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Regular Holonomic Systems and their
Minimal Extensions I

Masatoshi Noumi

This note, together with J. Sekiguchi [13], is intended to be an intro-
duction to Professor Kashiwara’s lectures at RIMS in 1981. At that time,
he lectured on three topics as follows:

(1) Gabber’s theorem on the involutiveness of the characteristic variety
of a coherent D y-Module.

(ii) Some fundamental results on regular holonomic systems (holonomic
systems with regular singularities).

(iii) An application of regular holonomic systems to the representation
theory of a semisimple Lie algebra.

Based on his lectures, we will make here a survey of (i) and (ii) above. As
to (iii), the reader is referred to J. Sekiguchi [13].

Throughout this note, X stands for a complex manifold. We denote
by T*X the cotangent bundle of X with canonical projection n: T*X—X.
If Y is a submanifold of X, the conormal bundle of Y in X will be denoted
by T#X. We also use the notations 7*X=T*X\T%X and #=r|fsy. As
usual, we denote by 2, the Ring over X of linear differential operators of
finite order and by & the Ring over T*X of microdifferential operators
of finite order, respectively. In Section 2 and Section 3, we will freely use
the terminology of derived categories. For a Ring 7 on X, we denote by
D(7) the derived category of the category of (left) .«/-Modules.

§1. Regular holonomic systems

Let 2 be an open subset of T*X=T*X\T$X and V a conic involutive
closed analytic subset of 2. Then we define Z, to be the sub-Module of
& 5(1)|, consisting of all microdifferential operators P whose symbols ¢,(P)
vanish on V. We denote by &7/, = U .., Z% the sub-Algebra of x|, gen-
erated by #,. Note that ¢, is a bilaterally coherent & ;(0)|,-Module.

Proposition 1.1. For a coherent & x|,-Module M, the following condi-
tions are equivalent:
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i) For any point p of 8, there exist an open neighborhood U of p and
a coherent & x(0)|y-sub-Module L of M|y such that & yL=M|; and ¢ ,L=L.

ii) For any open subset U of £ and for any coherent & x(0)|y-sub-
Module N of M|y, the sub-Module o/ ,N of M|y is coherent over & (0)|,.

Definition 1.2. A coherent &4|,-Module M is said to have R.S.
(regular singularities) along V in £ if it satisfies the equivalent conditions
of Proposition 1.1.

Let M be a coherent &¢|p-Module. Then we denote by IR (M, V)
the set of all points p of £ such that M does rot have R.S. along ¥ in any
neighborhood of p. Recall that, for any point p in {2, there are an open
neighborhood U of p and a coherent &5(0)|,;-sub-Module N of M|, such
that &xN=M/|,. Then, by Proposition 1.1, one can show that

IR (M, V)N U=/1Supp (F7"'N|FTN)

(#5=¢£4(0)],). Note that (Supp (£F%'N/ #4N)),, defines a decreasing
sequence of conic closed analytic subsets of U, hence is locally stationary.
From this it follows that IR (M, V) is a conic closed analytic subset of
£ and that, for any point p of £, there are an open neighborhood U of
p and a coherent & x(0)|,-sub-Module L of M|, such that &,L= M|, and
IR (M, VYN U=Supp (#,L/L). Furthermore, we have

Proposition 1.3. With the notations as above, IR (M, V) is a conic
involutive closed analytic subset of £2 contained in Supp (M).

In order to prove that IR (M, V) is involutive, we recall an unpublished
result of O. Gabber concerning the extension of coherent & ;(0)|,-sub-
Modules of M.

Theorem 1.4 (O. Gabber). Let M be a coherent & |,-Module and L
a coherent & y(0)|g-sub-Module of M. Let Z be a conic closed analytic sub-
set of 2 and j the inclusion mapping $20\Z=—>$. Assume that Z does not
contain any non-empty conic involutive analytic subset. Then the sub-Module

L'=j j  (LNM={ue M; ulg, & Lo}
of M is coherent over & x(0)l,.

This theorem is reduced to a result in O. Gabber [3].

