a~). On the 
other hand, the assumption qa=a and Lemma (2.7) imply that o{X + Y) 
=X+Y. Then it is clear that Ad(g)j=j. Hence the claim follows in 
this case. 

Last we consider the case (iii). It follows from [W, Prop. 1.1.2.1] that 
.8=a-OaE.E(i)· Since q.8=.8 and 0.8=-.8, we reduce this case to (i) 
by replacing a with.8. Hence the claim follows in this case. q.e.d. 

Lemma (7.7). Let (g, q) be a symmetric pair of split rank 1. Then 
there exists g E K satisfying the following three conditions (i)--(iii): 

( i ) g normalizes 1. a~ and j. 
(ii) Put w=Ad(g)li E wei) and 

M(O, q)+ ={.8 E .E(i)+; 0.8=.8, q.8=1=.B}. 

Then w leaves M(O, q)+ invariant. 
(iii) Ad (g) I a is the reflection on a with respect to the simple root. 

(We note that dim a = 1 in this case.) 

Proof We prove the lemma in the following five cases, separately. 
It should be noted here that for any symmetric pair of split rank 1, one of 
the following conditions occurs (cf. Table III). 

Case (a): 3 a E .E(i)+ s.t. Oa=qa= -a. 

Case (b): 3a E .E(i)+ s.t. Oa= -a and <a, qa) =0. 

Case (c): 3a E .E(i)+ s.t. <a, Oa)=O and Oa=qa. 

Case (d): 3a E .E(i)+ s.t. <a, Oa)=O and qa= -a. 

Case (e): 3a E .E(i)+ s.t. <a, Oa)=<a, qa)=<a, Oqa) =0. 

In the subsequent discussions, we use the results in Section 6 without any 
comments. If p. is a linear form on a, we define Yp E a by <Yp, Y) =p.(Y) 
for any YEa. 
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Case (a). A symmetric pair satisfying this condition is contained in 
one of the following classes. 

11 (p+q: odd), It (p+q: odd), Ii, It (i =2,3),14, n 
IIi' lIt (i = 1, 2, 3), IV!> IVt. 

Let a E 2(1) be a root satisfying the condition. We put p = a I a. In 
this case g(I; a) (*0) is contained in g(a; p). We take X E g(I; a) and 
put g=exp (X + OX) E K. We may assume that <a, a) <X, OX) = _'K2. 

Then it follows from Lemma (7.5) that Ad (g)i = i. In particular Ad (g) I i 
=Sa, the reflection on i with respect to a. It also follows that Ad (g)ap= 
ap. We now show that Ad (g)j=j. By definition, we find that OqX= ±X. 
If OdX=X, then q(g)=g and we have nothing to prove. On the other 
hand, if OqX=-X, then q(g)=g-l. But in this case, Ad(g2) clearly 
centralizes I and therefore we conclude that Ad(g)j=j. Hence (i) is 
proved. Next we show (ii). Take f3 E M(O, q)+. Since Oa= -a and 
o f3 = f3, it follows that <a, f3) = 0. Hence sa(f3) = f3 and therefore (ii) 
follows. The claim (iii) is clear in this case. 

Case (b). A symmetric pair satisfying this condition but not treated 
in Case (a) is contained in one of the following classes. 

11 (p+q: even,p, q>O), IIlt(m: odd), lIlt (i=2, 3, 4), 

IV~, IVff, V~, Vff. 

As in Case (a), we define an element g' =exp (X + OX) E K for some X E 

g(i; a) satisfying that Ad(g')li is the reflection with respect to a. We 
put g'=g'q(g'). In this case, it follows that a±qa ~ 2(i). This implies 
that g' and q(g') commute with each other. Hence we see that g normalizes 
both ap and j. We can also prove that both Sa and SUa leave each element 
of M(O, q)+ invariant by the same reason as in Case (a). Hence (ii) 
follows. Last we show (iii). We put p=(a-qa)/2. It is contained in 
2(a). Then it follows that <p, p) =t <a, a). For any YEa, we find that 

S S (Y)= Y -2 a(Y) H -2 qa(Y) H 
a da <a, a) a (a, a) aa 

=Y-2 a(Y) (H -H ) 
(a, a) a qa 

= Y -2 p(Y) Yw 
<p,p) 

Hence Ad (g) I a =SaSqa is a reflection on a with respect to p. This proves 
(iii). 
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Case (c). A symmetric pair satisfying this condition but not treated 
in Cases (a)-(b) is contained in one of the following classes. 

II (p+q: even andp=O or q=O), It (p+q: even and p:;z':q), 

IV2, IVs, Vi (i = 1,2,3). 

We now prove in this case. Let X E ge(I; a) (X :;z':0) and Y E ge(i; -8a) 
(Y:;z':O) be so taken that X+YE g and that 8a(X+Y)=±(X+Y). It 
follows from the assumption and (No) that a±8a $ 2:(i). This implies. 
that [X, Y]=[X, 8X]=[Y, 8Y]=0. In this case, we find that 

<X+ Y, 8X +8Y)=2<X, 8Y). 

