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Regular Holonomic Systems and their 
Minimal Extensions I 

Masatoshi Noumi 

This note, together with J. Sekiguchi [13], is intended to be an intro
duction to Professor Kashiwara's lectures at RIMS in 1981. At that time, 
he lectured on three topics as follows: 

(i) Gabber's theorem on the involutiveness of the characteristic variety 
of a coherent !})x-Module. 

(ii) Some fundamental results on regular holonomic systems (holonomic 
systems with regular singularities). 

(iii) An application of regular holonomic systems to the representation 
theory ofa semisimple Lie algebra. 
Based on his lectures, we will make here a survey of (i) and (ii) above. As 
to (iii), the reader is referred to J. Sekiguchi [13]. 

Throughout this note, X stands for a complex manifold. We denote 
by T* X the cotangent bundle of X with canonical projection7r:: T* X -+ X. 
If Y is a submanifold of X, the conormal bundle of Y in X will be denoted 
by Tt;X. We also use the notations t*X=T*X\TiXand n-=7r:lf*x. As 
usual, we denote by !}) x the Ring over X of linear differential operators of 
finite order and by r! x the Ring over T* X of microdifferential operators 
of finite order, respectively. In Section 2 and Section 3, we will freely use 
the terminology of derived categories. For a Ring d on X, we denote by 
D(d) the derived category of the category of (left) d-Modules. 

§ 1. Regular holonomic systems 

Let Q be an open subset of t* X = T* X\TiX and Va conic involutive 
.closed analytic subset of Q. Then we define ,Iv to be the sub-Module of 
r! x(1) 10 consisting of all microdifferential operators P whose symbols (l1(P) 
vanish on V. We denote by d v= U k;.1 ,It the sub-Algebra of r! xlo gen
erated by ,Iv. Note that ,Iv is a bilaterally coherent r! x(O) lo-Module. 

Proposition 1.1. For a coherent r! x 10-Module M, the following condi
tions are equivalent: 
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i) For any point p of g, there exist an open neighborhood U of p and 
a coherent Iff x(O)lu-sub-Module L of Mlu such that Iff xL=Mlu and fvL=L. 

ii) For any open subset U of g and for any coherent Iff x (0) lu-sub
Module N of Mlu, the sub-Module dvN of Mlu is coherent over Iffx(O)lu. 

Definition 1.2. A coherent Iff xlo-Module M is said to have R.S. 
(regular singularities) along V in D if it satisfies the equivalent conditions 
of Proposition 1.1. 

Let M be a coherent Iff x 10~Module. Then we denote by IR (M, V) 
the set of all points p of D such that M does not have R.S. along V in any 
neighborhood of p. Recall that, for any point pin D, there are an open 
neighborhood U of p and a coherent Iff x(O) Ju-sub-Module N of Mlu such 
that Iff xN=Mlu. Then, by Proposition 1.1, one can show that 

(f'i-=lffAO)lo)' Note that (Supp(/t+ 1N//tN))k;>O defines a decreasing 
sequence of conic closed analytic subsets of U, hence is locally stationary. 
From this it follows that IR (M, V) is a conic closed analytic subset of 
D and that, for any point p of D, there are an open neighborhood U of 
p and a coherent Iff x(O)lu-sub-Module L of Mlu such that Iff xL=Mlu and 
IR(M, V)n U=Supp(/vL/L). Furthermore, we have 

Proposition 1.3. With the notations as above, IR (M, V) is a conic 
involutive closed analytic subset of D contained in Supp (M). 

In order to prove that IR (M, V) is involutive, we recall an unpublished 
result of O. Gabber concerning the extension of coherent Iff AO) lo-sub
Modules of M. 

Theorem 1.4 (0. Gabber). Let M be a coherent Iffxlo-Module and L 
a coherent Iff x(O) lo-sub-Module of M. Let Z be a conic closed analytic sub
set of D andj the inclusion mapping D\Z=---+D. Assume that Z does not 
contain any non-empty conic involutive analytic subset. Then the sub-Module 

of M is coherent over Iff x(O) 10' 

This theorem is reduced to a result in O. Gabber [3]. 
We will explain here how one can derive Proposition 1.3 from Theorem 

1.4. Setting Z = IR (M, V), we prove by contradiction that Z is involu
tive. Suppose that Z is not involutive. Then, replacing D by an open 
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subset of Q, we are faced with the following situation: 
1) Z =1= if; and M has a coherent is' x(O) la-sub-Module L such that 
is'xL=M and Z=Supp(/vL/L). 
2) There are holomorphic functions f and g defined on Q such that 
flz=glz=O and {j, g}(p) =1= 0 for any p in Q. 

