Advanced Studies in Pure Mathematics 4, 1984 Group Representations and Systems of Differential Equations pp. 209-221

Regular Holonomic Systems and their Minimal Extensions I

Masatoshi Noumi

This note, together with J. Sekiguchi [13], is intended to be an introduction to Professor Kashiwara's lectures at RIMS in 1981. At that time, he lectured on three topics as follows:

(i) Gabber's theorem on the involutiveness of the characteristic variety of a coherent \mathcal{D}_x -Module.

(ii) Some fundamental results on regular holonomic systems (holonomic systems with regular singularities).

(iii) An application of regular holonomic systems to the representation theory of a semisimple Lie algebra.

Based on his lectures, we will make here a survey of (i) and (ii) above. As to (iii), the reader is referred to J. Sekiguchi [13].

Throughout this note, X stands for a complex manifold. We denote by T^*X the cotangent bundle of X with canonical projection $\pi: T^*X \rightarrow X$. If Y is a submanifold of X, the conormal bundle of Y in X will be denoted by $T^*_{Y}X$. We also use the notations $\mathring{T}^*X = T^*X \setminus T^*_{X}X$ and $\mathring{\pi} = \pi|_{\mathring{T}^*X}$. As usual, we denote by \mathscr{D}_X the Ring over X of linear differential operators of finite order and by \mathscr{E}_X the Ring over T^*X of microdifferential operators of finite order, respectively. In Section 2 and Section 3, we will freely use the terminology of derived categories. For a Ring \mathscr{A} on X, we denote by $D(\mathscr{A})$ the derived category of the category of (left) \mathscr{A} -Modules.

§ 1. Regular holonomic systems

Let Ω be an open subset of $\hat{T}^*X = T^*X \setminus T^*_X X$ and V a conic involutive closed analytic subset of Ω . Then we define \mathscr{J}_V to be the sub-Module of $\mathscr{E}_X(1)|_{\mathfrak{Q}}$ consisting of all microdifferential operators P whose symbols $\sigma_1(P)$ vanish on V. We denote by $\mathscr{A}_V = \bigcup_{k \ge 1} \mathscr{J}_V^k$ the sub-Algebra of $\mathscr{E}_X|_{\mathfrak{Q}}$ generated by \mathscr{J}_V . Note that \mathscr{J}_V is a bilaterally coherent $\mathscr{E}_X(0)|_{\mathfrak{Q}}$ -Module.

Proposition 1.1. For a coherent $\mathscr{E}_{x}|_{\mathscr{Q}}$ -Module M, the following conditions are equivalent:

Received April 25, 1983.

i) For any point p of Ω , there exist an open neighborhood U of p and a coherent $\mathscr{E}_x(0)|_U$ -sub-Module L of $M|_U$ such that $\mathscr{E}_x L = M|_U$ and $\mathscr{J}_V L = L$.

ii) For any open subset U of Ω and for any coherent $\mathscr{E}_{\mathfrak{X}}(0)|_{U}$ -sub-Module N of $M|_{U}$, the sub-Module $\mathscr{A}_{V}N$ of $M|_{U}$ is coherent over $\mathscr{E}_{\mathfrak{X}}(0)|_{U}$.

Definition 1.2. A coherent $\mathscr{E}_x|_{\mathscr{Q}}$ -Module M is said to have R.S. (regular singularities) along V in Ω if it satisfies the equivalent conditions of Proposition 1.1.

Let *M* be a coherent $\mathscr{E}_{x}|_{\varrho}$ -Module. Then we denote by IR (M, V) the set of all points *p* of Ω such that *M* does *not* have R.S. along *V* in any neighborhood of *p*. Recall that, for any point *p* in Ω , there are an open neighborhood *U* of *p* and a coherent $\mathscr{E}_{x}(0)|_{U}$ -sub-Module *N* of $M|_{U}$ such that $\mathscr{E}_{x}N=M|_{U}$. Then, by Proposition 1.1, one can show that

$$\operatorname{IR}(M, V) \cap U = \bigcap_{k \ge 0} \operatorname{Supp}\left(\mathscr{J}_{V}^{k+1}N / \mathscr{J}_{V}^{k}N\right)$$

 $(\mathscr{J}_{V}^{0} = \mathscr{E}_{X}(0)|_{\mathcal{Q}})$. Note that $(\operatorname{Supp}(\mathscr{J}_{V}^{k+1}N/\mathscr{J}_{V}^{k}N))_{k\geq 0}$ defines a decreasing sequence of conic closed analytic subsets of U, hence is locally stationary. From this it follows that IR (M, V) is a conic closed analytic subset of Ω and that, for any point p of Ω , there are an open neighborhood U of p and a coherent $\mathscr{E}_{X}(0)|_{U}$ -sub-Module L of $M|_{U}$ such that $\mathscr{E}_{X}L = M|_{U}$ and IR $(M, V) \cap U = \operatorname{Supp}(\mathscr{J}_{V}L/L)$. Furthermore, we have

Proposition 1.3. With the notations as above, IR(M, V) is a conic involutive closed analytic subset of Ω contained in Supp(M).

In order to prove that IR (M, V) is involutive, we recall an unpublished result of O. Gabber concerning the extension of coherent $\mathscr{E}_{x}(0)|_{a}$ -sub-Modules of M.

Theorem 1.4 (O. Gabber). Let M be a coherent $\mathscr{E}_{x}|_{\alpha}$ -Module and La coherent $\mathscr{E}_{x}(0)|_{\alpha}$ -sub-Module of M. Let Z be a conic closed analytic subset of Ω and j the inclusion mapping $\Omega \setminus Z \longrightarrow \Omega$. Assume that Z does not contain any non-empty conic involutive analytic subset. Then the sub-Module

$$L' = j_* j^{-1}(L) \cap M = \{ u \in M; u \mid_{\mathcal{Q} \setminus Z} \in L \mid_{\mathcal{Q} \setminus Z} \}$$

of M is coherent over $\mathscr{E}_{X}(0)|_{\mathcal{Q}}$.

