Configurations and Invariant Theory of GauB-Manin Systems

Kazuhiko Aomoto

Let $f_{0}, f_{1}, \cdots, f_{m}$ be polynomials. The integral

$$
\begin{equation*}
\int \exp \left[f_{0}\left(x_{1}, \cdots, x_{n}\right)\right] \cdot f_{1}(x)^{\lambda_{1}} \cdots f_{m}(x)^{2_{m}} d x_{1} \cdots d x_{n} \tag{0.1}
\end{equation*}
$$

satisfies Gauß-Manin system or holonomic system as a function of coefficients of $f_{0}, f_{1}, \cdots, f_{m} . G L_{n}(\boldsymbol{C})$ naturally acts on the space of coefficients, so that the above integral is written in invariant expression. This is a similar situation to D. Mumford's geometric invariant theory [1]. (See also [2] in relation to Cayley forms).

Let T, X be non-singular algebraic spaces of dimension n and l respectively. Let W be an analytic subset of codimension 1 such that the complement $V=T \times X-W$ is affine. We denote by ρ the natural projection:

$$
\begin{equation*}
\rho: V=T \times X-W \longmapsto T . \tag{0.2}
\end{equation*}
$$

Then by the isotopy theorem due to R. Thom ([3], See [4] for further developments.) there exists a natural stratification of the morphism (V, T, ρ) satisfying the following property:

There exists an analytic subset T_{0} of codimension 1 in T such that for arbitrary $t \in T-T_{0}$, the morphism

$$
\rho: f^{-1}\left(T-T_{0}\right) \longmapsto T-T_{0}
$$

is a topological fibre bundle whose fibre $V_{t}=\rho^{-1}(t)$ is non-singular:
We shall denote by $\Omega^{p}(V, F)$ the space of rational p-forms in a compactification of V and holomorphic in V with values in a sheaf F.
§ 1.
Let a $\mathfrak{g l}(m, C)$-valued rational 1 -form in $T \times X$ which is holomorphic in V,

$$
\omega(t, d t ; x, d x) \in \Omega^{1}(T \times X-W) \otimes \mathfrak{g} \mathfrak{l}(n, C)
$$

$(t, x) \in T \times X$, is given such that ω satisfies the integrability condition

$$
\begin{equation*}
d \omega+\omega \wedge \omega=0 \quad \text { in } V \tag{1.1}
\end{equation*}
$$

$\omega_{t}=\left.\omega\right|_{\rho-1(t)}$ defines a Gau 3 -Manin connection on $\rho^{-1}(t)=X-W_{t}$ which is denoted by V_{t} :

$$
\begin{equation*}
d \omega_{t}+\omega_{t} \wedge \omega_{t}=0 \quad \text { in } V_{t} . \tag{1.2}
\end{equation*}
$$

Consider the linear differential system on V_{t} of order m :

$$
d y=y \omega_{t} \quad\left(y \in C^{m}\right)
$$

and the twisted rational de Rham cohomology $\boldsymbol{H}^{*}\left(V_{t}, \nabla_{\omega_{t}}\right)$ in V_{t} with coefficients in solution sheaves \mathscr{S} of (ε) :

$$
\begin{equation*}
0 \longmapsto \Omega^{0}\left(V_{t}\right) \otimes C^{m} \xrightarrow{\nabla_{\omega_{t}}} \Omega^{1}\left(V_{t}\right) \otimes C^{m} \longmapsto \cdots \tag{1.3}
\end{equation*}
$$

Let \mathscr{S}^{*} be the dual sheaf of \mathscr{S} defined on V_{t} (a local system in V_{t} if (ε) is regular singular and a relative local system in X modulo W_{t} if (ε) is irregular singular of simple type).

A systematic study of these kinds of cohomologies has been done by several authors ([5] [10]). By the comparison theorem we have the isomorphism ([5])

$$
\begin{equation*}
\boldsymbol{H}^{*}\left(V_{t}, \nabla_{\omega_{t}}\right) \simeq H^{*}\left(V_{t}, \mathscr{P}\right) \tag{1.4}
\end{equation*}
$$

From micro local point of view many important results have been established ([9], [10]). But from our point of view that they give "regularization" or "finite part" of integrals in the sense of J. Hadamard-J. Leray ([11] ~[12]), these will be made clear in a concrete way in the foregoing.

We shall restrict ourselves to cases where the cohomologies $\boldsymbol{H}^{*}\left(V_{t}\right.$, $\mathscr{S})$ are finite dimensional.

Let $Y_{t}={ }^{t}\left(y^{(1)}, y^{(2)}, \cdots, y^{(n)}\right)$ be fundamental solutions of (ε) such that

$$
\begin{equation*}
Y_{t}^{-1} \cdot d Y_{t}=\omega_{t} . \tag{1.5}
\end{equation*}
$$

Then the cohomology $H^{p}\left(V_{t}, \mathscr{S}\right)$ and $H_{p}\left(V_{t}, \mathscr{S}^{*}\right)$ are dual to each other. The pairing of $\xi=\Sigma \xi_{j} \otimes \Delta_{j} \in H_{p}\left(V_{t}, \mathscr{S}^{*}\right)$ and $Y \cdot \varphi \in H^{p}\left(V_{t}, \mathscr{S}\right)$, $\varphi \in \Omega^{p}\left(V_{t}\right)$ is given as follows:

$$
\begin{equation*}
\langle\xi, Y \varphi\rangle=\sum_{j} \int_{u_{j}} \xi_{j} \cdot Y \varphi \tag{1.6}
\end{equation*}
$$

where Δ_{j} denotes p-chains in V_{t} and $\xi_{j} \in \mathscr{S}_{\Delta_{j}}^{*}$ (stalk over Δ_{j}) which is isomorphic to C^{m}.