The condition 2) implies that Z cannot contain any non-empty involutive 
subset. Hence, by Theorem 1.4, we find that L' =j*j-l(L) n M is coherent 
over is' xCO)la. On the other hand, from the condition 1), it follows that 
is' xL' =M and / vL' =L'. This shows that M has R.S. along V in Q, 
hence Z = if; , which contradicts the hypothesis that Z is not involutive. 

Remark 1.5. In the case where V=if;, one has IR(M, V)=Supp(M). 
Proposition 1.3 thus implies that the support of a coherent is' x la-Module 
is an involutive analytic set. 

From now on, our attention will be directed to holonomic systems. 
As to the regular singularity of a holonomic is' x la-Module, we have 

Theorem 1.6. Let M be a holonomic is' x la-Module with A = Supp(M). 
Then the following four conditions are equivalent: 

i) M has R.S. along A. 
ii) M has R.S. along any conic involutive analytic set V containing A. 

iii) M has R.S. along some conic Lagrangean analytic set A' containing 
A. 

iv) M has R.S. along A in an open neighborhood of a dense open sub
set of A. 

The crucial point of Theorem 1.6 lies in the implication iv)=}i), which 
is readily a consequence of Proposition 1.3. In fact, any Lagrangean 
analytic set cannot contain a non-empty nowhere dense involutive analytic 
subset. Thus we arrive at 

Definition 1.7. A holonomic is' x la-Module M is called a regular 
holonomic is' x la-Module if it has R.S. along Supp (M). 

Remark 1.8. The above definition of a regular holonomic is' x la
Module is different from Definition 1.1.16 of M. Kashiwara and T. Kawai 
[9]. In fact, the condition iv) of Theorem 1.6 is adopted there to define a 
"holonomic is' x la-Module with R.S.". In the context of [9], the implica
tion iv)=}i) is proved as a corollary to Theorem 5.1.6 which asserts that 
any holonomic is' x la-Module M with R.S. has a globally defined coherent 
is' xCO)la-sub-Module L such that is'xL=M and / vL=L. 

Definition 1.9. A holonomic E1x-Module M is called a regular 
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holonomic ~ x-Module if its micro10calization tC x@'-'(.!iX) ,,-1(M) Ifox is a 
regular ho10nomic tC xlf*x-Modu1e. 

Now we try to paraphrase Definition 1.9 into an expression proper 
for ~x-Modu1es. Let M be a coherent ~x-Modu1e. Then an increasing 
sequence (M")"EZ of coherent @x-sub-Modu1es of M is called a goodfiltra
tion if the following conditions are satisfied: 

1) U" M,,=M. 2) M,,=O for k~O. 
3) ~x(m)M"cM"+m for k E Z and mEN. 
4) For k~O, ~X(m)Mk=Mk+m(m EN). 

The following theorem plays as a dictionary for our purpose. 

Theorem 1.10. Let M be a coherent ~x-Module and M its micro
localization tC x@'-'(.!iXJ ,,-l(M) If-x. Denote by sp the canonical homomorph
ism M~n-*(M) or n--l(M)~M. 
a) For a good filtration (M")"EZ of M, define a sub-Module L of M by 

Then L is a coherent tCxCO)lf*x-sub-Module of M with tCxL=M. Further
more, one has 

1) M,,/M,,_1:::::;.n-*(L(k)/L(k-1)) for k~O and 
2) M,,=Sp-l(fciL(k)) for k~O, 

where L(k)=tC x(k)L for k E Z. 
b) Conversely, let L be a coherent tC xeO) Ifox-sub-Module of M with tC xL= 
M. Set M,,=sp-l(fc*(L(k))for k E Z. Then (Mk)"EZ defines a goodfiltra
tion of M, leaving the condition that M" = 0 for k <{ 0 out of consideration. 