Hence <X,8Y)<0. Weputg'=exp(X+8Y). MultiplyingX+Ybya 
constant if necessary, we may take X and Y so that Ad (g') ! I is a reflection 
with respect to a. It follows that g' and 8(g') commute with each other. 
We now put g=g'8(g'). Then it is clear that g E K and Ad(g)ap=ap. 
Since 8a(X + Y) = ±(X + Y) and since Ad(g-I)! I =Ad(g)! J, it follows 
that Ad (g)i = i. Hence (i) is shown. The proof of (ii) is based on the 
classification. In the cases IIp=O or q=O), IVs, Vt (i=l, 2, 3), we easily 
see that 8a:;z':a for any a E 2:(1) satisfying aa:;z':a. This implies the 
M(8, a)+ =0. Hence in these cases, we have nothing to prove. On the 
other hand, we will give in Lemma (A. 2) of Appendix A a proof of the 
existence of a E 2:Ci) satisfying both (ii) and the assumption for a pair 
contained in the classes It(p+q:even andp:;z':q) and IV2• Last we show 
(iii). Put f1=(a-8a)/2. Clearly f1 is contained in 2:(a). Then <f1, f1) = 
t<a, a). As in Case (b), we see that saso.(Y)=Y-2(f1(Y)/<f1, f1»Yp for 
YE a. Hence we conclude that Ad(g)!a=s.so.!a is the reflection on a 
with respect to f1 and therefore (iii) is proved. 

Case (d). A symmetric pair satisfying this condition but not con
tained in Cases (a)-(c) is contained in one of the following classes. 

If (p = q), 1111 (m: odd), IIIi (i = 2, 3, 4). 

As in Case (c), we take X E ge(J; a) and Y E ge(I; -8a) so that X+ Y 
Eg. Due to Lemma (5.6), we may assume that 8a(X+Y)=X+Y. 

Then it follows that Y =8aX. Put g' =exp (X + aX). Multiplying X by 
a constant if necessary, we may also assume that Ad (g') ! I is the reflection 
with respect to a. On the other hand, it follows from the assumption 
<a, 8a) =0 that g' and 8(g') commute with each other. We put g= 
=g'8(g'). Then it follows that g E K and that g normalizes L ap and i. 
We have thus shown (i). Next we prove (ii). In the case 1111 (m: odd), 
Illi (i =2,3,4), it follows that 8a:;z':a for any a E 2:(1). Hence we have 
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nothing to prove. In the case If(p = q), we will give a proof of (ii) in 
Lemma (A. 2) of Appendix. On the other hand, we can show (iii) by an 
argument similar to that in Case (c). 

Case (e). A symmetric pair satisfying this condition but not treated 
in Cases (a)-(d) is contained in one of the following classes. 

IIII (m: even), IIIf (m: even). 

From now on we restrict our attention to the pairs contained in these 
classes. As in Case (c), we take X E gceJ; a) and Y E geeL - Ba) so that 
X + Y E g. Put g' =exp (X +BY). Multiplying X + Y by a constant if 
necessary, we may assume that Ad (g') J i is the reflection with respect to 
a. Under the assumption, we find that a± Ba, a± aa, a± Baa $ ,S(i). 
This implies that any two of g', B(g'), a(g') and Ba(g') commute with 
each other. We put g=g'B(g')a(g')Ba(g'). Then it is easy to see that 
g E K and g normalizes L Ct~ and j. Hence (i) is shown. Next we prove 
(ii). In the case III (m: even), it is clear that Ba-=l=-a for any a E ,sCi). 
This implies that 's(J)0=(} and therefore we have nothing to prove. In 
the case lIlt (m: even), we will give a proof of (ii) in Lemma (A. 2) of 
Appendix. Last we show (iii). Put ,u=t(a-Ba-aa+ Baa) E's(a). 
Then <,u,,u) =i<a, a). Noting this, we see from the assumption that 
SaSOaSqaSOqa(Y)=Y-2(,u(Y)/<,u,,u»)Y,, for any YECt. Hence Ad(g)Ja= 
SaSOaSqaSOqa J a is the reflection on ct with respect to ,u. 

Let (g, lj) be an irreducible symmetric pair of split rank I. Then by 
the classification given in Section 6, we find that (g, lj) is contained in one 
of the classes given in Cases (a)-(e). Hence the lemma is completely 
proved. 

(7.8). Let (g, lj) be a symmetric pair of general rank. Let 7JT(a) be a 
fundamental system of roots in 's(a). For each fundamental root 2 E 7JT(a), 
we consider the symmetric pair (gO), lj(2)) (cf. § 4). This is of split rank l. 
Then it follows from Lemma (7.6) that there exists an element g E K such 
that Ad(g) normalizes J(2), al2) and jO), that Ad (g) J aO) is the reflection 
with respect to 2 and that Ad (g) J J(2) leaves M/B, a)+ invariant. Here 
MM, a)+ is the set defined for the pair (g(2), lj(2)) similar to M(B, a)+ for 
(g, lj). For this g E K, we have the following lemma. 

Lemma (7.8.1). (i) Ad(g) normalizes L ap and j. 
(ii) Ad(g)Ja is the reflection with respect to 2-
(iii) Ad (g) J j leaves the set 's(j); ='s(1)0 n 's(1)+ invariant. 