Let G be a connected algebraic group over C acting in T, X and W such that the following holds:
($\mathscr{H}) \quad$ There exists $\Phi \in \Omega^{n}\left(V_{t}\right) \otimes \mathfrak{g} l(m, C)$ such that $Y \cdot \Phi$ has the invariant property:

$$
\begin{equation*}
Y \cdot \Phi\left(g^{-1} t, g^{-1} x ; d\left(g^{-1} x\right)\right)=Y \cdot \Phi(t, x ; d x) \cdot \lambda(g), \quad g \in G \tag{1.7}
\end{equation*}
$$

where $\lambda(g)$ denotes a representation of G into $G L_{m}(C)$. We put

$$
\begin{equation*}
\tilde{\Phi}(t)=\langle\xi, Y \Phi\rangle \tag{1.8}
\end{equation*}
$$

Then

$$
\begin{align*}
\tilde{\Phi}\left(g^{-1} t\right) & =\sum \int_{\Delta_{j}} \xi_{j} \cdot Y \Phi\left(g^{-1} t, x ; d x\right) \\
& =\sum \int_{g_{j}} \xi_{j} Y \Phi\left(g^{-1} t, g^{-1} x ; d\left(g^{-1} x\right)\right) \tag{1.9}\\
& =\sum \int_{g_{j}} \xi_{j} Y \Phi(t, x ; d x) \cdot \lambda(g) \\
& =\sum_{\Delta_{j}} \xi_{j} Y \Phi(t, x ; d x) \cdot \lambda(g)
\end{align*}
$$

because $\sum_{j} \xi_{j} \otimes g \Delta_{j}$ is homologous to $\sum_{j} \xi_{j} \otimes \Delta_{j}$ in $H_{n}\left(V_{t}, \mathscr{S}^{*}\right)$, seeing that G is connected.

We shall only consider the forms $Y \Phi$ satisfying (\mathscr{H}).
We assume now that $\tilde{\Phi}(t)$ satisfies the Gauß-Manin system in $T-T_{0}$, namely that there exists a system of matrix functions of integrals $\tilde{\Phi}_{1}(t), \cdots$, $\tilde{\Phi}_{\mu}(t)$ such that

$$
\begin{equation*}
d_{t} \tilde{\Phi}_{i}(t)=\sum_{j=1}^{\mu} \tilde{\Phi}_{j} \Theta_{j i}(t, d t) \tag{1.10}
\end{equation*}
$$

where $\Theta=\left(\Theta_{i j}(t, d t)\right)_{1 \leq i, j \leq \mu}$ satisfies

$$
\begin{equation*}
d \Theta+\Theta \wedge \Theta=0 \tag{1.11}
\end{equation*}
$$

Then we have the following proposition.
Proposition 1. $\Theta(t, d t)$ is invariant with respect to the action of G in T :

$$
\begin{equation*}
\Theta\left(g^{-1} t, d\left(g^{-1} t\right)\right)=\Theta(t, d t) \tag{1.12}
\end{equation*}
$$

This invariant expression gives us a powerful tool for explicit expressions of Gauß-Manin systems for certain integrals of (0.1).

We shall give it from now on. We shall only consider the case where $m=1$. So we may assume $\lambda(g) \in C^{*}$.
§ 2. (Example 1) Configurations of hyperplanes in projective spaces
Let $X=\boldsymbol{C P}^{n}$ and f_{1}, \cdots, f_{m} be a sequence of linear functions

$$
\begin{equation*}
f_{j}=\sum_{\nu=1}^{n} a_{j \nu} x_{\nu}+a_{j 0} . \tag{2.1}
\end{equation*}
$$

We consider the integral

$$
\begin{equation*}
F(t)=\int f_{1}^{\lambda_{1}} \cdots f_{m}^{\lambda_{m}} d x_{1} \wedge \cdots \wedge d x_{n}, \text { for } \lambda_{j} \in C . \tag{2.2}
\end{equation*}
$$

The space T is isomorphic to $C^{(n+1) m}$ consisting of points of coefficients $t=\left(\left(a_{j \nu}\right)\right)_{1 \leq j \leq m, 0 \leq \nu \leq n}$. The integral $F(t)$ admits of the action of $G L_{n}(C)$ in T and X respectively such that $f_{j}(x)$ is invariant.
W is defined as follows:

$$
\begin{equation*}
W=\left\{(t, x) \in T \times X \mid f_{j}(x)=0,0 \leq j \leq m\right\} \tag{2.3}
\end{equation*}
$$

where f_{0} denotes the hyperplane at infinity in $\boldsymbol{C P}{ }^{n}$. The space T_{0} consists of points $t \in T$ such that

$$
\left[i_{1} \cdots i_{n}\right]\left[=\left|\begin{array}{l}
a_{i_{1}} \cdots a_{i_{1} n} \tag{2.4}\\
\vdots \\
a_{i_{1} 1}
\end{array} \cdots a_{i_{n} n}\right|\right] \neq 0
$$

$$
\left[i_{0} i_{1} \cdots i_{n}\right]\left[=\left|\begin{array}{cc}
a_{i_{0} 0} & a_{i_{01}} \cdots a_{i_{0} n} \tag{2.5}\\
\vdots & \\
a_{i_{n} 0} & a_{i_{n} 1} \cdots a_{i_{n} n}
\end{array}\right|\right] \neq 0
$$

for $0<i_{1}<\cdots<i_{n} \leq m$ or $0<i_{0}<i_{1}<\cdots<i_{n} \leq m$.
A basis of integrands are given by the forms

$$
\begin{equation*}
\varphi\left(i_{1} \cdots i_{n}\right)=d \log f_{i_{1}} \wedge \cdots \wedge d \log f_{i_{n}} \tag{2.6}
\end{equation*}
$$

with the fundamental relations

$$
\begin{equation*}
\sum_{j=1}^{m} \lambda_{j} \varphi\left(j i_{1} \cdots i_{n-1}\right) \sim 0 \tag{2.7}
\end{equation*}
$$

in $H^{n}\left(V_{t}, \nabla_{\omega t}\right)$.