(Theorem 1.10 is essentially proved in [8], Lemma 4.1.3.) 
By virtue of Theorem 1.10, one can show 

Corollary 1.11. Let M be a holonomic ~x-Module and A a conic 
Lagrangean analytic subset of T* X containing the characteristic variety 
Ch (M) of M. Then the following conditions are equivalent: 

i) M is a regular holonomic ~x-Module. 
ii) Locally on X, M has a good filtration (M")"EZ such that, for any 

operator P in ~x(m) (m E N) satisfying <1m(P)IA=O, one has PM"C 
Mk+m_1for all k E Z. 

It should be noted here that, for any Lagrangean analytic set A of T* X, 
one has 
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on t*X. 

Remark 1.12. By Theorem 5.1.6 [9] combined with Theorem 1.10, 
one knows that any regular holonomic !?& x-Module M has a good filtration 
(Mk)"EZ defined globally on X such that, if the symbol Clm(P) of an operator 
Pin !?&x(m)(m EN) vanishes on Ch (M), then PMkCMk+m_dor all k E Z. 

§ 2. Regular holonomic !?& x-Module and perverse complexes 

As we have seen in Section 1, a regular holonomic !?'&x-Module can be 
defined as follows: 

Definition 2.1. Let M be a holonomic !?& x-Module with characteristic 
variety A = Ch (M) c T* X. Then M is called a regular holonomic !?& x
Module if, locally on X, M has a good filtration (Mk)k EZ with the property 

As a matter of fact, it is known that any regular holonomic !?& x-Module M 
has a globally defined good filtration (Mk)kEZ with the above property (*). 
(Remark 1.12.) 

We denote by RH (!?& x) the category of regular holonomic!?& x-Modules. 
For an exact sequence 

O~M'~M~M"~O 

of holonomic !?& x-Modules, M is regular holonomic if and only if so are 
M' and Mil. Recall that, for a holonomic !?'&x-Module M, the dual system 
M* of M is defined by 

M*=rffxt~x(M, !?&x) ® (QUIO(-I), 

@x 

where n=dimX, and that one has M::::;M**. Then M is regular holo
nomic if and only if so is the dual M*. Thus we obtain an exact functor 
*: RH (!?&x)o::::;RH (!?&x). (For a category Cff', Cff'0 denotes the opposed 
category of Cff'.) 

Examples 2.2. a) Let X be an open subset of C, containing the 
origin, with canonical coordinate x. Let P = L;i=o a/x)Dk be an ordinary 
differential operator such that am(x):;t=O for x:;t=O. Then the !?'&x-Module 
!?&x/!?&xP is regular holonomic if and only if m-vm~j-Vj for O~j~m, 
where Vj stands for the order of zero of aj(x) at x=O. 
b) Let X be an open subset of cn with canonical coordinate system x = 
(Xl> ... , x n). Consider an integrable differential system for the vector "it = 
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t(u!> .. " um) of unknown functions 

{XiD x,~ = Ai(X)~ 
Dxp=Bix)u 

(i~l) 

U>l) , 

where O~)~n and Ai(X), Blx) E M (m, @x(X)). Then the ~x-Module 
associated with the above system is a regular holonomic ~x-Module. 
c) The De Rham system @x is a regular holonomic ~x-Module. If Yis 
a submanifold of X, the system &6 XIY of multiple layers with support in Y 
is a regular holonomic ~x-Module. Note that one has @x=@; and &6nx 

=&6;IX' 
d) If f is a holomorphic function defined on X, ~ X fa is a regular holo
nomic ~ x-Module for any a E C. 

This notion of regular singularity gives a natural extension of that of 
P. De1igne [2] to holonomic ~x-Modules. To see this, we quote a com
parison theorem concerning the local cohomology of ~x-Modules. (For 
the algebraic local cohomology of a ~ x-Module, see [5] or [12].) 

Theorem 2.3. Let Y be a closed analytic subset of X and set Z = Y or 
X\Y. 
a) If M is a regular holonomic ~x-Module, then the algebraic local coho
mology sheaves YrEzJ(M) U?30) are regular holonomic ~x-Modules. 
b) If M and N are regular holonomic ~x-Modules, then one has a natural 
isomorphism 

RYromgx(M, Rr[ziN))~RrzRYrom9xCM, N) 

in the derived category D (C x). 