This theorem is reduced to a result in O. Gabber [3].

We will explain here how one can derive Proposition 1.3 from Theorem 1.4. Setting Z = IR(M, V), we prove by contradiction that Z is involutive. Suppose that Z is not involutive. Then, replacing Ω by an open

subset of Ω , we are faced with the following situation:

1) $Z \neq \phi$ and M has a coherent $\mathscr{E}_x(0)|_{\mathscr{G}}$ -sub-Module L such that $\mathscr{E}_x L = M$ and $Z = \text{Supp}(\mathscr{J}_v L/L)$.

2) There are holomorphic functions f and g defined on Ω such that $f|_{z}=g|_{z}=0$ and $\{f,g\}(p)\neq 0$ for any p in Ω .

The condition 2) implies that Z cannot contain any non-empty involutive subset. Hence, by Theorem 1.4, we find that $L'=j_*j^{-1}(L)\cap M$ is coherent over $\mathscr{E}_X(0)|_{\mathcal{Q}}$. On the other hand, from the condition 1), it follows that $\mathscr{E}_XL'=M$ and $\mathscr{I}_VL'=L'$. This shows that M has R.S. along V in Ω , hence $Z=\phi$, which contradicts the hypothesis that Z is not involutive.

Remark 1.5. In the case where $V = \phi$, one has $\operatorname{IR}(M, V) = \operatorname{Supp}(M)$. Proposition 1.3 thus implies that the support of a coherent $\mathscr{E}_{X|g}$ -Module is an involutive analytic set.

From now on, our attention will be directed to holonomic systems. As to the regular singularity of a holonomic $\mathscr{E}_{x|g}$ -Module, we have

Theorem 1.6. Let M be a holonomic $\mathscr{E}_X|_{\mathfrak{g}}$ -Module with $\Lambda = \operatorname{Supp}(M)$. Then the following four conditions are equivalent:

- i) M has R.S. along Λ .
- ii) *M* has *R*.*S*. along any conic involutive analytic set *V* containing Λ .
- iii) *M* has *R*.*S*. along some conic Lagrangean analytic set Λ' containing Λ .
- iv) *M* has *R.S.* along Λ in an open neighborhood of a dense open subset of Λ .

The crucial point of Theorem 1.6 lies in the implication $iv) \Rightarrow i$), which is readily a consequence of Proposition 1.3. In fact, any Lagrangean analytic set cannot contain a non-empty nowhere dense involutive analytic subset. Thus we arrive at

Definition 1.7. A holonomic $\mathscr{E}_{X|g}$ -Module *M* is called a *regular* holonomic $\mathscr{E}_{X|g}$ -Module if it has R.S. along Supp (*M*).

Remark 1.8. The above definition of a regular holonomic $\mathscr{E}_{x}|_{a}$ -Module is different from Definition 1.1.16 of M. Kashiwara and T. Kawai [9]. In fact, the condition iv) of Theorem 1.6 is adopted there to define a "holonomic $\mathscr{E}_{x}|_{a}$ -Module with R.S.". In the context of [9], the implication iv) \Rightarrow i) is proved as a corollary to Theorem 5.1.6 which asserts that any holonomic $\mathscr{E}_{x}|_{a}$ -Module M with R.S. has a globally defined coherent $\mathscr{E}_{x}(0)|_{a}$ -sub-Module L such that $\mathscr{E}_{x}L=M$ and $\mathscr{F}_{v}L=L$.

Definition 1.9. A holonomic \mathscr{D}_x -Module M is called a regular

holonomic \mathscr{D}_X -Module if its microlocalization $\mathscr{E}_X \otimes_{\pi^{-1}(\mathscr{D}_X)} \pi^{-1}(M)|_{\mathring{T}^*X}$ is a regular holonomic $\mathscr{E}_X|_{\mathring{T}^*X}$ -Module.

Now we try to paraphrase Definition 1.9 into an expression proper for \mathscr{D}_x -Modules. Let M be a coherent \mathscr{D}_x -Module. Then an increasing sequence $(M_k)_{k \in \mathbb{Z}}$ of coherent \mathscr{O}_x -sub-Modules of M is called a *good filtration* if the following conditions are satisfied:

- 1) $\bigcup_{k} M_{k} = M$. 2) $M_{k} = 0$ for $k \ll 0$.
- 3) $\mathscr{D}_{X}(m)M_{k} \subset M_{k+m}$ for $k \in \mathbb{Z}$ and $m \in \mathbb{N}$.
- 4) For $k \gg 0$, $\mathscr{D}_{x}(m)M_{k} = M_{k+m}(m \in N)$.

The following theorem plays as a dictionary for our purpose.

Theorem 1.10. Let M be a coherent \mathscr{D}_x -Module and \widetilde{M} its microlocalization $\mathscr{E}_X \otimes_{\pi^{-1}(\mathscr{D}_X)} \pi^{-1}(M)|_{\widetilde{t}^*X}$. Denote by sp the canonical homomorphism $M \to \mathring{\pi}_*(\widetilde{M})$ or $\mathring{\pi}^{-1}(M) \to \widetilde{M}$.

a) For a good filtration $(M_k)_{k \in \mathbb{Z}}$ of M, define a sub-Module L of \widetilde{M} by

$$L = \sum_{k \in \mathbb{Z}} \mathscr{E}_{X}(-k) sp(\mathring{\pi}^{-1}(M_{k})).$$

Then L is a coherent $\mathscr{E}_{x}(0)|_{\mathring{T}^{*}x}$ -sub-Module of \widetilde{M} with $\mathscr{E}_{x}L = \widetilde{M}$. Furthermore, one has

1) $M_k/M_{k-1} \cong \pi_*(L(k)/L(k-1))$ for $k \gg 0$ and

2) $M_k = sp^{-1}(\mathring{\pi}_*(L(k)) \text{ for } k \gg 0,$

where $L(k) = \mathscr{E}_x(k)L$ for $k \in \mathbb{Z}$.

b) Conversely, let L be a coherent $\mathscr{E}_{x}(0)|_{\hat{T}^{*}x}$ -sub-Module of \tilde{M} with $\mathscr{E}_{x}L = \tilde{M}$. Set $M_{k} = sp^{-1}(\hat{\pi}_{*}(L(k)))$ for $k \in \mathbb{Z}$. Then $(M_{k})_{k \in \mathbb{Z}}$ defines a good filtration of M, leaving the condition that $M_{k} = 0$ for $k \ll 0$ out of consideration.