Proof (i) and (ii) follow from the remark before the lemma. In 
fact, for example, we show that Ad (g)i =J. Let 1(2).1 be the orthogonal 
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complement of i(A) in i. Then it follows from the definition of g that 
Ad(g) leaves each element of 1(A)-1 invariant. Hence Ad (g)i =1. 

We are going to prove (iii). Let P E 2m: and put 

Since {}p=p, {}(p-ap)=p-ap for any p E M. This combined with the 
condition (C) implies that (}p=p. Hence Mc2(J):. Let Ri(1~,i~P) 
be the connected components of 2(i)o which intersect with M. On the 
other hand, let Ri (p<i~r) be the connected components of 2(J)o which 
do not intersect with M. Put21=Uf~1Ri and2,=Ui>pR i . Then it 
follows from the definition that 21 n 2(i; A) = <) or 21 c 2(i; A), First 
assume that 21 n 2(J; A) = <). Then it is clear that w(p) = p. Here w = 
Ad (g) I i· On the other hand if 2 1c2(i; A), it follows that MCMM, a)+. 
Hence we see from the discussion before the lemma that ):;;{p) E Ml{}, a)+ 
for any p E M. Here w=Ad(g)li. This implies that w(p) E 2m:. We 
have thus proved that w(2m:) =2m:. q.e.d. 

Let W(a) = {Al> "',Al}andforeach i(l~i~l), we take an element 
gi E K satisfying the conditions (i)-(iii) in Lemma (7.8.1) for A=Ai • We 
now consider the subgroup W(a) of K generated by g), .. " gl' Then it 
is clear that W(a) is a finite group. Moreover we put 

Z(a)={g E W(a); Ad (g) I a=id}. 

Then it follows that W(a)/Z(a)::::: W(a). 
We next consider the group W(ap).. Clearly W(ap). is generated by 

the reflections with respect to the roots of 2(ap).. Let {PI> .. " pp} be a 
fundamental system of 2(ap).' Then by definition, api = Pi (1 <i ~ p). 
For any pi' there exists Pi E2(J) such that api=pi and Pi-{}Pi=2pi' 
Then it follows from Lemma (7.6) that there exists hi E K n (G·)o satisfying 
the conditions described there. Let W(ap). be the subgroup of K generated 
by h), .. " hp- Then W(ap). is clearly contained in H. We put Z(ap). = 
{g E W(ap).; Ad (g) I ap=id}. Then W(ap)./Z(ap).::::: W(ap) •. 

Theorem (7.9). For any w E W·(ap), there exist g E W(a) and h E 
W(ap). such that Ad (hg) I ap=w. 

Proof By definition, w normalizes a. Hence w I a E W(a). Then 
there exists g E W(a) such that Ad(g)la=wla. We now put w' =Ad(g)lap • 

Clearly w' is contained in W(ap). Since WW'-1 leaves each element of u 
fixed, there exists h E W(up). such that Ad (h) I up =WW'-1. Then Ad (hg) I ap 

= wand the theorem is proved. q.e.d. 
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Corollary (7.10). Let wj=e, w2, "', Wr form a complete system of 
the representatives of the coset W(ap; H)\ Wu(ap). Here we put 

Then for any i, there exists a representative Wi E N K(ap) of Wi such that the 
following conditions hold: 

This is a direct consequence of Theorem (7.9) and the definition of 
Wu(ap). 

(7.11) In the course of the discussions in the paragraph (7.8), we 
have shown by considering the case where ()=a the following claim which 
seems to be known. 

Proposition (7.11.1). There exists a finite subgroup W of K satisfying 
the following conditions: 

(i) Each element of W normalizes both I and ap. 
(ii) If Z ={g E W; Ad (g) I ap=id}, then WIZ coincides with the Weyl 

group W(ap). 

§ 8. A parabolic subalgebra connected with a symmetric pair 

In this section, we introduce a standard parabolic sub algebra 1Ju of g 
which plays a basic role in Fourier analysis on the symmetric space as a 
minimal parabolic subalgebra does a role in Fourier analysis on a Rieman
nian symmetric space. 

(8.1) First we recall a minimal parabolic subalgebra of g. A 
standard one is given by m+ap+n, where 

In the study of a symmetric pair, we frequently need another parabolic 
subalgebra of g. A standard one is defined by 1Ju =ZB(a)+n., where we 
put nu = 2:::.0'(0)+ g(a; ;(). It is clear that 1Ju is actually a parabolic sub
algebra ofg. Let 1Ju=mu+au+nu be a Langlands decomposition of 1Ju. 
We may assume without loss of generality that aucap and mu is generated 
by m and {g(ap; ;(); ;( E 2(ap)u}. 

In this section, we closely study the structure of the reductive sub
algebra mu' In particular we will show in Theorem (8.8) that [m., mu] = 
g(a)+u(a)+mu is a direct sum decomposition, where g(a) is a semisimple 
Lie algebra of the non-compact type and uCa) and mU are semi simple Lie 
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algebras of the compact type with some additional conditions. Moreover 
we shall show in (8.9) that there is a duality between g(a) and u(a). 

(8.2) We fix a «(), a)-order on sCi) and compatible orders on S(ap), 

SCi) andS(a) as we introduced in Section 2. Let W(i) be the «(), a)-fun
damental system of SCi). 