Then the Gau β-Manin connection is simply given in invariant expression by

$$
\begin{equation*}
d \tilde{\varphi}(I)=\sum_{\kappa=0}^{n}(-1)^{\kappa} d \dot{\log }\left(\frac{\left[i_{0}, I\right]}{\partial_{\kappa}\left[i_{0}, I\right]}\right) \cdot \tilde{\varphi}\left(\partial_{\kappa}\left(i_{0}, I\right)\right) \tag{2.8}
\end{equation*}
$$

for $I=\left(i_{1}, i_{2}, \cdots, i_{n}\right)$, where $\partial_{x}\left(i_{1}, \cdots, i_{m}\right)$ denotes the κ-th deleted sequence $\left(i_{1}, \cdots, i_{x-1}, i_{x+1}, \cdots, i_{m}\right)$. This is just a generalization of classical Pochhammer type ([14]).

§ 3. (Example 2) Configurations of a quadric and hyperplanes in \boldsymbol{C}^{n}

Let $X=C^{n}$,

$$
\begin{equation*}
f_{0}=-\frac{1}{2} \sum_{j=1}^{n} x_{j}^{2} \tag{3.1}
\end{equation*}
$$

and $f_{1}, f_{2}, \cdots, f_{m}$ be linear functions:

$$
\begin{equation*}
f_{j}=\sum_{\nu=0}^{n} u_{j \nu} x_{\nu}+u_{j 0} . \tag{3.2}
\end{equation*}
$$

Let G be $S O_{n}(C)$ which leaves invariant f_{0}. Let A be a symmetric matrix consisting of basic algebraic invariants $a_{i j}$, where we denote

$$
\left\{\begin{array}{l}
a_{i j}=\left(f_{i}, f_{j}\right)=\sum_{\nu=1}^{n} u_{i \nu} u_{j \nu} \tag{3.3}\\
a_{0 i}=a_{i 0}=u_{i 0}
\end{array}\right.
$$

We normalize $u_{i \nu}$ such that

$$
\begin{equation*}
a_{i i}=\sum_{\nu=1}^{n} u_{i \nu}^{2}=1 . \tag{3.4}
\end{equation*}
$$

We abbreviate by $A\binom{I}{J}$ and $A(I)$ the determinants

$$
\left|\begin{array}{ccc}
a_{i_{1 j_{1}}} & \cdots & a_{i_{1} j_{p}} \tag{3.5}\\
\vdots & & \vdots \\
a_{i_{p} j_{1}} & \cdots & a_{i_{p} j_{p}}
\end{array}\right|
$$

and $A\binom{I}{I}$ respectively. We denotes by T the determinantal variety defined by

$$
\begin{equation*}
T=\{A \mid A(I)=0 \quad \text { for }|I|>m\} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{0}=\{A \in T \mid A(I)=0 \text { for some } I,|I|<m\} \tag{3.7}
\end{equation*}
$$

(See [15].)
Then the integral

$$
\begin{equation*}
F(t)=\int \exp \left[f_{0}(x)\right] f_{1}^{\lambda_{1}}(x) \cdots f_{m}^{\lambda_{m}}(x) d x_{1} \wedge \cdots \wedge d x_{n} \tag{3.8}
\end{equation*}
$$

satisfies the Gauß-Manin connection on $T-T_{0}$, which is expressed by means of basic invariants $a_{i j}$:

For $\left(i_{1}<\cdots<i_{p}\right) \subset\{1,2, \cdots, m\}, 0 \leq p \leq n$ we write

$$
\begin{equation*}
\varphi(I)=\frac{d \tau}{f_{i_{1}} \cdots f_{i_{p}}} \tag{3.9}
\end{equation*}
$$

for $d \tau=d x_{1} \wedge \cdots \wedge d x_{n}$. Then $\varphi(I)$ give a basis of $\sum_{\nu=0}^{m}\binom{m}{\nu}$ linearly independent forms in $H^{n}\left(V_{t}, V_{\omega_{t}}\right)$. We firstly give a basic formula:

$$
\begin{equation*}
d \tilde{\varphi}(\phi)=\sum_{j=1}^{m} d a_{j 0} \lambda_{j} \tilde{\varphi}(j)+\frac{1}{2} \sum_{1 \leq j \neq k \leq m} d a_{j k} \lambda_{j} \lambda_{k} \tilde{\varphi}(j k) \tag{3.10}
\end{equation*}
$$