We will explain here how one can derive Proposition 1.3 from Theorem
1.4. Setting Z=IR (M, V'), we prove by contradiction that Z is involu-
tive. Suppose that Z is not involutive. Then, replacing £ by an open
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subset of £, we are faced with the following situation:
1) Z+#¢ and M has a coherent &5(0)|,-sub-Module L such that
ExL=M and Z=Supp (£ L/L).
2) There are holomorphic functions f and g defined on £ such that
flz=¢gl,=0 and {f, g}(p)#0 for any p in 2.
The condition 2) implies that Z cannot contain any non-empty involutive
subset. Hence, by Theorem 1.4, we find that L’ =j, j~*(L) N M is coherent
over &5(0)],. On the other hand, from the condition 1), it follows that
Exl’=M and #,L’=L'. This shows that M has R.S. along V in 2,
hence Z=¢, which contradicts the hypothesis that Z is not involutive.

Remark 1.5. In the case where V=g, one has IR (M, V)=Supp(M).
Proposition 1.3 thus implies that the support of a coherent &y|,-Module
is an involutive analytic set.

From now on, our attention will be directed to holonomic systems.
As to the regular singularity of a holonomic & x|,-Module, we have

Theorem 1.6. Let M be a holonomic & y|,-Module with A= Supp(M).
Then the following four conditions are equivalent:
i) M has R.S. along A.

i) M has R.S. along any conic involutive analytic set V containing A.

iil) M has R.S. along some conic Lagrangean analytic set A’ containing
A.

iv) M has R.S. along /A in an open neighborhood of a dense open sub-
set of .

The crucial point of Theorem 1.6 lies in the implication iv)=>i), which
is readily a consequence of Proposition 1.3. In fact, any Lagrangean
analytic set cannot contain a non-empty nowhere dense involutive analytic
subset. Thus we arrive at

Definition 1.7. A holonomic &x|,-Module M is called a regular
holonomic & x|,-Module if it has R.S. along Supp (M).

Remark 1.8. The above definition of a regular holonomic &y|,-
Module is different from Definition 1.1.16 of M. Kashiwara and T. Kawai
[9]. In fact, the condition iv) of Theorem 1.6 is adopted there to define a
“holonomic & |,-Module with R.S.”. In the context of [9], the implica-
tion iv)=>i) is proved as a corollary to Theorem 5.1.6 which asserts that
any holonomic &y|,-Module M with R.S. has a globally defined coherent
& x(0)|o-sub-Module L such that £y L=M and ¢, L=L.

Definition 1.9. A holonomic 2;-Module M is called a regular
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holonomic 9 x-Module if its microlocalization €5 ®,—1pp 7 '(M)lex is a
regular holonomic &y |+x-Module.

Now we try to paraphrase Definition 1.9 into an expression proper
for Z,-Modules. Let M be a coherent & -Module. Then an increasing
sequence (M;),cz of coherent 0x-sub-Modules of M is called a good filtra-
tion if the following conditions are satisfied:

1) UpgM,=M. 2) M,=0 for kLO0.

3 2,mM,CM,,, for keZ and me N.

4) For k>0, 2,(mM,=M,,  (meN).

The following theorem plays as a dictionary for our purpose.

Theorem 1.10. Let M be a coherent 9 y-Module and M its micro-
localization &3 @ ,—1(05, @~ (M )|3s5. Denote by sp the canonical homomorph-
ism M—# (M) or & (M)—M. ~
a) For a good filtration (M ).z of M, define a sub-Module L of M by

L=2, &x(—k)sp(~'(M).

Then L is a coherent & 4(0)|s+x-sub-Module of M with &xL=M. Further-
more, one has

) M /M. 52 Lk)/Lk—1) for k>0 ard

2) My=sp~(#(L(k)) for k>0,
where L(k)=& (k)L for k ¢ Z.
b) Conversely, let L be a coherent & x(0)|3+z-sub-Module of M with & L=
M. Set M,=sp~"(#,(L(k)) for k ¢ Z. Then (M), defines a good filtra-
tion of M, leaving the condition that M,=0 for k€0 out of consideration.

(Theorem 1.10 is essentially proved in [8], Lemma 4.1.3.)
By virtue of Theorem 1.10, one can show

Corollary 1.11. Let M be a holonomic @ y-Module and A a conic
Lagrangean analytic subset of T*X containing the characteristic variety
Ch (M) of M. Then the following conditions are equivalent:

1) M is a regular holonomic 2 y-Module.

i) Locally on X, M has a good filtration (M), .5 such that, for any

operator P in @ (m) (m € N) satisfying ¢,,(P)|,=0, one has PM,C
Mmooy forallke Z.