It follows from the argument in [W, p. 23] that SCi). is a root system 
and W(}) n S(D. is a fundamental system of S(D.. It is clear that (}(S(i).) 
=S(J).. Let S 1, ••• , S r be the totality of the irreducible components of 
S(J).. We divide St (1 <i~r) into two sets by the condition whether 
a I ap::;t:O for some a ESt or not. For the sake of convenience, we may 
assume that if 1 <is:.p, then alap='i=O for some a E Si and if p<i~r, then 
a I ap=O for any a E Si. Then we put <(}) = Uf=l Si and [()] =W(i) n <(}). 
It is clear from the definition that [()] is a fundamental system of the root 
system < (}). We denote by gC< (}»c the sub algebra of gc generated by 
{gc(l; IX); IX E <(})}. 

Lemma (8.3). We put g(a) =g( <(}»c n g. Then g(a) is generated by 
{g(ap ; A); A E S(ap).} and is semisimpie of the non-compact type. Further
more g(a) is contained in lj. 

Proof First recall that 

Then it follows from Lemma (2.8) that 

(8.3.1) 

Comparing this equality with the definition of <(}), we conclude that g(a) 
contains the subalgebra g(a), of g generated by {g(ap; A); A E S(ap).}. It 
follows from [W, Lemma 1.2.3.14] that g(a), is semisimple of the non
compact type. Let g(a)~ be the complexification of g(a), in gc. Then we 
find from the definition that the root system of g(a)~ coincides with <(}). 
Hence g(a), must coincide with g(a). It follows from Lemma (2.7) and 
the equality (8.3.1) that g(a) is contained in lj. Hence the lemma is com
pletely proved. 

(8.4) By exchanging the roles of ap and j, and those of () and a, we 
define [a], <a) and g«a»c similar to [()], <(}) and g«(}»c. 

Lemma (8.5). (i) The Lie algebra g«a»c is generated by 

{gel; IX); IX E SCi), IXlap=O, IXlj::;t:O}. 
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(ii) We put u(a)=g«o»)cng. Then u(a) is semisimpie of the com
pact type and is contained in m. 

Proof First remark that if a is a root of .1'(Do, then gc(f; a) is 
contained in mc. Noting this, we can prove the lemma by an argument 
quite similar to that of Lemma (8.3). Hence we do not enter into its 
proof. q.e.d. 

(8.6) It is clear that .1'(Do n .1'(1), is a root system and weD n .1'(1)0 
n .1'(1), is its fundamental system of roots. Let .1'(0, 0')1' .. " .1'(0, a)k be 
the irreducible components of .1'(1)0 n .1'(i),. We may assume that .1'(0, a)i 
(ls::.i<j) are orthogonal to both [0] and [a] but .1'(0, a)i (j<i~k) are 
not to [0] and [a]. Then we put 

j 

(0, a) = U .1'(0, a)i, [0, a] = (0, a) n Wei). 
i=l 

It follows that [0, a] is a fundamental system of (0, a). We denote by 
(m')c the subalgebra of gc generated by {gc(f; a); a E (0, a)} and put 
m'=gn(m')c· 

Lemma (8.7). m' is semisimple of the compact type and is contained 
in mn g. 

Proof It is clear that m' is contained in m and is semisimple. 
Hence to prove the lemma, it suffices to show that m' is contained in g. 
If a E [0, a], then a(OX) =a(aX) =a(X) for any X E I. This in particular 
implies that a(gc(I; a))=gc(I; a). If there exists an element X(*O) of 
gc(I;a) such that aX=-X, then X is in qc and commutes with the 
maximal abelian subspace ic of qc. This implies that X E ic, which is a 
contradiction. Since dimc gc(f; a)= I, we find that aX =X for any X E 

gc(I; a). Hence m'eg. q.e.d. 

Theorem (8.8). (i) If Z(m,) is the center ofm., then 

Z(m,)={Y E In f; a(Y)=O for any a E .1'(J)0,,}. 

(ii) [m" m,] =g(a)+u(a)+m' is a direct sum decomposition and g(a), 
U(a) and m' commute with each other. 

Proof It is easy to check (i). We are now going to prove (ii). By 
definition, Zg(a) is generated by I and {gc(f; a); a E .1'(I)o,,}. Then due to 
the definition of g(a), u(a) and m', we find that (m,)c=(g(a)+u(a)+m' 
+Z(m,))c. (Cf. Lemma (4.1.1) and the proof of Theorem (B.6).) Hence 
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if we &how that g(a), u(a) and m· commute with each other, the claim in 
(ii) follows. By definition, it is clear that m· commutes with both g(a) 
and u(a). We now prove that g(a) and u(a) commute with each other. 
It follows from Lemmas (8.3) and (8.5) that g(a)c = g«8»)c (resp. u(a)c 
=g«a»)c) is generated by {gc(J;a);aE(2:'(J)-2:'(J)u)n2:'(J).} (resp. 
{gc(]; a); a E (2:'(1)- 2:'(J).) n 2:'(J)u}). This implies that if we show that 