More generally by using (3.10) we have for $I=\left(i_{1}, \cdots, i_{p}\right)$,

$$
\begin{align*}
A(I) d \tilde{\varphi}(I)= & \frac{1}{2} \sum_{\substack{j \not j \neq k \\
(j, k) \in I^{c}}} \theta\binom{I}{I, j, k} \lambda_{j} \lambda_{k} \tilde{\varphi}(I, j, k)+\theta(I) \tilde{\varphi}(I) \\
& +\frac{1}{2} \sum_{\substack{\mu, \nu \leq p \\
\mu \neq \nu}} \theta\binom{I}{\partial_{\mu} \partial_{\nu} I} \tilde{\varphi}\left(\partial_{\mu} \partial_{\nu} I\right)+\sum_{\substack{k \notin I \\
1 \leq \nu \leq p}} \lambda_{k} \theta\binom{I}{k, \partial_{\nu} I} \tilde{\varphi}\left(k, \partial_{\nu} I\right) \tag{3.11}\\
& +\sum_{1 \leq \nu \leq p} \theta\binom{I}{\partial_{\nu} I} \tilde{\varphi}\left(\partial_{\nu} I\right)+\sum_{k \notin I} \lambda_{k} \theta\binom{I}{k, I} \tilde{\varphi}(k, I)
\end{align*}
$$

$\theta\binom{I}{I, j, k}, \theta(I)$ and $\theta\binom{I}{\partial_{\mu} \partial_{\nu} I}$ denote rational 1-forms defined in T which depend only on $f_{i_{1}}, \cdots, f_{i_{p}}$ and don't depend on n. See [16] for the precise expressions.

As for domains of integration, we assume that f_{j} are all real and in general position. Then a basis of $H_{n}\left(V, \mathscr{S}^{*}\right)$ can be chosen to be just connected components of $\boldsymbol{R}^{n}-\bigcup_{j=1}^{m}\left(f_{j}=0\right)$ provided $\lambda_{1}, \cdots, \lambda_{m}$ all greater than -1 .

§4. (Example 3) A degenerate case of Section 3

Let f_{0} be the quadratic form $\sum_{i=1}^{n} x_{i} y_{i}$. Consider the integral

$$
\begin{align*}
F(t)= & \int \exp \left(-f_{0}(x, y)\right) f_{1}^{\lambda_{1}}(x) \cdots f_{s}^{\lambda_{s}}(x) f_{s+1}^{\lambda_{s+1}}(y) \tag{4.1}\\
& \cdots f_{s+t}^{\lambda_{s}+t}(y) d x_{1} \wedge \cdots \wedge d x_{n} \wedge d y_{1} \wedge \cdots \wedge d y_{n}
\end{align*}
$$

for $f_{j}(x)=\sum_{\nu=1}^{n} u_{j \nu} x_{\nu}$ and $f_{s+k}(y)=\sum_{\nu=1}^{n} u_{s+k, \nu} y_{\nu}$.
Then $X=C^{2 n}$ and T becomes the affine space $C^{s t}$ consisting of matrices of $(s+t)$ order:

$$
\mathscr{A}=\left(\begin{array}{cc}
0 & A \tag{4.2}\\
{ }^{t} A & 0
\end{array}\right)=\left(\left(\begin{array}{cc}
0 & \left(\left(a_{i j^{\prime}}\right)\right) \\
\left(\left(a_{i^{\prime} j}\right)\right) & 0
\end{array}\right)\right)
$$

where $a_{j^{\prime} i}=a_{i j^{\prime}}=\sum_{\nu=1}^{n} u_{i \nu} u_{j^{\prime} \nu}$.
$H^{2 n}\left(V_{t}, \nabla_{\omega_{t}}\right)$ is spanned by linearly independent forms $\varphi\left(I, J^{\prime}\right)=$ $A\binom{I}{J^{\prime}} \varphi_{*}\left(I, J^{\prime}\right)$, where $\varphi_{*}\left(I, J^{\prime}\right)$ denotes

$$
\begin{equation*}
\varphi_{*}\left(I, J^{\prime}\right)=\frac{d x_{1} \wedge \cdots \wedge d x_{n} \wedge d y_{1} \wedge \cdots \wedge d y_{n}}{f_{i_{1}}(x) \cdots f_{i_{p}}(x) f_{j_{1}^{\prime}}(y) \cdots f_{j_{p}^{\prime}}(y)} \tag{4.3}
\end{equation*}
$$

for $I=\left(i_{1}<\cdots<i_{p}\right) \subset\{1,2, \cdots, s\}, J^{\prime}=\left(j_{1}^{\prime}<\cdots<j_{p}^{\prime}\right) \subset\{s+1, \cdots, s+t\}$. This number is equal to $\sum_{p=0}^{n-1}\binom{s-1}{p}\binom{t-1}{p}$. The Gau β-Manin system for $\tilde{\varphi}\left(I, J^{\prime}\right)$ is described as follows:

$$
\begin{aligned}
d \tilde{\varphi}\left(I, J^{\prime}\right)= & \sum_{i \notin I, j^{\prime} \notin J^{\prime}} \lambda_{i} \lambda_{j^{\prime}} d \log A\binom{i, I}{j^{\prime}, J^{\prime}} \tilde{\varphi}\left(i, I ; j^{\prime}, J^{\prime}\right) \\
& +\sum_{\mu, \nu}(-1)^{\mu+\nu-1} d \log A\binom{\partial_{\mu} I}{\partial_{\nu} J^{\prime}} \tilde{\varphi}\left(\partial_{\mu} I ; \partial_{\nu} J^{\prime}\right) \\
& +\sum_{k \notin I} \sum_{\nu=1}^{|I|}(-1)^{\nu-1} \lambda_{k} d \log A\binom{k, \partial_{\nu} I}{J^{\prime}} \tilde{\varphi}\left(k, \partial_{\nu} I ; J^{\prime}\right) \\
& +\sum_{k^{\prime} \notin J^{\prime}} \sum_{\nu=1}^{\left|J^{\prime}\right|}(-1)^{\nu-1} \lambda_{k^{\prime}} d \log A\binom{I}{k^{\prime}, \partial_{\nu} J^{\prime}} \tilde{\varphi}\left(I ; k^{\prime}, \partial_{\nu} J^{\prime}\right) \\
& \left.+\sum_{\nu=1}^{|I|} \lambda_{i_{\nu}} d \log A\binom{I}{J^{\prime}} \tilde{\varphi}\left(I ; J^{\prime}\right) \right\rvert\, \\
& +\sum_{\nu=1}^{\left|J^{\prime}\right|} \lambda_{j_{\nu}^{\prime}} d \log A\binom{I}{J^{\prime}} \tilde{\varphi}\left(I ; J^{\prime}\right)
\end{aligned}
$$