(Theorem 1.10 is essentially proved in [8], Lemma 4.1.3.)

By virtue of Theorem 1.10, one can show

Corollary 1.11. Let M be a holonomic \mathcal{D}_X -Module and Λ a conic Lagrangean analytic subset of T^*X containing the characteristic variety Ch (M) of M. Then the following conditions are equivalent:

- i) M is a regular holonomic \mathcal{D}_x -Module.
- ii) Locally on X, M has a good filtration $(M_k)_{k \in \mathbb{Z}}$ such that, for any operator P in $\mathcal{D}_X(m)$ $(m \in \mathbb{N})$ satisfying $\sigma_m(P)|_A = 0$, one has $PM_k \subset M_{k+m-1}$ for all $k \in \mathbb{Z}$.

It should be noted here that, for any Lagrangean analytic set Λ of T^*X , one has

$$\mathcal{J}_{A} = \sum_{P \in \mathscr{D}_{X}(m), \sigma_{m}(P) \mid_{A} = 0} \mathscr{E}_{X}(1-m)P$$

on \mathring{T}^*X .

Remark 1.12. By Theorem 5.1.6 [9] combined with Theorem 1.10, one knows that any regular holonomic \mathscr{D}_X -Module M has a good filtration $(M_k)_{k \in \mathbb{Z}}$ defined globally on X such that, if the symbol $\sigma_m(P)$ of an operator P in $\mathscr{D}_X(m)$ $(m \in N)$ vanishes on Ch (M), then $PM_k \subset M_{k+m-1}$ for all $k \in \mathbb{Z}$.

§ 2. Regular holonomic \mathscr{D}_x -Module and perverse complexes

As we have seen in Section 1, a regular holonomic \mathcal{D}_x -Module can be defined as follows:

Definition 2.1. Let M be a holonomic \mathscr{D}_X -Module with characteristic variety $\Lambda = \operatorname{Ch}(M) \subset T^*X$. Then M is called a *regular holonomic* \mathscr{D}_X -Module if, locally on X, M has a good filtration $(M_k)_{k \in \mathbb{Z}}$ with the property

$$(*) \quad P \in \mathscr{D}_{X}(m), \quad \sigma_{m}(P)|_{A} = 0 \Longrightarrow PM_{k} \subset M_{k+m-1} \quad (k \in \mathbb{Z}).$$

As a matter of fact, it is known that any regular holonomic \mathcal{D}_x -Module M has a globally defined good filtration $(M_k)_{k \in \mathbb{Z}}$ with the above property (*). (Remark 1.12.)

We denote by $\operatorname{RH}(\mathscr{D}_x)$ the category of regular holonomic \mathscr{D}_x -Modules. For an exact sequence

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$

of holonomic \mathcal{D}_x -Modules, M is regular holonomic if and only if so are M' and M''. Recall that, for a holonomic \mathcal{D}_x -Module M, the dual system M^* of M is defined by

$$M^* = \mathscr{E}_{xt^n_{\mathscr{D}_X}}(M, \mathscr{D}_X) \bigotimes_{\mathscr{O}_X} (\Omega^n_X)^{\otimes (-1)},$$

where $n = \dim X$, and that one has $M \cong M^{**}$. Then M is regular holonomic if and only if so is the dual M^* . Thus we obtain an exact functor $*: \operatorname{RH}(\mathscr{D}_X)^\circ \cong \operatorname{RH}(\mathscr{D}_X)$. (For a category $\mathscr{C}, \mathscr{C}^\circ$ denotes the opposed category of \mathscr{C} .)

Examples 2.2. a) Let X be an open subset of C, containing the origin, with canonical coordinate x. Let $P = \sum_{j=0}^{m} a_j(x) D_x^j$ be an ordinary differential operator such that $a_m(x) \neq 0$ for $x \neq 0$. Then the \mathcal{D}_x -Module $\mathcal{D}_x/\mathcal{D}_x P$ is regular holonomic if and only if $m - \nu_m \ge j - \nu_j$ for $0 \le j \le m$, where ν_j stands for the order of zero of $a_j(x)$ at x=0.

b) Let X be an open subset of C^n with canonical coordinate system $x = (x_1, \dots, x_n)$. Consider an *integrable* differential system for the vector $\vec{u} =$

 ${}^{t}(u_{1}, \cdots, u_{m})$ of unknown functions

$$\begin{cases} x_i D_{x_i} \vec{u} = A_i(x) \vec{u} & (i \leq l) \\ D_{x_i} \vec{u} = B_j(x) \vec{u} & (j > l), \end{cases}$$

where $0 \leq l \leq n$ and $A_i(x)$, $B_j(x) \in M(m, \mathcal{O}_x(X))$. Then the \mathcal{D}_x -Module associated with the above system is a regular holonomic \mathcal{D}_x -Module.

c) The De Rham system \mathcal{O}_X is a regular holonomic \mathcal{D}_X -Module. If Y is a submanifold of X, the system $\mathcal{B}_{X|Y}$ of multiple layers with support in Y is a regular holonomic \mathcal{D}_X -Module. Note that one has $\mathcal{O}_X = \mathcal{O}_X^*$ and $\mathcal{B}_{Y|X} = \mathcal{B}_{Y|X}^*$.

d) If f is a holomorphic function defined on X, $\mathscr{D}_X f^{\alpha}$ is a regular holonomic \mathscr{D}_X -Module for any $\alpha \in C$.

This notion of regular singularity gives a natural extension of that of P. Deligne [2] to holonomic \mathcal{D}_x -Modules. To see this, we quote a comparison theorem concerning the local cohomology of \mathcal{D}_x -Modules. (For the algebraic local cohomology of a \mathcal{D}_x -Module, see [5] or [12].)