(2:'(1) - 2:'(})u) n 2:'(J). and (2:'(}) - 2:'(1).) n 2:'Cl)o 

are orthogonal, then [g(a), u(a)] =0. If not so, there exist 

a E (2:'(J) - 2:'(1)u) n 2:'(1). and ,8 E (2:'(1) - 2:'(1).) n 2:'(1)0 

such that <a, ,8):::f:.0. We may assume that <a,,8) >0. Then it follows 
from [W, Prop. l.l.2.1] that a-,8 is a root of 2:'(J). Moreover we have 
(a-,8)la~=ala~:::f:.O, (a-,8)ij=-,8ij:::f:.O, (a-,8)la=O. This contradicts 
Lemma (4.1.1). Hence (2:'(J) - 2:'(J)0) n 2:'(1). and (2:'(J)- 2:'(D.) n 2:'(1)0 are 
orthogonal and therefore [g(a), u(a)] =0. We have thus proved the theo
rem completely. 

(8.9) We recall the symmetric pair (gd, ljd) dual to (g, lj). Then 
there is a kind of duality between Zg(a) and Zgd(a). From now on, we 
explain this duality. First we put 

Then due to Theorem (8.8), we have a direct sum decomposition 

(8.9.1) 

Here we used that a is contained in a.. In fact, it follows from the defini
tion that a. ={Y E a~; A(Y)=O for any A E 2:'(ap)a}. Putting 

g(a)d=u(a)cngd (=gdng«8»)c) 

u(a)d=g(a)cngd (=gdng«a»)c) 

(a·)d =.v=I t· 
(±.)d =.v=I a·, 

we obtain a direct sum decomposition of Zgd(a): 

(8.9.2) 

Moreover we have that 

(8.9.3) g(a)d is of the non-compact type, 
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(8.9.4) 

(8.9.5) 

(8.9.6) 
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u(a)d is compact, 

(m")c n gd =m", 

(13")c n gd = a". 
There exists a duality between the decompositions (8.9.1) and (8.9.2). We 
now explain this duality. 

Proposition (8.9.7). Ifwe decompose Zga(a) as we didfor Zia) of the 
form (8.9.1), we obtain the decomposition (8.9.2) and the correspondence 
of the factors are given by 

g(a)---+g(a)d, u(a)---+u(a)d, m" ---+m", 

13"---+13", t"---+(t")d, a"---+(a")d, a---+a. 

Proof It is easy to check the correspondence relations between 
g(a), g(a)d, u(a), u(a)d and mO. 

The center a of Zia) coincides with Z(m")+a". Since a" is contained 
in j:l and since it follows from Theorem (8.8) that Z(m")cf, we find that 
anfng=13", 13nfnq=t", 13ngnj:l=a", 13nj:lnq=a. These imply the 
rest of the claim. q.e.d. 

Owing to the duality between g(a) and u(a) given in Proposition 
(8.9.7) and the argument before in this section, we find the following. 

Proposition (8.9.8). (i) The restriction of () to g(a) is a Cartan in
volution of g(a). 

(ii) The restriction of a to u(a) is non trivial on each simple factors 
ofu(a). 

(iii) The restrictions of () and a to m" are trivial. 

Proof The claim (i) follows from the definition of g(a) and [W, 
Lemma 1.2.3.14J. Due to the duality between g(a) and u(a), we see that 
(ii) is reduced to (i). The claim (iii) follows from Lemma (8.7). q.e.d. 

(8.10) In Table VI, we collect all the informations on the sub
algebras g(a), u(a), etc. for all the symmetric pairs of split rank 1. There 
we use the notation m~=m"+13" for short. (In Table VI, we omit the 
symmetric pairs of Type (f.).) 

(8.11) We take a connected Lie group G and its closed subgroup H 
as we did in Section 1. We put ft = (}(n). Let Ap, Nand N be analytic 
subgroups of G corresponding to ap, nand ft, respectively. Moreover we 
take the maximal compact subgroup K of G whose Lie algebra is f. Then 
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Table VI 

g(a) u(a) nt~ dim t" dima a 

11 S30(p, q) 0 0 0 0 

I't I 0 S3o(p+q) 0 0 0 

12 S3u(p, q) 0 v=rR 0 0 

Id 2 0 !lu(p+q) v--1R 0 0 

Is ~\l(p, q) 0 !il\l(1) 0 0 

la 
3 0 !il\l(p+q) S3\l(1) 0 0 

.-~-.--.-.- ----

III ~l(m, R) 0 0 0 
---- ._---_._---------- -----------------

lit 0 i8u(m) 0 0 

112 ~\l(m, RHiii\l(1, R) 0 0 0 0 

IIg 0 iii\l(m)H\l(1) 0 0 0 
--~----~----~~---~------~-.,-~------,--"------" ... ---,---- ,.---