for $|I|=\left|J^{\prime}\right| \leq n-1 . \quad$ (See [16] p. 280.)

§ 5. Applications

Hypergeometric functions of Mellin-Sato type are defined by Mellin transforms of products of Γ-functions

$$
\begin{equation*}
\Gamma\left(\sum_{j=0}^{m} \alpha_{j} s_{j}+\alpha_{0}\right) \tag{5.1}
\end{equation*}
$$

where $\alpha_{j} \in \boldsymbol{Q}$ ([17]). They are described by means of convolution integrals of elementary functions ([18]). We shall show that some of these are expressed by means of integrals discussed in the preceding sections.

1) (Pochhammer [19]) Goursat hyper-geometric functions are defined by the following series.

$$
F\left(\left.\begin{array}{l}
\alpha_{1}, \cdots, \alpha_{m} \tag{5.2}\\
\beta_{1}, \cdots, \beta_{m}
\end{array} \right\rvert\, z\right)=\sum_{n=0}^{\infty} \frac{\Gamma\left(\alpha_{1}+n\right) \cdots \Gamma\left(\alpha_{m}+n\right)}{\Gamma\left(\beta_{1}+n\right) \cdots \Gamma\left(\beta_{m}+n\right)} z^{n}
$$

By substitution of the well-known formula

$$
\begin{equation*}
\frac{\Gamma(\alpha+n)}{\Gamma(\beta+n)}=\frac{1}{\Gamma(\beta-\alpha)} \int_{0}^{1} x^{\alpha+n-1}(1-x)^{\beta-\alpha-1} d x \tag{5.3}
\end{equation*}
$$

we have

$$
\begin{align*}
F\left(\left.\begin{array}{c}
\alpha_{1}, \cdots, \alpha_{m} \\
\beta_{1}, \cdots, \beta_{m}
\end{array} \right\rvert\, z\right)= & \sum_{n=0}^{\infty} \frac{1}{\prod_{j=1}^{m} \Gamma\left(\beta_{j}-\alpha_{j}\right)} \int_{0}^{1} x_{1}^{\alpha_{1}+n-1}(1-x)^{\beta_{1}-\alpha_{1}-1} \\
& \cdots x_{m}^{\alpha_{m}+n-1}\left(1-x_{m}\right)^{\beta_{m}-\alpha_{m}-1} d x_{1} \wedge \cdots \wedge d x_{m} z^{n} \tag{5.4}\\
= & \frac{1}{\prod_{j=1}^{m} \Gamma\left(\beta_{j}-\alpha_{j}\right)} \int_{0}^{1} \cdots \int_{0}^{1} \prod_{j=1}^{m}\left(1-x_{j}\right)^{\beta_{j}-\alpha_{j}-1} \\
& \cdot x_{j}^{\alpha_{j}-1} \cdot\left(1-z x_{1} \cdots x_{m}\right)^{-1} d x_{1} \cdots d x_{m} .
\end{align*}
$$

By change of variables of integration,

$$
\left\{\begin{array}{c}
y_{1}=x_{1} \cdots x_{m} \tag{5.5}\\
y_{2}=x_{2} \cdots x_{m} \\
\vdots \\
y_{m}=x_{m}
\end{array}\right.
$$

we have

$$
\begin{align*}
& F\left(\left.\begin{array}{c}
\alpha_{1} \cdots \alpha_{m} \\
\beta_{1} \cdots \beta_{m}
\end{array} \right\rvert\, z\right) \\
& \quad=\frac{1}{\prod_{j=1}^{m} \Gamma\left(\beta_{j}-\alpha_{j}\right)} \int_{0<y_{m}<\cdots<y_{1}<1} \cdots \int_{1}\left(1-y_{1}\right)^{\beta_{1}-\alpha_{1}-1} \cdot\left(y_{1}-y_{2}\right)^{\beta_{2}-a_{9}-} \tag{5.6}
\end{align*}
$$

$$
\begin{aligned}
& \cdots\left(y_{m-2}-y_{m-1}\right)^{\beta_{m-1}-\alpha_{m-1}-1}\left(y_{m-1}-y_{m}\right)^{\beta_{m}-\alpha_{m}-1} \cdot y_{1}^{\alpha_{1}-\beta_{2}} \\
& \cdots y_{m-1}^{\alpha_{m-1}-\beta_{m}} y_{m}^{\alpha_{m}-1} \frac{d y_{1} \cdots d y_{m-1} d y_{m}}{1-z y_{m}} .
\end{aligned}
$$

This is a degenerate case of (2.2), where we put $X=C^{m}, T=C$ an

$$
\begin{align*}
W= & \left(x_{1}=0\right) \cup \cdots \cup\left(x_{m}=0\right) \cup\left(1-x_{1}=0\right) \cup\left(x_{1}-x_{2}=0\right) \cup \cdots \tag{5.7}\\
& \cup\left(x_{m-1}-x_{m}=0\right) \cup\left(1-z x_{m}=0\right)
\end{align*}
$$

for $z \in C$ and $\left(x_{1}, \cdots, x_{m}\right) \in C^{m}$.