Theorem 2.3. Let Y be a closed analytic subset of X and set Z = Y or $X \setminus Y$.

a) If M is a regular holonomic D_x-Module, then the algebraic local cohomology sheaves ℋ^j_[Z](M) (j≥0) are regular holonomic D_x-Modules.
b) If M and N are regular holonomic D_x-Modules, then one has a natural isomorphism

$$\mathbf{R} \mathscr{H}_{om_{\mathscr{Q}_{X}}}(M, \mathbf{R}\Gamma_{\lceil Z \rceil}(N)) \xrightarrow{\sim} \mathbf{R}\Gamma_{Z}\mathbf{R}\mathscr{H}_{om_{\mathscr{Q}_{X}}}(M, N)$$

in the derived category $D(C_x)$.

Theorem (2.3.b) is a generalization of the comparison theorem of A. Grothendieck and P. Deligne to regular holonomic \mathscr{D}_X -Modules. (The assertion a) is proved in [9], Theorem 5.4.1. The assertion b) can be proved by combining Theorem 6.1.1 and Theorem 5.4.1 of [9].) In what follows, we denote by $D_{rh}^b(\mathscr{D}_X)$ the full subcategory of $D(\mathscr{D}_X)$ whose objects are the cohomologically bounded complexes with regular holonomic cohomologies.

Here we recall the notion of a constructible C_x -Module.

Definition 2.4. A C_x -Module F is said to be *constructible* if there exists a decreasing sequence

$$(X_j)_{j \in \mathbb{N}}$$
: $X = X_0 \supset X_1 \supset X_2 \supset \cdots$

of closed analytic subsets of X such that

1) $\bigcap_{j\geq 0} X_j = \phi.$

2) For each $j \ge 0$, the restriction $F|_{X_j \setminus X_{j+1}}$ of F is a local system on $X_j \setminus X_{j+1}$.

Hereafter, by a "local system on X", we mean a locally constant C_x -Module of finite rank. We denote by $D_c^b(C_x)$ the full subcategory of $D(C_x)$ whose objects are the cohomologically bounded complexes with constructible cohomologies. For each complex F in $D_c^b(C_x)$, we define the dual F^* of F by

$$F^{*} = \mathbf{R} \mathscr{H}_{om_{C_X}}(F^{*}, C_X).$$

Then one knows that F^{**} is an object of $D_c^b(C_x)$ and that $F^* \cong F^{***}$ (due to J.-L. Verdier).

For a complex M in $D^{b}_{rh}(\mathcal{D}_{X})$, we define $\mathcal{DR}_{X}(M') = R\mathcal{H}_{om_{\mathcal{D}_{X}}}(\mathcal{O}_{X}, M')$ and $\mathcal{S}_{ol_{X}}(M') = R\mathcal{H}_{om_{\mathcal{D}_{X}}}(M', \mathcal{O}_{X})$. Then $\mathcal{DR}_{X}(M')$ and $\mathcal{S}_{ol_{X}}(M')$ are objects of $D^{b}_{c}(C_{X})$ (M. Kashiwara [4]). Thus we obtain the two functors

 $\mathscr{DR}_{X}: \mathbf{D}^{b}_{\mathrm{rh}}(\mathscr{D}_{X}) \rightarrow \mathbf{D}^{b}_{c}(\mathbf{C}_{X}) \text{ and } \mathscr{Sol}_{X}: \mathbf{D}^{b}_{\mathrm{rh}}(\mathscr{D}_{X})^{\circ} \rightarrow \mathbf{D}^{b}_{c}(\mathbf{C}_{X}).$

These two functors are connected by the relation $\mathscr{Gol}_x(M') = \mathscr{DR}_x(M'')$, so we pay our attention mainly to \mathscr{DR}_x .

Proposition 2.5. a) $\mathscr{DR}_{\mathfrak{X}}(M^{*}) = \mathscr{DR}_{\mathfrak{X}}(M^{*})^{*}$ for any M^{*} in $\mathrm{D}_{\mathrm{rh}}^{\mathfrak{b}}(\mathscr{D}_{\mathfrak{X}})$. b) For a closed analytic subset Y of X, set Z = Y or $X \setminus Y$. Then one has

$$\mathscr{DR}_{X}(\mathbf{R}\Gamma_{\lceil Z\rceil}(M^{\boldsymbol{\cdot}})) = \mathbf{R}\Gamma_{Z}\mathscr{DR}_{X}(M^{\boldsymbol{\cdot}})$$

for any M in $D^b_{rh}(\mathcal{D}_X)$.

(The assertion a) is a version of Proposition 1.4.6, [9].)

Example 2.6. a) For any submanifold Y of X of codimension l, one has

$$\mathcal{DR}_{X}(\mathcal{B}_{Y|X}) = \mathcal{DR}_{X}(R\Gamma_{[Y]}(\mathcal{O}_{X}))[l] = R\Gamma_{Y}\mathcal{DR}_{X}(\mathcal{O}_{X})[l]$$
$$= R\Gamma_{Y}(C_{X})[l] = C_{Y}[-l].$$

b) Let Y be a hypersurface of X defined by a holomorphic function f and j the inclusion mapping $X \setminus Y \longrightarrow X$. Then, one has $\mathscr{DR}_X(\mathcal{O}_X[f^{-1}]) = Rj_*j^{-1}(C_X)$ and $\mathscr{DR}_X(\mathcal{O}_X[f^{-1}]^*) = \mathscr{DR}_X(\mathcal{O}_X[f^{-1}])^* = j_1j^{-1}(C_X)$. In the case where X is the complex *n*-space C^n with canonical coordinate system $x = (x_1, \dots, x_n)$ and $f(x) = x_1 \dots x_r$ $(1 \le r \le n)$, the cohomology sheaves of the complex $F^* = \mathscr{DR}_X(\mathcal{O}_X[f^{-1}])$ are computed as follows:

 $\mathscr{H}^{0}(F^{\bullet}) = C_{X} \text{ and } \mathscr{H}^{j}(F^{\bullet}) = \bigoplus_{1 \leq k_{1} < \cdots < k_{j} \leq r} C_{Y_{k_{1}} \cap \cdots \cap Y_{k_{j}}} \text{ for } j > 0,$ where $Y_{k} = \{x_{k} = 0\}.$

Now it is natural to ask if, for a given complex F^{\bullet} in $D_c^b(C_x)$, there exists M^{\bullet} in $D_{rh}^b(\mathscr{D}_x)$ such that $\mathscr{DR}_x(M^{\bullet}) \cong F^{\bullet}$. (So-called the Riemann-Hilbert problem.) In this direction, we give first

Proposition 2.7. For any M and N in $D^b_{rh}(\mathcal{D}_X)$, one has

 $R\mathscr{H}_{om_{\mathscr{R}_X}}(M^{\bullet}, N^{\bullet}) \xrightarrow{\sim} R\mathscr{H}_{om_{\mathcal{C}_X}}(\mathscr{DR}_X(M^{\bullet}), \mathscr{DR}_X(N^{\bullet})).$

(Proposition 2.7 follows from Theorem 6.1.1 and Theorem 1.4.9 of [9]). This proposition implies that the functor $\mathscr{DR}_{X}: \mathrm{D}^{b}_{\mathrm{rh}}(\mathscr{D}_{X}) \rightarrow \mathrm{D}^{b}_{c}(C_{X})$ is fully faithful. Furthermore,

Theorem 2.8 (M. Kashiwara [7] and Z. Mebkhout [11]). The De Rham functor \mathcal{DR}_x gives the equivalence of categories

$$\mathscr{DR}_{X}: \mathrm{D}^{b}_{\mathrm{rh}}(\mathscr{D}_{X}) \xrightarrow{\sim} \mathrm{D}^{b}_{c}(C_{X}).$$

Theorem 2.8 can be regarded as an affirmative answer to the Riemann-Hilbert problem for constructible C_x -Modules. The above theorem can be proved by reducing it to the following fact: Let Y be a hypersurface with normal crossings in X and F the constructible C_x -Module obtained as the extension by zero of a local system on $X \setminus Y$. Then there exists a regular holonomic \mathcal{D}_x -Module M such that $\mathcal{DR}_x(M) \cong F$. In the course of reduction, we use Hironaka's desingularization theorem and the stability of regular holonomic systems under the integration along the fibres of a proper holomorphic mapping (M. Kashiwara [7], Theorem 8.1). In [7], this theorem is proved by constructing the inverse functor of \mathcal{DR}_x .

The category $\operatorname{RH}(\mathscr{D}_x)$ of regular holonomic \mathscr{D}_x -Modules is identified with the full subcategory of $\operatorname{D}_{\operatorname{rh}}^b(\mathscr{D}_x)$ consisting of all complexes M^{\bullet} with $\mathscr{H}^j(M^{\bullet})=0$ for $j\neq 0$. Then how can one characterize such a complex F^{\bullet} in $\operatorname{D}_c^b(C_x)$ that is expressed as the De Rham complex $\mathscr{DR}_x(M)$ of a regular holonomic \mathscr{D}_x -Module M?

Definition 2.9. An object F' of $D_c^b(C_x)$ is called a *perverse* complex if it satisfies the following conditions:

- 1) codim Supp $(\mathcal{H}^{j}(F')) \ge j$ for all $j \in \mathbb{Z}$.
- 1*) codim Supp $(\mathscr{H}^{j}(F^{*})) \ge j$ for all $j \in \mathbb{Z}$.

We denote by Perv (C_x) the full subsategory of $D_c^b(C_x)$ whose objects are the perverse complexes on X. Then Theorem 2.8 can be refined as follows:

Theorem 2.10. The De Rham functor \mathcal{DR}_x induces the equivalence of categories

$$\mathscr{DR}_{X}: \operatorname{RH}(\mathscr{D}_{X}) \xrightarrow{\sim} \operatorname{Perv}(C_{X}).$$

Let us show here that, if M is a regular holonomic \mathscr{D}_x -Module, then the De Rham complex $F' = \mathscr{DR}_x(M)$ of M is a perverse complex. Since $F'^* = \mathscr{DR}_x(M^*)$, we have only to show that the condition 1) is satisfied. For a fixed j, set $Y = \text{Supp}(\mathscr{H}^j(F'))$ and l = codim Y. So as to prove $l \ge j$, one can replace X by an open neighborhood of a generic point of Y so that Y is smooth of codimension l and that all $\mathscr{H}^k(F')$ ($k \in Z$) are locally constant on Y. (It is possible since $\mathscr{H}^k(F')$ ($k \in Z$) are all constructible.) In this setting, we compute the local cohomology sheaves $R^k \Gamma_Y(F'^*)$ $(k \in Z)$ in two manners. Since $F'^* = R\mathscr{H}_{om_{\mathscr{D}x}}(M, \mathscr{O}_X)$, one has $R\Gamma_Y(F'^*) = 0$ for k < l. On the other hand, one has $R\Gamma_Y(F'^*) = R\mathscr{H}_{om_{\mathscr{D}x}}(F', C_X)$. Since $\mathscr{H}^i(F')(i \in Z)$ are all locally constant on Y, one has $\mathscr{E}_{xt}^k_{\mathcal{C}x}(\mathscr{H}^j(F')_Y, C_X) = 0$ for $k \neq 2l$. Hence, $R^k \Gamma_Y(F'^*) = \mathscr{E}_{xt}^{\mathfrak{D}}_{\mathcal{C}x}(\mathscr{H}^{2l-k}(F')_Y, C_X)$ for all $k \in Z$. Here one has $R^{2l-j}\Gamma_Y(F'^*) \neq 0$ since $\mathscr{H}^j(F')|_Y$ has positive rank. Comparing this with the above computation, we have $2l-j \ge l$, i.e., $l \ge j$, as desired.

§ 3. Minimal extension of a regular holonomic \mathcal{D}_x -Module.