Theorem (2.3.b) is a generalization of the comparison theorem of A. 
Grothendieck and P. Deligne to regular holonomic ~x-Modules. (The 
assertion a) is proved in [9], Theorem 5.4.1. The assertion b) can be 
proved by combining Theorem 6.1.1 and Theorem 5.4.1 of [9].) In what 
follows, we denote by D~,,(~ x) the full subcategory ofD(~ x) whose objects 
are the cohomologically bounded complexes with regular holonomic coho
mologies. 

Here we recall the notion of a constructible C x-Module. 

Definition 2.4. A C x"Module F is said to be constructible if there 
exists a decreasing sequence 
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of closed analytic subsets of X such that 

1) n j;'oXj=szI. 
2) For eachj~O, the restriction Flxj\xj+1 of F is a local system on 

Xj\Xj+l' 

Hereafter, by a "local system on X", we mean a locally constant C x

Module of finite rank. We denote by D~(Cx) the full subcategory of 
D(Cx) whose objects are the cohomologically bounded complexes with 
constructible cohomologies. For each complex F in D~(Cx), we define 
the dual F* of F by 

Then one knows that F* is an object of D~ (Cx) and that F :::::;F** (due 
to J.-L. Verdier). 

For a complex M' in D~h(~X)' we define ~!!llx(M")=R.7fom"'x«(!)XoM") 
and Sf'olx(M')=R.7fom",xCM', (!)x). Then ~!!llx(M") and Sf'olx(M") are 
objects of D~(Cx) (M. Kashiwara [4]). Thus we obtain the two functors 

~!!llx: D~h(~X)---+D~(Cx) and Sf'olx: D~h(~X)o---+Dg(Cx). 

These two functors are connected by the relation Sf'olx(M")=~!!llx(M"*), 
so we pay our attention mainly to ~!!llx' 

Proposition 2.5. a) ~!!llx(M"*)=~!!llxCM")* for any M' in D~h(~X)' 
b) For a closed analytic subset Y of X, set Z = Y or X\ Y. Then one has 

for any M' in D~h(~ x). 

(The assertion a) is a version of Proposition 1.4.6, [9].) 

has 
Example 2.6. a) For any submanifold Y of X of codimension I, one 

~!!ll x(:!J YIX) =~!!ll x(Rr[y]«(!) x))[l] = Rr y~!!ll x«(!) x)[l] 

=Rr y(Cx)[l] = Cy[ -I]. 

b) Let Y be a hypersurface of X defined by a holomorphic function f and 
j the inclusion mapping X\Y<:::-~X. Then, one has ~!!llx«(!)x[f-l])= 

Rj*j-l(CX) and ~!!llx«(!)Af-l]*)=~!!llxC(!)x[f-l])*=j!j-l(Cx). In the case 
where X is the complex n-space cn with canonical coordinate system X= 
(x), .. " xn) and f(x) =X1 • , • Xr (1 <;1' <;n), the cohomology sheaves of the 
complex F=~!!llxC(!)X[j-l]) are computed as follows: 
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Now it is natural to ask if, for a: given complex F" in D~(Cx), there 
exists M' in D~h(~X) such that ~&lx(M·):::::;F". (So-called the Riemann
Hilbert problem.) In this direction, we give first 

Pr()position 2.7. For any M' and N' in D~h(~X)' one has 

R.?If'omgAM', N·)~R.?If'omcA~&lX<M·), ~&lX<N·». 