A basis of linearly independent integrands in $\boldsymbol{H}^{m}\left(V_{t}, \nabla_{w_{t}}\right)$ can be chosen among logarithmic forms, for example, as follows

$$
\left\{\begin{array}{l}
d \log x_{1} \wedge d \log x_{2} \wedge \cdots \wedge d \log x_{m} \tag{5.7}\\
d \log \left(1-x_{1}\right) \wedge d \log x_{2} \wedge \cdots \wedge d \log x_{m} \\
d \log \left(1-x_{1}\right) \wedge d \log \left(x_{1}-x_{2}\right) \wedge d \log x_{3} \wedge \cdots \wedge d \log x_{m} \\
\cdots \cdots \cdots \\
d \log \left(1-x_{1}\right) \wedge d \log \left(x_{1}-x_{2}\right) \wedge \cdots \wedge d \log \left(x_{m-1}-x_{m}\right)
\end{array}\right.
$$

so that $F\left(\left.\begin{array}{c}\alpha_{1} \cdots \alpha_{m} \\ \beta_{1} \cdots \beta_{m}\end{array} \right\rvert\, z\right)$ satisfies the Gau β-Manin connection of order $(m+1)$.
When $\beta_{m}=1$, then the integral is reduced to the $(m-1)$-dimensional integral

$$
F\left(\left.\begin{array}{cccc}
\alpha_{1} & \cdots & \cdots & \alpha_{m} \\
\beta_{1} \cdots \beta_{m-1} & 1
\end{array} \right\rvert\, z\right)
$$

$$
\begin{align*}
= & \frac{1}{\prod_{j=1}^{m} \Gamma\left(\beta_{j}-\alpha_{j}\right)} \int_{0<y_{m}<\cdots<y_{1}<1} \cdots \int\left(1-y_{1}\right)^{\beta_{1}-\alpha_{1}-1}\left(y_{1}-y_{2}\right)^{\beta_{2}-\alpha_{2}-1} \tag{5.8}\\
& \cdots\left(y_{m-2}-y_{m-1}\right)^{\beta_{m-1}-\alpha_{m-1}-1} \cdot y_{1}^{\alpha_{1}-\beta_{2}} \cdots y_{m-2}^{\alpha_{m}-\beta_{m-1}} \\
& \cdot y_{m-1}^{\alpha_{m-1}-1} \cdot\left(z y_{m-1}-1\right)^{-\alpha_{m}} d y_{1} \wedge d y_{2} \wedge \cdots \wedge d y_{m-1}
\end{align*}
$$

spanned by

$$
\left\{\begin{array}{l}
d \log y_{1} \wedge \cdots \wedge d \log y_{m-1} \tag{5.9}\\
d \log \left(1-y_{1}\right) \wedge d \log y_{2} \wedge \cdots \wedge d \log y_{m-1} \\
\quad \cdots \cdots \cdots \\
d \log \left(1-y_{1}\right) \wedge d \log \left(y_{1}-y_{2}\right) \wedge \cdots \wedge d \log \left(y_{m-2}-y_{m-1}\right)
\end{array}\right.
$$

so that F satisfies the Gau β-Manin connection of order m. Exact expressions are both rather complicated although these are elementarily computable. See [20] and [21] for other kinds of hypergeometric functions.
2) Lauricella hypergeometric functions are defined to be the following series ([17])

$$
\begin{align*}
& \sum_{\nu_{1} \geq 0, \ldots, \nu_{n} \geq 0} \frac{\Gamma\left(\lambda_{0}+\nu_{1}+\cdots+\nu_{m}\right) \prod_{j=1}^{m}\left\{\Gamma\left(\lambda_{j}+\nu_{j}\right) \Gamma\left(\lambda_{j}^{\prime}\right)\right\}}{\prod_{j=1}^{m} \Gamma\left(\lambda_{j}+\lambda_{j}^{\prime}+\nu_{j}\right) \cdot \Gamma\left(\lambda_{0}\right)} \tag{5.10}\\
& \quad \cdot x_{1}^{\nu_{1}} x_{2}^{\nu_{2}} \cdots x_{n}^{\nu_{n}}
\end{align*}
$$

which can be expressed by the integrals

$$
\begin{align*}
& \int_{0}^{1} \cdots \int_{0}^{1}\left(1-\sum_{j=1}^{n} x_{j} \xi_{j}\right)^{\lambda_{0}} \prod_{j=1}^{n} \xi_{j^{\lambda_{j}-1}}\left(1-\xi_{j}\right)^{\lambda_{j}^{\prime}-1} d \xi_{1} \wedge \cdots \wedge d \xi_{n} . \tag{5.11}\\
& \quad \text { for } X=C^{n} \text { and } T=C^{n},
\end{align*}
$$

where W is defined by

$$
\left(1-\sum_{j=1}^{n} x_{j} \xi_{j}=0\right) \cup \bigcup_{n \geq j \geq 1}\left(\xi_{j}=0\right) \cup \bigcup_{n \geq j \geq 1}\left(1-\xi_{j}=0\right)
$$