It should be noted here that, for any Lagrangean analytic set 4 of T*X,
one has

Fa= 2 &x(1—m)P

Peox(m),om(P)4=0
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on T*X.

Remark 1.12. By Theorem 5.1.6 [9] combined with Theorem 1.10,
one knows that any regular holonomic 2 y-Module M has a good filtration
(M )y ez defined globally on X such that, if the symbol ¢,,(P) of an operator
Pin @4(m) (m € N) vanishes on Ch (M), then PM,C M, ., _,forallk e Z.

§2. Regular holonomic 2 ,-Module and perverse complexes

As we have seen in Section 1, a regular holonomic 2 ,-Module can be
defined as follows:

Definition 2.1. Let M be a holonomic 2 y-Module with characteristic
variety A=Ch(M)YCT*X. Then M is called a regular holonomic & -
Module if, locally on X, M has a good filtration (M), with the property

(%) PeDym), o.(P)=0=—=PM,CM,., , (keZ).

As a matter of fact, it is known that any regular holonomic 2 ,-Module M
has a globally defined good filtration (M), With the above property (x).
(Remark 1.12.)

We denote by RH (2 ) the category of regular holonomic & ,-Modules.
For an exact sequence

0—> M’ M—M" 0

of holonomic Zy-Modules, M is regular holonomic if and only if so are
M’ and M". Recall that, for a holonomic & y-Module M, the dual system
M* of M is defined by

M*=8xt5, (M, 25) ® (25)°,
ox

where n=dim X, and that one has M= M**. Then M is regular holo-
nomic if and only if so is the dual M*. Thus we obtain an exact functor
*: RH(@x)°3RH(Z2,). (For a category ¥, ¥° denotes the opposed
category of ¢.)

Examples 2.2. a) Let X be an open subset of C, containing the
origin, with canonical coordinate x. Let P=> 7, a,(x)D} be an ordinary
differential operator such that a,(x)#0 for x50. Then the 2 ,-Module
D /D 5P is regular holonomic if and only if m~—y,>j—v; for 0 j<<m,
where v; stands for the order of zero of a,(x) at x=0.

b) Let X be an open subset of C* with canonical coordinate system x=
(x;, -+ -, x,). Consider an integrable differential system for the vector i =
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“u,, -+ -, u,) of unknown functions

{XiD“ﬁZAi(X)ﬁ (i<h
D,u=Bxu (>,

where 0<{/<n and A4,(x), By(x)e M (m, 04(X)). Then the @ ,-Module
associated with the above system is a regular holonomic 2 -Module.

¢) The De Rham system @, is a regular holonomic 2 -Module. If Yis
a submanifold of X, the system %, of multiple layers with support in ¥
is a regular holonomic 9 -Module. Note that one has 0, =0% and %y »
=%z

d) If fis a holomorphic function defined on X, &,/ is a regular holo-
nomic 2 ,-Module for any « € C.

This notion of regular singularity gives a natural extension of that of
P. Deligne [2] to holonomic Z,-Modules. To see this, we quote a com-
parison theorem concerning the local cohomology of Z¢-Modules. (For
the algebraic local cohomology of a 2 -Module, see [5] or [12].)

Theorem 2.3. Let Y be a closed analytic subset of X and set Z=Y or
X\Y.
a) If M is a regular holonomic 9 y-Module, then the algebraic local coho-
mology sheaves H{ (M) (j=0) are regular holonomic 9 - Modules.
b) If M and N are regular holonomic @ - Modules, then one has a natural
isomorphism

R #omy, (M, Rt (N)-—">RI ;RH om, (M, N)
in the derived category D (Cy).

Theorem (2.3.b) is a generalization of the comparison theorem of A.
Grothendieck and P. Deligne to regular holonomic Z;-Modules. (The
assertion a) is proved in [9], Theorem 5.4.1. The assertion b) can be
proved by combining Theorem 6.1.1 and Theorem 5.4.1 of [9].) In what
follows, we denote by D?,(2) the full subcategory of D(Z ) whose objects
are the cohomologically bounded complexes with regular holonomic coho-
mologies.

Here we recall the notion of a constructible Cx-Module.