(Proposition 2.7 follows from Theorem 6.1.1 and Theorem 1.4.9 of [9)). 
This proposition implies that the functor ~fJ£x: D~h(~X)~D~(Cx) is fully 
faithful. Furthermore, 

Theorem 2.8 (M. Kashiwara [7] and Z. Mebkhout [11)). The De Rham 
functor ~fJ£x gives the equivalence of categories 

Theorem 2.8 can be regarded as an affirmative answer to the Riemann
Hilbert problem for constructible C x-Modules. The above theorem can 
be proved by reducing it to the following fact: Let Y be a hypersurface 
with normal crossings in X and Fthe constructible Cx-Module obtained 
as the extension by zero of a local system on X\ Y. Then there exists a 
regular holonomic ~x-Module M such that ~fJ£x(M):::::;F. In the course 
of reduction, we use Hironaka's desingularization theorem and the stability 
of regular holonomic systems under the integration along the fibres of a 
proper holomorphic mapping (M. Kashiwara [7], Theorem 8.1). In [7], 
this theorem is proved by constructing the inverse functor of ~fJ£x' 

The category RH(~ x) of regular holonomic ~ x-Modules is identified 
with the full subcategory of D~h(~X) consisting of all complexes M' with 
.?If'j(M·)=0 for I=I=O. Then how can one characterize such a complex F" 
in Dg(Cx) that is expressed as the De Rham complex ~fJ£x(M) of a regular 
holonomic ~x-Module M? 

Definition 2.9. An object F" of D~(C x) is called a perverse complex 
if it satisfies the following conditions: 

1) codim Supp (.?If'j(F·»~j for allj E Z. 
1*) codim Supp (.?If'j(F"*»~j for allj E Z. 

We denote by Perv(Cx) the full subsategory ofD~(Cx) whose objects are 
the perverse complexes on X. Then Theorem 2.8 can be refined as follows: 
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Theorem 2.10. The De Rham functor !?fi!!lt x induces the equivalence of 
categories 

Let us show here that, if M is a regular holonomic !?fi x-Module, then 
the De Rham complex F =!?fi!!lt xCM) of M is a perverse complex. Since 
F'*=!?fi!!ltx(M*), we have only to show that the condition 1) is satisfied. 
For a fixedj, set Y=Supp (yC'J(F» and I=codim y, So as to prove r~j, 
one can replace X by an open neighborhood of a generic point of Y so 
that Y is smooth of co dimension I and that all yC'k(F) (k E Z) are locally 
constant on y, (It is possible since yC'k(F") (k E Z) are all constructible.) 
In this setting, we compute the local cohomology sheaves Rk T y(F"*) 
(k E Z) in two manners. Since F*=RyC'ontpx(M, @x), one has RTy(F'*) 
=RyC'ontpiM, RTcY](@x»=RyC'ontpx(M, &#Ylx)[ -I], hence RkT y(F"*)=O 
for k<l. On the other hand, one has RT y(F*)=RyC'ontciF~, C x), Since 
yC'i(F") (i E Z) are alllocally constant on Y, one has <S'xt2x(yC'i(F)y, Cx)=O 
for k=i=21, Hence, RkTy(F*)=<S'xt'iix(yC'U-k(F)y, Cx) for all k E Z. Here 
one has R 2l -JTy(F*)=i=O since £J(F')IY has positive rank. Comparing 
this with the above computation, we have 2/-j ~ I, i.e., I ~ j, as desired, 

§ 3. Minimal extension of a regular holonomic !?fix-Module. 

Let Y be a closed analytic subset of X and j the inclusion mapping 
X\Y~Y, Then we obtain the functor j-I: RH (!?fix)-+RH (!?fix\Y) ofre
striction. Let us begin with a characterization, in terms of the De Rham 
complex, of a regular holonomic !?fix\y-Module which can be extended to 
a'regular holonomic !?fix-module. 

Proposition 3.1. For a regular holonomic !?fi x\y-Module N, set G' = 

!?fi!!lt x\y(N). Then the following conditions are equivalent: 
i) There is a regular holonomic !?fix-Module M such thatrl(M)~N, 
i') There is a holonomic !?fix-Module M such thatrl(M)~N. 
ii) There is a perverse complex F on X such that j-I(F)~G' in 

Perv (C X\y), 
ii') There is an object F" ofD~(Cx) such thatj-I(F)::::;G' in Dg(Cx\y), 

ii") The extensionjl(G') by zero of G' has constructible cohomology 
sheaves, i.e.,j/G') E Dg(Cx). 