A basis of the cohmology $\boldsymbol{H}^{n}\left(V_{t}, \nabla_{w_{t}}\right)$ can be chosen by means of spin variables as follows:

$$
\begin{equation*}
\varphi\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}\right)=\frac{d \xi_{1}}{\xi_{1}-\varepsilon_{1}} \wedge \frac{d \xi_{2}}{\xi_{2}-\varepsilon_{2}} \wedge \cdots \wedge \frac{d \xi_{n}}{\xi_{n}-\varepsilon_{n}} \tag{5.12}
\end{equation*}
$$

where ε_{ν} denotes 0 or 1 . Therefore $H^{n}\left(V_{t}, \mathscr{S}\right)$ is identified with the n-th tensor product $\underbrace{\boldsymbol{C}^{2} \otimes \cdots \otimes C^{2}}_{n}$. Then the Gauß-Manin connection in T T_{0} is described as follows:

$$
\begin{equation*}
d \tilde{\varphi}\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)=\sum_{\varepsilon^{\prime} \in Z_{2}^{n}} \tilde{\varphi}\left(\varepsilon_{1}^{\prime}, \cdots, \varepsilon_{n}^{\prime}\right) \theta\binom{\varepsilon_{1}^{\prime} \cdots \varepsilon_{n}^{\prime}}{\varepsilon_{1} \cdots \varepsilon_{n}} \tag{5.13}
\end{equation*}
$$

where $\Theta=\left(\left(\theta\binom{\varepsilon_{1}^{\prime} \cdots \varepsilon_{n}^{\prime}}{\varepsilon_{1} \cdots \varepsilon_{n}}\right)\right)$ denotes the 2^{n}-order matrix valued logarithmic 1-form

$$
\begin{equation*}
\Theta=\sum_{\nu=1}^{n} A_{\nu} \cdot d \log x_{\nu}+\sum A_{0} \cdot \hat{\Theta} \tag{5.14}
\end{equation*}
$$

through the formulae

$$
\begin{align*}
\boldsymbol{A}_{0} & =\lambda_{0} \boldsymbol{l}_{2} \otimes \cdots \otimes \boldsymbol{l}_{2}+\sum_{\sigma=1}^{n} \underbrace{\boldsymbol{l}_{2} \otimes \cdots \otimes \boldsymbol{l}_{2} \otimes}_{\sigma-1}\binom{\lambda_{\sigma}-1, \lambda_{\sigma}-1}{\lambda_{\sigma}^{\prime}-1, \lambda_{\sigma}^{\prime}-1} \otimes \underbrace{\boldsymbol{l}_{2} \otimes \cdots \otimes \boldsymbol{l}_{2}}_{n-\sigma} \tag{5.15}\\
& =\lambda_{0} \boldsymbol{l}_{2} \otimes \cdots \otimes \boldsymbol{l}_{2}-\sum_{\sigma=1}^{n} A_{\sigma}
\end{align*}
$$

and the diagonal 1 -form $\hat{\Theta}=\left(\left(\hat{\theta}\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)\right), \varepsilon_{\nu}=0\right.$ or 1 with

$$
\hat{\theta}\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)=d \log \left(1-x_{1} \varepsilon_{1}-\cdots-x_{n} \varepsilon_{n}\right)
$$

Here \boldsymbol{l}_{2} dnotes the identity matrix of 2 nd order.
3) Correlation functions for random matrices.

Consider the integral

$$
\begin{equation*}
F\left(x_{1}, \cdots, x_{l} \mid \beta\right)=\int_{1 \leq i<j \leq n} \prod_{i}\left(x_{i}-x_{j}\right)^{\beta} d x_{l+1} \wedge \cdots \wedge d x_{n}, \quad l \geq 2 \tag{5.17}
\end{equation*}
$$

where $X=\boldsymbol{C}^{n-l}$ and $\boldsymbol{T}=\boldsymbol{C}^{\iota} . \quad W$ is defined by the equations

$$
\begin{equation*}
x_{i}-x_{j}=0 \quad \text { for } 1 \leq i \leq n, \quad l+1 \leq j \leq n . \tag{5.18}
\end{equation*}
$$

We denote by

$$
\begin{equation*}
\varphi\left(i_{1}, i_{2}, \cdots, i_{n-l}\right)=d \log \left(x_{i_{1}}-x_{l+1}\right) \wedge \cdots \wedge d \log \left(x_{i_{n-l}}-x_{n}\right) \tag{5.19}
\end{equation*}
$$

for $i_{1} \leq l, i_{2} \leq l+1, \cdots, i_{n-l} \leq n-1$. These are not linearly independent in $\boldsymbol{H}^{n-l}\left(V_{t}, \nabla_{\omega_{t}}\right)$. Actually we can choose a basis as follows:

$$
\begin{equation*}
\varphi\left(i_{1}, \cdots, i_{n-l}\right)=d \log \left(x_{i_{1}}-x_{l+1}\right) \wedge \cdots \wedge d \log \left(x_{i_{n-l}}-x_{n}\right) \tag{5.20}
\end{equation*}
$$

for $i_{1}<l, \cdots, i_{n-l}<n-1$, so that H^{n-l} has dimension $(l-1) \cdots(n-2)$.
Lemma. Let $Y(x)$ a matrix valued function of x satisfying

$$
\begin{equation*}
Y^{-1} \frac{d Y}{d x}=\sum_{i=1}^{N} \frac{U_{i}}{x-\alpha_{i}} \tag{5.21}
\end{equation*}
$$

where U_{i} denotes constant matrices of order n satisfying the equations of Schlesinger-Lappo-Danilevski (See [22].)