lis 180(4,3) 0 0 0 0 
-----.~-. --~---.--- .. --

IIff 0 180(7) 0 0 0 

IIII ~o(m, C) 0 0 0 

lIlt 0 i3o(mHi3o(m) 0 0 

1112 iii1(m, C) 0 v=TR 

I1Ig 0 !ilu(mH!ilu(m) V=1R 

IlIa ~\l(m, CH!8\l(1, C) 0 0 0 

IlIff 0 2!il\l( m H 2iil\l(1) 0 0 

114 180(7, C) 0 0 0 

lIlt 0 180(7) + ~0(7) 0 0 1 

IVI ~0*(2m) l.lu(2) 0 0 0 

IVt 1.l1(2, R) !ilo(2m) 0 0 0 

IV2 ~u*(2m) l.lu(2H!ilu(2) 0 0 
----------~ 

Ivg 181(2, C) i1iu(2m) 0 0 
.. ~---"-------------.-------------~~---

IVg 0 130(8) 0 0 1 
_._._._--_."---_._------ -------.--.-------,-~---.------

Ivff 180(7, 1) 0 0 0 

VI 0 0 v-lR 

V2 !il1(2, CH!il1(2, R) 0 0 0 

Vd 
2 0 3~u(2) 0 0 

Va 130(5,3) 0 0 0 

va 
3 0 !l0(8) 0 0 

----_._._-------.-
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G=KApN is an Iwasawa decomposition of G. As usual, we put M= 
ZK(Ap), M* =NK(Ap). Clearly m is the Lie algebra of M. The P=MApN 
is a minimal parabolic subgroup of G. Now we define a parabolic sub
group p. by 

p.= U PwP. 
weW('pl, 

Here w denotes a representative of w in M*. Let p. = M.A.N. be the 
Langlands decomposition of p. with A.cAp. It follows from the defi
nition that 1:J., m., a. and n. are the Lie algebras of p., M., A. and N., 
respectively. We put N. = (}(N.) and denote by G(q), U(q)o, M', T" and 
Z' the analytic subgroups of G corresponding to g(q), u(q), m·, t· and 0·' 
respectively. Moreover we put U(q) = U(u)o(K n exp (./=Tap))' 

Lemma (8.12). 
(i) G(q)~H, U(u)~M, M·~M. 

(ii) M. = U(u)G(u)M·T"Z·. 

Proof. Since Z(m.) is contained in m, the claim (i) follows from 
Lemma (8.3), Lemma (8.5) and Theorem (8.8), and (ii) does from (i), the 
definition of U(q) and [W, Lemma 1.2.4.5]. q.e.d. 

Lemma (8.13). For any w E W'(ap), we take an element w of M* 
such that w=wM. Then HwP. =HwP. 

Proof. It follows from the assumption that Ad(w)(g(q))=g(u). 
Hence due to Lemma (8.12), we find that 

HwP.~HwG(u)P=HG(q)wP=HwP. 

The converse inclusion relation is obvious. q.e.d. 

Remark (8.14). Since the set HwP. only depends on WE W'(ap), we 
frequently write HwP. or HwP instead of this set. 

Lemma (8.15). We take representatives WI> "', Wr of the set 

as in Corollary (7.10). Thenfor each i (1 <i<r), HwiP. is an open subset 

ofG and 

Moreover the union Ui=l HwiP. is dense in G. 
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Proof This follows from Lemma (8.13) and [Ma, Prop. 1]. 

Lemma (8.16). If A H = exp (av n lj), we have 

HnPq=(Mq nH)(Aq nH) 

=ZKnH(a)AHZAa). 

491 

Proof By definition, we have that H n Pq = H n Pq n a(Pq). On the 
other hand, a(MJ=M., a(Aq)=Aq. Hence we find that 

Hn Pq n a(Pq)=(Mq n H)(Aq n H)(Nq n a(Nq) nH). 

Since l'(av)+ is (la-compatible, it follows that N q n a(Nq) = {e}. Therefore 
we have 

Noting that H=(KnH)AH(NnH) is an Iwasawa decomposition of H, 
we find that 

On the other hand, since Lemma (2.7) implies that ZNnH(a/=ZN(a), it 
follows that 

q.e.d. 

Proposition (8.17). 
(i) G=KAH=HAK. 
(ii) Let k i E K, ai E A, hi E H (i = 1,2) and assume that k1a1h 1 = 

kzazhz. Then we have 

kl1kz=hlh:;1 E Kn H, 

a1 = (kl1kz)az(kl1k2)-1. 

Proof (i) follows from [F-J] and eii) is shown by an argument 
similar to that in [O-S]. 

Appendix A. A lemma on the root systems 

In this Appendix, we show a lemma which is used in the proof of 
Lemma (7.7). 

(A. 1) Let (g, lj) be an irreducible symmetric pair. Retain the nota-
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tion in the text. Let SCi) be the root system of g. We introduce a (0, a)
compatible order on SCi) and fix it. For any a E SCi), we denote by Sa 

the reflection with respect to a. We now put 

M(O, a)+ ={fi E ScJ)+; Ofi=fi, afi=l=fi} 

as in Section 7. 

Lemma (A. 2). (i) If (g, '9) is contained in the class It(p+q: even, 
p=l=q, p, q >0), there exists a E SCi) satisfying the conditions: 

(i.I) 

(i.2) 

Oa=aa, <a, Oa> =0. 

(ii) If (g, '9) is contained in the class It (p = q), there exists a E S(i) 
satisfying the conditions: 

(ii.I) 

(ii.2) 

<a, Oa> =0, aa= -a. 