We denote by RHext(!?fi X\y) (resp. Pervext(C x\Y» the full subcategory 
of RH(!?fi x\Y) (resp. Perv (C x\Y» consisting of all objects extendable with 
respect to j in the sense of Proposition 3,1. Then the De Rham functor 
I2!!lt X\Y induces the equivalence of categories RHext (!?fi X\Y )::::;Pervext (C x\y). 
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Note that any local system on X\ Y is extendable with respect to j. 

Theorem 3.2. For any extendable regular holonomic f?2 X\Y- Module N, 
there is a regular holonomic f?2 x-Module M with the properties 

1) j-l(M)::::;.N and 2) Ty(M)=Ty(M*)=O. 
Moreover, such an M is determined uniquely up to isomorphism. 

Note first that, for any coherent f?2 x-Module M, one has T y( M) = 
T[Y](M). Before proving Theorem 3.2, we propose 

Lemma 3.3. Let M' and Mil be regular holonomic f?2x-Modules such 
that Ty(M'*)=O and Ty(M")=O. Then one has 

Proof Since T[Y](M")=O, one has an exact sequence 

O--+MI--+T[x\YiMI)--+J'fhiM")--+O. 

Since Supp (YC'EY](M"))C Y and T y(M'*)=O, one has 

Hence, by applying YC' om"'x(M', .) to the above exact sequence, one has 
an isomorphism 

On the other hand, one has 

YC'om"'x(M', T[x\yJ(M"))=j*j-1YC'om",x(M', Mil) 

= j*Jlf om"'X\y(j-lM',j -IM") 

by Theorem 2.3. Thus one obtains the isomorphism of Lemma. Q.E.D. 

Proof of Theorem 3.2. For the given N in RHext(f?2x \Y), take an M' 
in RH (f?2x) such thatj-l(M')::::;.N. Then Mil =M'jT y(M') has the prop
erty Ty(M")=O. Again, set M=(MI*jTy(M"*))*. Then Mis a regular 
holonomic f?2x -Module with the desired property. Uniqueness of such an 
M follows from Lemma 3.3 immediately. Q.E.D. 

Definition 3.4. F or an extendable regular holonomic f?2 X\y-Module 
N, the regular holonomic f?2x-Module M determined by Theorem 3.2 is 
called the minimal extension of N and denoted by "N. 

By means of Lemma 3.3, we obtain the functor": RHext(f?2 X\y)-+ 
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RH(.~x) of minimal extension, which gives the equivalence between 
RHext(~x\Y) and the full subcategory of RH(~x) consisting of all regular 
holonomic ~x-Modules M with the property r y(M)=r y(M*)=O. 
Furthermore, by the equivalence of categories of Theorem 2.10, we obtain 
the functor of minimal extension ": Pervext (c x\Y)-+ Perv (C x) for extendable 
perverse complexes on X\ Y. It should be noted that the minimal extention 
is compatible with the dualizing operation: 

(" N)* = "(N*) for any N E RHext (~X\y) 
and ("G')* = "(G'*) for any G' E Pervext(Cx\Y)' 

(This can be shown easily by Theorem 3.2.) 
By an argument similar to that of Theorem 2.10, one can show 

Theorem 3.5. For an extendable perverse complex G' on X\Y, the 
minimal extension r = ~G' is characterized as a unique perverse complex on 
X such that 

1) F 1(F·)=;G·. 
2) co dim yn Supp (J'fJ(F")) > j for all j E Z. 
2*) codim yn Supp (J'fJ(F"*)) >j for all j E Z. 

Recall that, if Y is an l-codimensional sub manifold of X, then the 
regular holonomic ~x-Module £6'Ylx=J'f/y](@x) has the following prop
erties: 

1) £6'flx=~Ylx. 
2) For any point y of Y, the stalk ~YlX,y is a simple ~x,y-module. 

Now we propose to apply the above arguments to defining "£6'YlX" for a 
closed analytic subset Y of X. 

Definition 3.6. Let Y be a closed analytic subset of X, purely of 
codimension I. Set Y'= Y\Ysing and X'=X\Ysing ' Then we denote by 
2'(Y, X) (or "£6'Ylx) the minimal extension "£6'Y'IX' of £6'Y'lX' with respect 
to the inclusion mapping X'~X. 