Let Y be a closed analytic subset of X and j the inclusion mapping $X \setminus Y \longrightarrow Y$. Then we obtain the functor j^{-1} : RH $(\mathcal{D}_X) \longrightarrow$ RH $(\mathcal{D}_{X \setminus Y})$ of restriction. Let us begin with a characterization, in terms of the De Rham complex, of a regular holonomic $\mathcal{D}_{X \setminus Y}$ -Module which can be extended to a regular holonomic \mathcal{D}_{X} -module.

Proposition 3.1. For a regular holonomic $\mathscr{D}_{X\setminus Y}$ -Module N, set $G = \mathscr{DR}_{X\setminus Y}(N)$. Then the following conditions are equivalent:

i) There is a regular holonomic \mathcal{D}_x -Module M such that $j^{-1}(M) \cong N$.

i') There is a holonomic \mathcal{D}_{x} -Module M such that $j^{-1}(M) \cong N$.

ii) There is a perverse complex F^* on X such that $j^{-1}(F^*) \cong G^*$ in Perv $(C_{X\setminus Y})$.

ii') There is an object F' of $D^b_c(C_x)$ such that $j^{-1}(F') \cong G'$ in $D^b_c(C_{X\setminus Y})$.

ii'') The extension $j_1(G^{\bullet})$ by zero of G^{\bullet} has constructible cohomology sheaves, i.e., $j_1(G^{\bullet}) \in D_c^b(C_X)$.

We denote by $\operatorname{RH}^{\operatorname{ext}}(\mathscr{D}_{X\setminus Y})$ (resp. $\operatorname{Perv}^{\operatorname{ext}}(C_{X\setminus Y})$) the full subcategory of $\operatorname{RH}(\mathscr{D}_{X\setminus Y})$ (resp. $\operatorname{Perv}(C_{X\setminus Y})$) consisting of all objects *extendable with respect to j* in the sense of Proposition 3.1. Then the De Rham functor $\mathscr{DR}_{X\setminus Y}$ induces the equivalence of categories $\operatorname{RH}^{\operatorname{ext}}(\mathscr{D}_{X\setminus Y}) \rightrightarrows \operatorname{Perv}^{\operatorname{ext}}(C_{X\setminus Y})$.

Note that any local system on $X \setminus Y$ is extendable with respect to j.

Theorem 3.2. For any extendable regular holonomic $\mathscr{D}_{X\setminus Y}$ -Module N, there is a regular holonomic \mathscr{D}_X -Module M with the properties

1) $j^{-1}(M) \cong N$ and 2) $\Gamma_{Y}(M) = \Gamma_{Y}(M^{*}) = 0$. Moreover, such an M is determined uniquely up to isomorphism.

Note first that, for any coherent \mathscr{D}_x -Module M, one has $\Gamma_x(M) = \Gamma_{\Gamma_x}(M)$. Before proving Theorem 3.2, we propose

Lemma 3.3. Let M' and M'' be regular holonomic \mathcal{D}_x -Modules such that $\Gamma_y(M'^*)=0$ and $\Gamma_y(M'')=0$. Then one has

$$\mathscr{H}_{om_{\mathscr{D}_{X}}}(M', M'') \xrightarrow{\sim} j_{*}\mathscr{H}_{om_{\mathscr{D}_{X}\setminus Y}}(j^{-1}M', j^{-1}M'').$$

Proof. Since $\Gamma_{\Gamma}(M'')=0$, one has an exact sequence

$$0 \longrightarrow M'' \longrightarrow \Gamma_{[X \setminus Y]}(M'') \longrightarrow \mathscr{H}^{1}_{[Y]}(M'') \longrightarrow 0.$$

Since Supp $(\mathscr{H}^{1}_{\Gamma Y}(M'')) \subset Y$ and $\Gamma_{Y}(M'^{*}) = 0$, one has

$$\mathscr{H}_{om_{\mathscr{D}_X}}(M', \mathscr{H}^1_{\lceil Y \rceil}(M'')) = \mathscr{H}_{om_{\mathscr{D}_X}}(\mathscr{H}^1_{\lceil Y \rceil}(M'')^*, M'^*) = 0.$$

Hence, by applying $\mathscr{H}_{om_{\mathscr{D}_X}}(M', .)$ to the above exact sequence, one has an isomorphism

$$\mathscr{H}_{om_{\mathscr{D}_{X}}}(M', M'') \xrightarrow{\sim} \mathscr{H}_{om_{\mathscr{D}_{X}}}(M', \Gamma_{[X \setminus Y]}(M'')).$$

On the other hand, one has

$$\mathcal{H}_{om_{g_X}}(M', \Gamma_{[X \setminus Y]}(M'')) = j_* j^{-1} \mathcal{H}_{om_{g_X}}(M', M'')$$
$$= j_* \mathcal{H}_{om_{g_X} \setminus Y}(j^{-1}M', j^{-1}M'')$$

by Theorem 2.3. Thus one obtains the isomorphism of Lemma. Q.E.D.

Proof of Theorem 3.2. For the given N in RH^{ext}($\mathscr{D}_{X\setminus Y}$), take an M'in RH (\mathscr{D}_X) such that $j^{-1}(M') \cong N$. Then $M'' = M'/\Gamma_Y(M')$ has the property $\Gamma_Y(M'') = 0$. Again, set $M = (M''^*/\Gamma_Y(M''^*))^*$. Then M is a regular holonomic \mathscr{D}_X -Module with the desired property. Uniqueness of such an M follows from Lemma 3.3 immediately. Q.E.D.

Definition 3.4. For an extendable regular holonomic $\mathscr{D}_{X\setminus Y}$ -Module N, the regular holonomic \mathscr{D}_X -Module M determined by Theorem 3.2 is called the *minimal extension of* N and denoted by ${}^{\pi}N$.