Definition 2.4. A C,-Module F is said to be constructible if there
exists a decreasing sequence

(Xj)jEN: X:XODX1DXZD oo
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of closed analytic subsets of X such that

D NyseX;=9¢.
2) For each j>0, the restriction F|y x,,, of F is a local system on
Xj\Xj+1'

Hereafter, by a “local system on X, we mean a locally constant C -
Module of finite rank. We denote by D2(Cy) the full subcategory of
D(Cy) whose objects are the cohomologically bounded complexes with
constructible cohomologies. For each complex F* in D?(C,), we define
the dual F'* of F" by

F*=R Homg, (F, Cy).

Then one knows that F'* is an object of D! (Cy) and that F'5 F'** (due
to J.-L. Verdier).

For a complex M"in D!,(2 ), we define DX (M )=RH om, (Ox, M)
and Lol (M )=RH omy (M', Ox). Then DA (M") and Lol (M') are
objects of D2(Cy) (M. Kashiwara [4]). Thus we obtain the two functors

DRy: Di(P5)—DUCyx) and Foly: Dh(D5)°—DIUCx).

These two functors are connected by the relation Folx(M ") =D (M *),
so we pay our attention mainly to 9Z;.

Proposition 2.5. a) DX (M *)=DR(M")* for any M’ in D%(Dy).
b) For a closed analytic subset Y of X, set Z=1Y or X\Y. Then one has

DR (R (M )=RI ;DR (M")
for any M" in D}(D ).
(The assertion a) is a version of Proposition 1.4.6, [9].)

Example 2.6. a) For any submanifold Y of X of codimension /, one
has

Q'QX('%YIX)ZQQX(RF[Y](@X))U]ZRFYQ'%X(wX)[l]
:RFY(CX)[I]ch[—l]'

b) Let Y be a hypersurface of X defined by a holomorphic function f and
j the inclusion mapping X\Y=—>X. Then, one has @Z,(O.[f )=
Rjj (Cx) and DR (Ox[f 1) =DRx(Ox[f ~D*=/1j (Cx). In the case
where X is the complex n-space C” with canonical coordinate system x=
(%1, - -+, x,) and f(x)=x,- - -x, (1 <r<n), the cohomology sheaves of the
complex F' =D z(Ox] f~']) are computed as follows:
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H(F)=Cy and HF)= @ Croponrs, for j>0,

1<k <eee <Ey<T

where Y, ={x,=0}.

Now it is natural to ask if, for a given complex F* in D% Cy), there
exists M in D2(Zy) such that 2Z,(M )= F'. (So-called the Riemann-
Hilbert problem.) In this direction, we give first

Proposition 2.7. For any M" and N' in D%(Dy), one has
R#¥omy My, N)—"">RHom¢c (DR (M), DR(N")).

(Proposition 2.7 follows from Theorem 6.1.1 and Theorem 1.4.9 of [9]).
This proposition implies that the functor 2%y : D%(Z5)—DI(Cy) is fully
faithful. Furthermore,

Theorem 2.8 (M. Kashiwara [7] and Z. Mebkhout [11]). The De Rham
Junctor DRy gives the equivalence of categories

DRy : Di(D )—>DY(Cx) .

Theorem 2.8 can be regarded as an affirmative answer to the Riemann-
Hilbert problem for constructible Cy-Modules. The above theorem can
be proved by reducing it to the following fact: Let Y be a hypersurface
with normal crossings in X and F the constructible C,-Module obtained
as the extension by zero of a local system on X\Y. Then there exists a
regular holonomic 2 y-Module M such that ZZ,(M)=F. In the course
of reduction, we use Hironaka’s desingularization theorem and the stability
of regular holonomic systems under the integration along the fibres of a
proper holomorphic mapping (M. Kashiwara [7], Theorem 8.1). In [7],
this theorem is proved by constructing the inverse functor of 2%y.

The category RH(Z ;) of regular holonomic 2 ;-Modules is identified
with the full subcategory of D2.(Z ) consisting of all complexes M~ with
M )=0 for j#0. Then how can one characterize such a complex F’
in D2(Cy) that is expressed as the De Rham complex 2% (M) of a regular
holonomic 2 ;-Module M?