(iii) If (g, '9) is contained in the class lIlt (m :even), there exists a E 

.x(i) satisfying the conditions: 

(iii.! ) 

(iii. 2) 

(iv) If (g, '9) is contained in the class IVz, there exists a E SCi) satisfy
ing the conditions: 

(iv.I) 

(iv.2) 

Oa=aa, <a, Oa> =0. 

sasoaCM(O, a)+)=M(O, a)+. 

Proof (i). In this case, g=~o(p+q+l, 1) and '9=~o(p+l)+ 
~o(q, 1). Put I =(p+q +2)/2 and r=min (p, q)+ 1. By the assumption, 
I<r<l. Then the root system SCi) is of type D l • Let 7JI"={a1, ••• , a l } 

be a fundamental positive system of SCi). Let io = J"=t (f n i) + Up. Then 
as was already remarked in (3.7), every root of SeJ) is real-valued on io. 
By taking a suitable orthonormal basis {e1, ••• , el } on the dual vector 
space i:1' orIo, we may put ai=ei-ei +1 (1:;;;i<1) and al=el-1+el. We 
may assume that 7JI" is a (0, a)-fundamental system. Then it is clear from 
the definition that the Satake diagram of (X(i), (-0)) and that of (SCi), 
(-a)) are given by 
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(2<1), ( - (}»: ~a'-l 0 • • • al a2 ar ar+l a'-2 a, 

~a'_l 
(2(J), (-a»: 0--<>- --0 • al a2 ar ar+1 al-2 at 

Then it is clear that M({}, a)+ ={±(ei ± ej ); 1 <i <j, i <r}. In particular, 
if r = 1, then M(e, a)+ =0 and therefore we have nothing to prove. Hence 
assume that r > 1. We take a = e 1-e!. Then it is clear that ea = aa = 
-el-e1 and <a, ea)=O. Moreover, by direct computation we find that 
s.(M(e, a)+)=M({}, a)+. 

Proof of (ii). The proof of (ii) is quite similar to that of (i). Hence 
we omit it. 

Proof of (iii). Let (g, l) be a symmetric pair contained in the class 
IIIt(m: even). Then g=§o(m+l, 1)+§o(m+l, 1) and l)=§o(m+l, 1). 
In this case 2(}) has two irreducible components and each of them is of 
type D z, where 1= (m + 2)/2. Let 2 be one of the irreducible components 
of 2(i). Retain the notation in the proof of (i). Let W = {ai, ... , all 
be a fundamental system for 2. Then we may assume without loss of 
generality that W U aW is a (e, a)-fundamental system of 2(i). Ifwe denote 
the restriction of e to 2 by the same letter, the Satake diagram of (2, ( - e» 
is given by 

In this case, M(e, a)+ =MU aM, where M ={±ei±ej ; l<i<j}. Put 
a=el-e1• Then it is clear that <a, {}a)=<a, aa)=<a, (}aa) =0. On 
the other hand, we find by direct computation that s.so.(M)=M and this 
implies (iii.2). 

Proof of (iv). Let (g, l) be a symmetric pair contained in the class 
IV2• Then g=§u*(2(m+2» and l)=§u*(2(m+ 1»+§u*(2)+R. In this 
case 2 (i) is of type A I, where I = 2m + 3. By taking a suitable choice of 
a basis, we may take W ={a i =ei -e i +1 (1:::;:i.~1)} as a fundamental system 
for 2(1). We may assume that this is (e, a)-compatible. Then the Satake 
diagram of (2Ci), (-{}» and that of (2(}), (-a» are given by 

(2(i), (- (}»: 

(2(i), (-a): 
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From this, it is clear that M(O, q)+ ={e1-e2, eZ-eZ+1}' We take a=e1-eZ" 
Since Oa=qa= -e2+eZ+h it follows that (a; Oa> =0. On the other hand, 
we see that saSUa(el-e2)=eZ-el+l' Hence sasua(M(O, q)+)=M(O, q)+. 

We have thus proved the lemma completely. 

Appendix B. A decomposition of the Levi part of a parabolic subalgebra 

(B.l) Let g be a semisimple Lie algebra. As usual, G denotes a 
connected linear semisimple Lie group with its Lie algebra g. Let g=t+ 
ap+n be its Iwasawa decomposition. Let 0 be the Cartan involution of 
g corresponding to f. In this appendix, we study a fine structure of 
the Levi part of a parabolic subalgebra of g. We already studied such 
a fine structure of the parabolic subalgebra lJ. in Section 8. The result of 
this section is weaker than this but as a corollary, we obtain a procedure 
to determine the Satake diagram of the Levi part of an arbitrary parabolic 
subalgebra. The result of this appendix seems to be known (cf. [Mm]). 

(B.2) Let i be a Cartan subalgebra of g containing ap. Let 2(i) and 
2(ap) be the root systems of i and ap, respectively. We fix compatible 
orders on 2(i) and 2(ap) and denote by 2(i)+ and 2(ap)+ the sets of 
positive roots with respect to these orders. Let Wei) and W(ap) be the 
fundamental systems for 2(i) and 2(ap), respectively. Let W be the Weyl 
group of (g, ap). 