By means of Lemma 3.3, we obtain the functor π : RH^{ext}($\mathscr{D}_{X\setminus Y}$) \rightarrow

 $\operatorname{RH}(\mathscr{D}_{X})$ of minimal extension, which gives the equivalence between $\operatorname{RH}^{\operatorname{ext}}(\mathscr{D}_{X\setminus Y})$ and the full subcategory of $\operatorname{RH}(\mathscr{D}_{X})$ consisting of all regular holonomic \mathscr{D}_{X} -Modules M with the property $\Gamma_{Y}(M) = \Gamma_{Y}(M^{*}) = 0$. Furthermore, by the equivalence of categories of Theorem 2.10, we obtain the functor of minimal extension π : $\operatorname{Perv}^{\operatorname{ext}}(C_{X\setminus Y}) \to \operatorname{Perv}(C_{X})$ for extendable perverse complexes on $X \setminus Y$. It should be noted that the minimal extension is compatible with the dualizing operation:

> $({}^{\pi}N)^* = {}^{\pi}(N^*)$ for any $N \in \operatorname{RH}^{\operatorname{ext}}(\mathscr{D}_{X \setminus Y})$ and $({}^{\pi}G^{\bullet})^* = {}^{\pi}(G^{\bullet*})$ for any $G^{\bullet} \in \operatorname{Perv}^{\operatorname{ext}}(C_{X \setminus Y})$.

(This can be shown easily by Theorem 3.2.)

By an argument similar to that of Theorem 2.10, one can show

Theorem 3.5. For an extendable perverse complex G' on $X \setminus Y$, the minimal extension $F' = {}^{*}G'$ is characterized as a unique perverse complex on X such that

1) $j^{-1}(F') \cong G'$.

2) codim $Y \cap \text{Supp}(\mathscr{H}^{j}(F^{*})) > j$ for all $j \in \mathbb{Z}$.

2*) codim $Y \cap$ Supp $(\mathcal{H}^{j}(F^{*})) > j$ for all $j \in \mathbb{Z}$.

Recall that, if Y is an *l*-codimensional submanifold of X, then the regular holonomic \mathscr{D}_X -Module $\mathscr{B}_{Y|X} = \mathscr{H}^{\iota}_{[Y]}(\mathscr{O}_X)$ has the following properties:

1) $\mathscr{B}_{Y|X}^* = \mathscr{B}_{Y|X}$.

2) For any point y of Y, the stalk $\mathscr{B}_{Y|X,y}$ is a simple $\mathscr{D}_{X,y}$ -module. Now we propose to apply the above arguments to defining " $\mathscr{B}_{Y|X}$ " for a closed analytic subset Y of X.

Definition 3.6. Let Y be a closed analytic subset of X, purely of codimension l. Set $Y' = Y \setminus Y_{\text{sing}}$ and $X' = X \setminus Y_{\text{sing}}$. Then we denote by $\mathscr{L}(Y, X)$ (or ${}^{\pi}\mathscr{B}_{Y|X}$) the minimal extension ${}^{\pi}\mathscr{B}_{Y'|X'}$ of $\mathscr{B}_{Y'|X'}$ with respect to the inclusion mapping $X' \longrightarrow X$.

Since the formation of minimal extensions is compatible with the dualizing operation, one has immediately $\mathscr{L}(Y, X)^* = \mathscr{L}(Y, X)$.

Proposition 3.7. If Y is irreducible at a point y of Y, then the stalk $\mathscr{L}(Y, X)_y$ is a simple $\mathscr{D}_{X,y}$ -module.

Proof. We denote \mathscr{L} for $\mathscr{L}(Y, X)$. Fix a $\mathscr{D}_{X,y}$ -submodule of \mathscr{L}_{y} . Then, one can find a \mathscr{D}_{X} -sub-Module M of \mathscr{L} , defined in an open neighborhood of y, whose stalk M_{y} at y coincides with the given submodule of \mathscr{L}_{y} . On the assumption that Y is irreducible at y, one can replace X by an open neighborhood of y so that $Y' = Y \setminus Y_{\text{sing}}$ is connected and that M is defined on X. Note that, if z is a smooth point of Y, then one has either $M_z=0$ or $M_z=\mathscr{B}_{Y|X,z}=\mathscr{L}_z$. So one has either $M|_{Y'}=0$ or $M|_{Y'}=\mathscr{B}_{Y'|X'}=\mathscr{L}|_{Y'}$, since Y' is connected. If $M|_{Y'}=0$, then one has $M\subset \Gamma_{Ysing}(\mathscr{L})$, hence M=0. If $M|_{Y'}=\mathscr{L}|_{Y'}$, then one has $(\mathscr{L}/M)^*\subset\Gamma_{Ysing}(\mathscr{L}^*)$, hence $(\mathscr{L}/M)^*=0$, i.e., $M=\mathscr{L}$. Q.E.D.

Remark 3.8. Recall that, if Y is smooth, one has $\mathscr{DR}_{\mathcal{X}}(\mathscr{R}_{Y|\mathcal{X}}) = C_{Y}[-l]$. In the setting of Definition 3.6, the De Rham complex $F' = \mathscr{DR}_{\mathcal{X}}(\mathscr{L}(Y, X))$ gives an extension of $C_{Y'}[-l]$ to a self-dual perverse complex on X: $F'|_{Y'} = C_{Y'}[-l]$ and $F'^* = F'$. Shifted suitably, the complex $F' = \mathscr{DR}_{\mathcal{X}}(\mathscr{L}(Y, X))$ coincides with π_{Y} of Deligne, Goresky and Mac Pherson. (See [1], [6].)

At the end of this note, we include a basic example of $\mathcal{L}(Y, X)$ for a hypersurface Y with an isolated singularity.