Definition 2.9. An object F~ of DI(Cy) is called a perverse complex
if it satisfies the following conditions:
1) codim Supp (2#/(F))>=jfor allj e Z.
1*) codim Supp (##/(F*))>jfor all j e Z.

We denote by Perv (C) the full subsategory of DY(Cy) whose objects are
the perverse complexes on X. Then Theorem 2.8 can be refined as follows:
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Theorem 2.10. The De Rham functor DRy induces the equivalence of
categories

DRy: RH(D)—>Perv(Cy) .

Let us show here that, if M is a regular holonomic 2 ;-Module, then
the De Rham complex F'=9% (M) of M is a perverse complex. Since
F*=9%,(M*), we have only to show that the condition 1) is satisfied.
For a fixed j, set Y=Supp (s#*(F")) and /=codim Y. So as to prove />,
one can replace X by an open neighborhood of a generic point of Y so
that Y is smooth of codimension / and that all #*(F") (k € Z) are locally
constant on Y. (It is possible since S#*(F) (k € Z) are all constructible.)
In this setting, we compute the local cohomology sheaves R*I ,(F'*)
(k € Z) in two manners. Since F'*=R#om, (M, Oy), one has RI',(F'*)
=RHomy (M, R 1(O))=RH omy (M, By x)—11, hence R*I",(F*)=0
for k<<I. Onthe other hand, one has RI'\(F'*)=R# om¢,(Fy, Cyx). Since
HU(F")(i e Z) are all locally constant on Y, one has &xt& (#(F)y, Cx)=0
for k=2l. Hence, R*I'((F'*)=&xty (H#**(F')y, Cy) for all k ¢ Z. Here
one has R*~II"(F'*)=0 since s#’(F’)|, has positive rank. Comparing
this with the above computation, we have 2/—j >/, i.e., [ >], as desired.

8§3. Minimal extension of a regular holonomic 2 ,-Module.

Let Y be a closed analytic subset of X and j the inclusion mapping
X\Y=—>Y. Then we obtain the functor j~': RH (25)—RH (D) of re-
striction. Let us begin with a characterization, in terms of the De Rham
complex, of a regular holonomic 2 ,-Module which can be extended to
a’regular holonomic & z-module.

Proposition 3.1. For a regular holonomic 9y y,-Module N, set G'=
DREx\y(N). Then the following conditions are equivalent:
i) There is a regular holonomic 9 y-Module M such that j~'(M)=N.
i) There is a holonomic D y-Module M such that j~(M )= N.
ii) There is a perverse complex F' on X such that j~'(F)=G" in
Perv (Cxy)-
ii") There is an object F* of D¥Cy) such that j-\(F')= G in DYCy\y)-
ii”) The extension j(G*) by zero of G' has constructible cohomology
sheaves, i.e., j(G") e DY(Cy).

We denote by RH*(Z y,y) (resp. Perv*(Cy,y)) the full subcategory
of RH(Dy.y) (resp. Perv (Cy\y)) consisting of all objects extendable with
respect to j in the sense of Proposition 3.1. Then the De Rham functor
D 5y induces the equivalence of categories RH™ (2 4\;) = Perve™ (Cp\y)-
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Note that any local system on X\Y is extendable with respect to j.

Theorem 3.2. For any extendable regular holonomic 2 y\-Module N,
there is a regular holonomic D y-Module M with the properties

D j*WM)sN and 2) ['y(M)=I,(M*)=0.
Moreover, such an M is determined uniquely up to isomorphism.

Note first that, for any coherent 2,-Module M, one has ['y(M)=
I':p(M). Before proving Theorem 3.2, we propose

Lemma 3.3. Let M’ and M"' be regular holonomic 2 y-Modules such
that I'y(M'*)=0 and I'y(M")=0. Then one has

Homg (M', M")—> jyH omg i (j 7'M, j7'M”) .
Proof. Since I';,(M’")=0, one has an exact sequence
0> M"—> T (M) —> A4 (M) —0 .
Since Supp (#1p(M"))C Y and [',(M’*)=0, one has
Homg (M, Hiy (M) =H omy (H1(M")*, M'*)=0.

Hence, by applying 5#om, (M’, .) to the above exact sequence, one has
an isomorphism

Homa (M'y M")~">H omy (M, Tpoy(M)) .
On the other hand, one has

Hoomg (M, I'tiniri(M")=jseJ " Homg, (M'y, M")
:j*’nym@X\y(j— lMla i - IM//)

by Theorem 2.3. Thus one obtains the isomorphism of Lemma. Q.E.D.