Since the formation of minimal extensions is compatible with the 
dualizing operation, one has immediately 2'( Y, X)* = 2'( Y, X). 

Proposition 3.7. If Y is irreducible at a point y of Y, then the stalk 
2'(Y, X)y is a simple ~ x,y-module, 

Proof We denote 2' for 2'(Y, X). Fix a ~x,y-submodule of 2'y. 
Then, one can find a ~ x-sub-Module M of 2', defined in an open neigh
borhood of y, whose stalk My at y coincides with the given submodule of 
2' y' On the assumption that Y is irreducible at y, one can replace X by 
an open neighborhood of y so that Y' = Y\ Ys1ng is connected and that M 



220 M. Noumi 

is defined on X. Note that, if z is a smooth point of Y, then one has 
either M.=O or M.=fJinr,.=!l!.. So one has either Mly,=O or Mly,= 
fJiY'l.K,=!l!ly" since Y' is connected. If Mly,=O, then one has Me 
r YSlnlfE), hence M = O. If Mly, = fE Iy" then one has (fE / M)* e r YSinifE*), 
hence (!l!/M) * =0, i.e., M=!l!. Q.E.D. 

Remark 3.8. Recall that, if Y is smooth, one has 9))pgx(fJiylx)= 
C y [ -l]. In the setting of Definition 3.6, the De Rham complex F" = 
9))pgx(!l!(Y, X» gives an extension of CY'[ -l] to a self-dual perverse com
plex on X: F"ly,=CY'[-I] and F·*=F". Shifted suitably, the complex 
F' = 9))pg x(fE( Y, X» coincides with 7r y of Deligne, Goresky and Mac Pher
son. (See [1], [6].) 

At the end of this note, we include a basic example of !l!(Y, X) for a 
hypersurface Y with an isolated singularity. 

Let X be the complex n-space cn with canonical coordinate x = 
(Xl> •• " xn) and Y the hypersurface defined by I = x~ + ... + oX!. Assum
ing that n;;;':3, we set Y'= Y\{O} and X'=X\{O}. Note first that M: = 
JIl'~Y]«(!)x)=(!)x[f-I]/(!)X gives a regular holonomic extension of fJiY'lx', Since 
r[o](M)=Jf1o]«(!)x)=O, the minimal extension !l!=!l!(Y, X) can be realized 
by !l! = (M* / r[o](M*»*. In other words, !l! is the minimal 9)) x-sub-Module 
of M satisfying Supp (M/!l!)e{Q}. Let us denote by u the residue class of 
I-I in M=(!)xf/-I]/(!)x. Then one has !l!e9))xu since Supp (M/9))xu)e{O}. 

Claim. On the condition n~3, one has fE=9))xueM. 

Proof The assertion is equivalent to JIl' om<»xC9)) xU, 9)) xu/!l!) = O. 
Note that 9)) xu/!l! is isomorphic to a copy of fJi{O} IX since Supp (.~xu/!l!)e 
{O}. So it is enough to show that JIl'om<»xC9))xu, fJi{O}IX)=O. Here we have 

For the operator P=L:~=lxiDx;+2, we have PI-I=O. However, any 
non-zero section cp of fJi{OIIX cannot satisfy the equation Pcp=O as can be 
directly checked by the relation 

t xiDx;o<a) (x)== - t (ai+ l)o<a)(x), 
i=l i=l 

Q.E.D. 

Thus we obtain an isomorphism 

The structure of the syste~i !l! = fE( Y, X) varies according to the parity 
ofn. 
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Case where n is odd: 
a) 2=P)xu=M. The ideal f is generated by xtDxj-xjDx,(i<j), 

L:~=lXiDXt+2 and! 
b) Ch (2)= TFXU T~}X, where TFX stands for the closure of Tf,X 

in T*X. 
c) P)9f!x(2)=Cy[ -1]. 

Case where n is even: 
a) 2=P) xu~M. The ideal f is generated by xiDxj-xjDxt (i<j), 

L:~=lxiDxi+2,fand j(n-2)/2, where j=L:~=lD~w 
b) Ch(2)=TfX. 

{
CY 

c) y'f'j(P)9f!A2))= ~{O} 
U=I) 
U=n-l) 
U=I= 1, n-l). 
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