(B.3) Let e be a subset of 7Jf(ap). We denote by We the subgroup 
of W generated by the reflections with respect to the roots in e. Let gee) 
be the subalgebra of g generated by {g(ap ; A); A E (e>}, where 

(e> =( EB Ra) n 2(ap). 
aEa 

It follows from [W, Lemma 1.12.3.14] that gee) is semisimple. We note 
that (e> is the root system of the pair (g(e), ap n gee»~. 

(BA) We define 

aa={Y E ap; a(Y)=O for any a E e}, 

ma=g(e)+m, 

nil" = E g(ap ; A). 
lEI(op)+-(a) 

Let Ae, (Me)o, Nt be the analytic subgroups of G corresponding to ae, 
me, nt, respectively. Moreover put Me = (Me)oZ(ap), where Z(ap)= 
exp (,J"=t ap) n K (K is the maximal compact subgroup of G with its Lie 
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algebra f). If Pa =PWaP, where P is the parabolic subgroup of G with 
its Lie algebra m+Ctp+n+, then Pe=MeAaNt is its Langlands decom
position. 

(B.5) We define 

2(i)0 = {,u E 2(i); ,u I Ctp =O}, 

2(J)0,e ={,u E 2(1); ,u I Cta =O} ={,u E 2(i); ,u I Ctp E <e) u {On, 

2(i; e)={,u E 2(I)0,e; <A,,u) =0 for any A E 2(i)0,e-2(i)o}' 

It is clear that 2(i; e) is a root system. We define subalgebras m(e) and 
oe of g by 

oa={Y E in f; ,u(Y)=O for any ,u E 2(J)o,e}' 

Theorem (B.6). (1) oe is the center of me· 
(2) me=g(e)+m(e)+oe is a direct sum decomposition. 

Proof It is easy to see that oe is the center of me' 
We are going to prove (2). It follows from the definition that 

Now let,u E 2(i)0 and A E 2(J)0,e-2(i)0 be such that <A,,u) =1=0. We may 
assume that <l,,u) < 0 without loss of generality. Then it follows from 
[W, Prop. 1.1.2.1] that A+,u E 2(J)0,e. Since [gc(}; -1), gc(J; l+,u)]= 
gcG; ,u), we see from the definition that gc(J; ,u) is contained in g(e)c, the 
complexification of gee). This implies that 

.z::; gc(}; ,u)cg(e)c+m(e)c 
J1EI(1)o,e 

and therefore that 

Hence to prove the theorem, it suffices to show that gee) and m(e) com
mute with each other. For this purpose, take a E 2(i; e) and [3 E 2(J)0,e 
-2(J)0. By definition, <a, (3)=0. Assume now that [gc(J; a), gc(J; (3)] 
=f={0}. Then a+[3 E 2(J)0,a-2(i)0 and therefore <a, a+(3)=<a, a) =1=0. 
This contradicts the definition of 2(i; e). Accordingly, g(e)c and m(e)c 
commute with each other. Therefore the theorem is completely proved. 

(B.7) From now on, we discuss on the Satake diagram of 
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[m(6), m(6)]=g(6)+m(6) 

and the dimension of De. For this purpose, we give the indices of the 
simple roots in the following manner. 

W(i)={ah ... ,aR }, 

W(JHi2(i)o={a i E Wei); R(6)<i<R}, 

w(i)n2(i)o,e={a, E W(i); R«(), 6)<i:S;:R}. 

Here R(6) are R«(),6) are certain numbers such that R«(), 6):S;:R(6)~R. 
Then 

W(i)n2(J; 6)={a i E Wei); (1) R(6)<i:S;:R, 

(2) a i is contained in the connected component of the Dynkin 
diagram of {a j ; R«(), 6)<j ~R}}. 

Let S(W(i); -()) be the Satake diagram of the (-())-system of the 
roots (2(i), (-())). We erase all the white circles corresponding to the 
roots a i E Wei) such that a i I Ctp $ 6 and also erase the lines and arrows con
nected with the vanished circles. Then we obtain a new Satake diagram. 
It is easy to prove the followings. 

I. dim De = The number of arrows which are erased in the procedure 
above. 

II. The Satake diagram of the semisimple Lie algebra [m(6), m(6)] 
is the one obtained in the procedure above. 

(B.8) We give here an example. 
We consider the simple Lie algebra e6(-14)' The Satake diagram and 

the Dynkin diagram for the restricted root system are given by 

Here ~i =a i I Ctp (i = 1,2). 

dim3e The Dynkin diagram of [me, me] [me, mEl] 

• • • !3u(4) 

• I • 130(7,1) 

o '" "0 0 • • • !3u(5, 1) 

'" ""'0 0 • ! • o C6e-H) 
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Remark (B.9). Let (g, fj) be a symmetric pair and let a be the in
volution for it. Take a Cartan involution (j of g commuting with a and 
use the notation in the text without notice. 

If we take 8=.l'(up)an7Jl"(up), then Pa=P(J, .l'(Up)a = (8), .l'(J)D,a= 
.l'(f)D,(J, g(a)=g(8), u(a)+ma=m(8), oa+t"=o(J' Needless to say, we 
find that in this case, Theorem (8.7) give a finer structure than Theorem 
(B.6). 
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