Proof of Theorem 3.2. For the given N in RH*(Zy,,), take an M’
in RH (2y) such that j~(M’)=N. Then M”=M’|I",(M’) has the prop-
erty I'y(M’)=0. Again, set M=(M"*/I",(M"*))*. Then M is aregular
holonomic Zx-Module with the desired property. Uniqueness of such an
M follows from Lemma 3.3 immediately. Q.E.D.

Definition 3.4. For an extendable regular holonomic 2 ,-Module
N, the regular holonomic Zy-Module M "determined by Theorem 3.2 is
called the minimal extension of N and denoted by *N.

By means of Lemma 3.3, we obtain the functor “: RH*(@.,)—
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RH(2,) of minimal extension, which gives the equivalence between
RH*(9 ;) and the full subcategory of RH (2) consisting of all regular
holonomic Z2;-Modules M with the property ['p(M)=I1,(M*)=0.
Furthermore, by the equivalence of categories of Theorem 2.10, we obtain
the functor of minimal extension *: Perv®**(Cy,y)—Perv(Cy) for extendable
perverse complexes on X\Y. Itshould be noted that the minimal extention
is compatible with the dualizing operation:
CN)*="~(N*) forany N e RH™(@Dsy)
and ("G)*="(G"*) for any G e Perv™(Cyy).
(This can be shown easily by Theorem 3.2.)
By an argument similar to that of Theorem 2.10, one can show

Theorem 3.5. For an extendable perverse complex G° on X\Y, the
minimal extension F'="G" is characterized as a unique perverse complex on
X such that

) j(WF)sG.

2) codim YN Supp (F/(F)>j forall je Z.

2%y codim YN Supp (7 (F'*))>j forall je Z.

Recall that, if Y is an /-codimensional submanifold of X, then the
regular holonomic 2 -Module % ,=},(0x) has the following prop-
erties:

1) g?lnggmx-

2y For any point y of ¥, the stalk %, 4, , is a simple 2 ,-module.
Now we propose to apply the above arguments to defining “%,;” for a
closed analytic subset Y of X.

Definition 3.6. Let Y be a closed analytic subset of X, purely of
codimension /. Set Y'=Y\Y,, and X'=X\Y,,,,. Then we denote by
L(Y, X) (or "Fy,x) the minimal extension "#Hy., x of Fy. x with respect
to the inclusion mapping X'=—>X.

Since the formation of minimal extensions is compatible with the
dualizing operation, one has immediately #(Y, X)*=.2(Y, X).

Proposition 3.7. If Y is irreducible at a point y of Y, then the stalk
LY, X), is a simple D -module.

Proof. We denote & for #(Y, X). Fixa P, ,submodule of Z,.
Then, one can find a & 5-sub-Module M of .Z, defined in an open neigh-
borhood of y, whose stalk M, at y coincides with the given submodule of
&,. On the assumption that Y is irreducible at y, one can replace X by
an open neighborhood of y so that Y’=Y\Y,,, is connected and that M
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is defined on X. Note that, if z is a smooth point of Y, then one has
either M,=0 or M,=%y x,,=%,. So one has ecither M|, =0 or M|, =
Bynz=2Lly, since Y’ is connected. If M|,,=0, then one has MC
Iy (£), hence M=0. If M|y, = &y, then one has (Z/M)*C 'y, (L*),
hence (Z/M)*=0, i.e., M=Z. Q.E.D.

Remark 3.8. Recall that, if Y is smooth, one has 9Z(Fy x)=
Cy [—1]. In the setting of Definition 3.6, the De Rham complex F'=
DA L(L(Y, X)) gives an extension of Cp[—!] to a self-dual perverse com-
plex on X: F'|,,=Cy[—!] and F*=F". Shifted suitably, the complex
F'=9%,(Z(Y, X)) coincides with z;, of Deligne, Goresky and Mac Pher-
son. (See [1], [6].)

At the end of this note, we include a basic example of #(Y, X) for a
hypersurface Y with an isolated singularity.