Let X be the complex *n*-space C^n with canonical coordinate $x = (x_1, \dots, x_n)$ and Y the hypersurface defined by $f = x_1^2 + \dots + x_n^2$. Assuming that $n \ge 3$, we set $Y' = Y \setminus \{0\}$ and $X' = X \setminus \{0\}$. Note first that $M := \mathscr{H}_{[Y]}^1(\mathscr{O}_X) = \mathscr{O}_X[f^{-1}]/\mathscr{O}_X$ gives a regular holonomic extension of $\mathscr{B}_{Y'|X'}$. Since $\Gamma_{[0]}(M) = \mathscr{H}_{[0]}^1(\mathscr{O}_X) = 0$, the minimal extension $\mathscr{L} = \mathscr{L}(Y, X)$ can be realized by $\mathscr{L} = (M^*/\Gamma_{[0]}(M^*))^*$. In other words, \mathscr{L} is the minimal \mathscr{D}_X -sub-Module of M satisfying Supp $(M/\mathscr{L}) \subset \{0\}$. Let us denote by u the residue class of f^{-1} in $M = \mathscr{O}_X[f^{-1}]/\mathscr{O}_X$. Then one has $\mathscr{L} \subset \mathscr{D}_X u$ since Supp $(M/\mathscr{D}_X u) \subset \{0\}$.

Claim. On the condition $n \ge 3$, one has $\mathscr{L} = \mathscr{D}_x u \subset M$.

Proof. The assertion is equivalent to $\mathscr{H}_{om_{\mathscr{D}_X}}(\mathscr{D}_X u, \mathscr{D}_X u/\mathscr{L})=0$. Note that $\mathscr{D}_X u/\mathscr{L}$ is isomorphic to a copy of $\mathscr{B}_{\{0\}|X}$ since $\operatorname{Supp}(\mathscr{D}_X u/\mathscr{L}) \subset \{0\}$. So it is enough to show that $\mathscr{H}_{om_{\mathscr{D}_X}}(\mathscr{D}_X u, \mathscr{B}_{\{0\}|X})=0$. Here we have

$$\mathscr{H}_{om_{\mathscr{D}_X}}(\mathscr{D}_X u, \mathscr{B}_{\{0\}|X}) = \{ \varphi \in \mathscr{B}_{\{0\}|X} \colon P\varphi = 0 \quad \text{if } Pf^{-1} \in \mathcal{O}_X \}.$$

For the operator $P = \sum_{i=1}^{n} x_i D_{X_i} + 2$, we have $Pf^{-1} = 0$. However, any non-zero section φ of $\mathscr{B}_{\{0\}|X}$ cannot satisfy the equation $P\varphi = 0$ as can be directly checked by the relation

$$\sum_{i=1}^{n} x_{i} D_{x_{i}} \delta^{(\alpha)}(x) = -\sum_{i=1}^{n} (\alpha_{i} + 1) \delta^{(\alpha)}(x),$$

where $\alpha = (\alpha_1, \cdots, \alpha_n) \in N^n$.

Thus we obtain an isomorphism

$$\mathscr{L} = \mathscr{D}_X u \xleftarrow{\sim} \mathscr{D}_X / \mathscr{J} \quad \text{where } \mathscr{J} = \{ P \in \mathscr{D}_X : Pf^{-1} \in \mathscr{O}_X \}.$$

The structure of the syster $\mathcal{L} = \mathcal{L}(Y, X)$ varies according to the parity of *n*.

Q.E.D.

Case where n is odd:

a) $\mathscr{L} = \mathscr{D}_x u = M$. The ideal \mathscr{J} is generated by $x_i D_{x_i} - x_j D_{x_i} (i < j)$, $\sum_{i=1}^{n} x_i D_{x_i} + 2$ and f.

b) Ch $(\mathscr{L}) = T_Y^* X \cup T_{(0)}^* X$, where $T_Y^* X$ stands for the closure of $T_{Y'}^* X$ in T^*X .

c)
$$\mathscr{DR}_{X}(\mathscr{L}) = C_{Y}[-1].$$

Case where n is even:

a) $\mathscr{L} = \mathscr{D}_X u \subseteq M$. The ideal \mathscr{J} is generated by $x_i D_{x_j} - x_j D_{x_i}$ (i < j), $\sum_{i=1}^n x_i D_{x_i} + 2$, f and $\mathcal{L}^{(n-2)/2}$, where $\mathcal{L} = \sum_{i=1}^n D_{x_i}^2$. b) $Ch(\mathscr{L}) = T^*_{\mathscr{L}}X$

References

- [1] Brylinski, J. L. and Kashiwara, M., Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math., 69 (1981), 387-410.
- [2] Deligne, P., Équations différentielles à points singuliers réguliers, Lecture Notes in Math. 163, Berlin-Heidelberg-New York, Springer (1970).
- [3] Gabber, O., The integrability of characteristic variety, Amer. J. Math., 103 (1981), 445-468.
- [4] Kashiwara, M., On the maximally overdetermined systems of linear differential equations I, Publ. RIMS, Kyoto Univ., 10 (1975), 563-579.
- [5] --, On the holonomic systems of linear differential equations II, Invent. Math., 49 (1978), 121-135.
- ----, Holonomic systems of linear differential equations with regular [6] singularities and related topics in topology, Advanced Studies in Pure Math., 1 (1982), 49-54.
- The Riemann-Hilbert problem for holonomic systems, preprint [7] RIMS-437 (1983).
- Kashiwara, M. and Kawai, T., Second micro-localization and asymptotic [8] expansions, Lecture Notes in Physics 126, Berlin-Heidelberg-New York, Springer (1980), 21-76.
- [9] -, On holonomic systems of microdifferential equations III-Systems with regular singularities-, Publ. RIMS, Kyoto. Univ., 17 (1981), 813-979.
- [10]
- —, Microlocal analysis, Publ. RIMS, Kyoto Univ., **19** (1983), 1003–1032. Mebkhout, Z., Sur le problème de Hilbert-Riemann, Lecture Notes in [11] Physics 126, Berlin-Heidelberg-New York, Springer (1980), 90-110.
- Oda, T., An introduction to algebraic analysis on complex manifolds, [12] Advanced Studies in Pure Math., 1 (1982), 29-48.
- Sekiguchi, J., Regular holonomic systems and their minimal extensions II-[13] Application to the multiplicity formula for Verma modules-, in this volume.

Department of Mathematics Sophia University 7 Kioi-cho, Chiyoda-ku Tokyo 102, Japan