Let X be the complex n-space C* with canonical coordinate x=
(%, - -+, x,) and Y the hypersurface defined by f=x}+.-.+xZ. Assum-
ing that n2>3, we set Y'=Y\{0} and X'=X\{0}. Note first that M: =
Hl(O0x)=0x[f']/0x gives a regular holonomic extension of #y. x.. Since
I'1f(M)=2#}(0x)=0, the minimal extension &= Z(Y, X) can be realized
by F=(M*[I"je(M*))*. In other words, & is the minimal & z-sub-Module
of M satisfying Supp (M/#)C{0}. Let us denote by u the residue class of
Fin M=04f""/0x. Then one has ¥ C D yu since Supp (M/D yu){0}.

Claim. On the condition n>>3, one has =2 ,uC M.

Proof. The assertion is equivalent to Fom, (Dyu, DyulF)=0.
Note that 9 ,u/ % is isomorphic to a copy of %, since Supp (2 xu/F)C
{0}. So it is enough to show that Som, (D yu, % x)=0. Here we have

%Om_@x(gxu, gf{o}]x):{SD € '@{O}IX: PSDZO lfPf_l [ (OX}

For the operator P=>7_,x,D;,+2, we have Pf~'=0. However, any
non-zero section ¢ of #,,; cannot satisfy the equation Pp=0 as can be
directly checked by the relation

zl XD, 5 (x) = — Zl (@4 1)),
where a=(ay, - -+, ;) € N". Q.E.D.
Thus we obtain an isomorphism
L=Dyuec——Dy| 7 where fF={PeZy: Pf~'ecU.

The structure of the syste~1 ¥ = 2(Y, X) varies according to the parity
of n.
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Case where n is odd:
a) ¥=9u=M. Theideal ¢ is generated by x,D,,—x,D,(i<}),
7_1xD,,+2 and f.
b) Ch(®)=T¥XU T} X, where T$X stands for the closure of 75X
in T#X,
©) DZ(L)=Cy[—1].
Case where n is even:
a) F=PDyusM. Theideal # is generated by x,D,,—x,D,, (i<}),
io1%.D,,+2, fand 4"P7 where 4=37., D}..
b) Ch(¥)=T¢X.

¢ (=D
) HNDEN(L))= {Cw) (j=n—-1)
0 (j#1,n—1).
References

[11 Brylinski, J. L. and Kashiwara, M., Kazhdan-Lusztig conjecture and holono-
mic systems, Invent. Math., 69 (1981), 387-410.

[2] Deligne, P., Equations différentielles & points singuliers réguliers, Lecture
Notes in Math. 163, Berlin-Heidelberg-New York, Springer (1970).

[3]1 Gabber, O., The integrability of characteristic variety, Amer. J. Math., 103
(1981), 445-468.

[4]1 Kashiwara, M., On the maximally overdetermined systems of linear differen-
tial equations I, Publ. RIMS, Kyoto Univ., 10 (1975), 563-579.

[5] , On the holonomic systems of linear differential equations II, Invent.
Math., 49 (1978), 121-135.

[6] , Holonomic systems of linear differential equations with regular
singularities and related topics in topology, Advanced Studies in Pure Math.,
1 (1982), 49-54.

[7] —— The Riemann-Hilbert problem for holonomic systems, preprint
RIMS-437 (1983). :

[8]1 Kashiwara, M. and Kawai, T., Second micro-localization and asymptotic
expansions, Lecture Notes in Physics 126, Berlin-Heidelberg-New York,
Springer (1980), 21-76.

[91] , On holonomic systems of microdifferential equations III—Systems
with regular singularities—, Publ. RIMS, Kyoto. Univ., 17 (1981), 813-
979.

[10] , Microlocal analysis, Publ. RIMS, Kyoto Univ., 19 (1983), 1003-1032.

[11] Mebkhout, Z., Sur le probléeme de Hilbert-Riemann, Lecture Notes in
Physics 126, Berlin-Heidelberg-New York, Springer (1980), 90-110.

[12] Oda, T., An introduction to algebraic analysis on complex manifolds,
Advanced Studies in Pure Math., 1 (1982), 29-48.

[13] Sekiguchi, J., Regular holonomic systems and their minimal extensions II—
Application to the multiplicity formula for Verma modules—, in this
volume.

Department of Mathematics
Sophia University

7 Kioi-cho, Chiyoda-ku
Tokyo 102, Japan