$$
\begin{equation*}
\sum_{j \neq i}\left[U_{i}, U_{j}\right] d \log \left(\alpha_{i}-\alpha_{j}\right)=0 \tag{5.22}
\end{equation*}
$$

for each i. Let $e_{\mu}(1 \leq \mu \leq n)$ be the μ-th unit column n-vector. We put

$$
\begin{equation*}
\tilde{y}_{i, \mu}=\int Y e_{\mu} d \log \left(x-\alpha_{i}\right) . \tag{5.23}
\end{equation*}
$$

Then the line vector $\tilde{y}_{i}=\left(\tilde{y}_{i, 1}, \cdots, \tilde{y}_{i, n}\right)$ satisfies a linear differential equation of Pochhammer type:

$$
\begin{equation*}
d \tilde{y}_{i, \mu}=\sum_{j \neq i} d \log \left(\alpha_{j}-\alpha_{i}\right)\left(\tilde{y}_{i, \mu}-\tilde{y}_{j, \mu}\right) U_{j} \tag{5.24}
\end{equation*}
$$

(See [23]).
By repeated application of this Lemma, we can prove the following

$$
\begin{align*}
d \tilde{\varphi}\left(i_{1}, i_{2}, \cdots, i_{n-l}\right)= & \sum_{1 \leq \sigma, \tau \leq p, j_{1} \leq l \cdots j_{n-l} \leq n-1} \tilde{\varphi}\left(j_{1}, j_{2}, \cdots, j_{n-l}\right) . \\
& \cdot U_{\sigma \tau}^{(l)}\binom{j_{1} \cdots j_{n-l}}{i_{1} \cdots i_{n-l}} d \log \left(\alpha_{\sigma}-\alpha_{\tau}\right) \tag{5.25}
\end{align*}
$$

for $i_{1} \leq l, \cdots, i_{n-l} \leq n-1 . \quad U_{o \tau}^{(l)}$ are determined recursively by

$$
\begin{align*}
U_{\sigma \tau}^{(p)}= & \left(e_{\sigma, \sigma}^{(p)}-e_{\tau, \sigma}^{(p)}\right) \otimes\left(U_{\tau, p+1}^{(p+1)}+\beta \cdot \boldsymbol{l}_{N p+1}\right) \tag{5.26}\\
& +\left(-e_{\sigma, \tau}^{(p)}+e_{\tau, \tau}^{(p)}\right) \otimes\left(U_{\sigma, p+1}^{(p+1)}+\beta \cdot \boldsymbol{l}_{N_{p+1}}\right)+\boldsymbol{l}_{p} \otimes U_{\sigma \tau}^{(p+1)}
\end{align*}
$$

for $1 \leq \sigma, \tau \leq p, l \leq p \leq n, N_{p}=p(p+1) \cdots(n-1)$, where we put $U_{\sigma, \tau}^{(n)}=\beta$ and $e_{\sigma \tau}^{(p)}$ denotes the unit matrix of order p of (σ, τ) non-zero component. The symmetric group ς_{n-l} acts faithfully on $H^{n-l}\left(V_{t}, \mathscr{S}\right)$. (5.25) is not invariant by this action. It seems interesting to compute the Gau β-Manin system for its invariant part $\left[H^{n-l}\left(V_{t}, \mathscr{S}\right)\right]^{\varsigma_{n-l}}$, for it is related to the correlation functions for random matrices ([24] $\sim[25])$

$$
\begin{equation*}
\int \prod_{\substack{x_{1} \leq x_{j} \leq x_{2} \\ l+1 \leq j \leq n}}\left|x_{i}-x_{j}\right|^{\beta} d x_{l+1} \cdots d x_{n}, \quad l \geq 2 \tag{5.27}
\end{equation*}
$$

When $l=2$, $\operatorname{dim} H^{n}\left(V_{t}, \mathscr{S}\right)$ is equal to $(n-2)$!, so that $\operatorname{dim}\left[H^{n}\left(V_{t}, \mathscr{S}\right)\right]^{\Phi_{n}}$ is just equal to 1 . Therefore from a result in [11], (5.27) is reduced to a finite product of Γ-factors. The exact expression has been known since [26]. It seems to be interesting to compute linear difference equations or GaußManin connections of (5.27) of the variable β or $\left(x_{1}, \cdots, x_{l}\right)$ in invariant expression with respect to the action of \mathbb{S}_{n-l}.
4) Correlation functions for random matrices ([24]).

$$
\begin{equation*}
\int \exp \left[-\frac{1}{2} \sum_{j=1}^{n} x_{j}^{2}\right] \prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)^{\beta} d x_{l+1} \wedge \cdots \wedge d x_{n} \tag{5.28}
\end{equation*}
$$

as a function of x_{1}, \cdots, x_{l} for $0 \leq l<n$. This is a degenerate case of the integral (3.8).
X, T and W are defined as in the preceding case. A basis of $H^{n-l}\left(V_{t}, \nabla_{\omega_{t}}\right)$ can be chosen as follows: for $p \geqq 0$,

$$
\begin{equation*}
\varphi\left(\left(i_{1} j_{1}\right) \cdots\left(i_{p} j_{p}\right)\right)=\frac{d x_{i+1} \wedge \cdots \wedge d x_{n}}{\left(x_{i_{1}}-x_{j_{1}}\right) \cdots\left(x_{i_{p}}-x_{j_{p}}\right)} \tag{5.29}
\end{equation*}
$$

where $i_{1}<j_{1}, \cdots, i_{p}<j_{p}$ and $l+1 \leq j_{1}<\cdots<j_{p} \leq n$. Its dimension is equal to $(l+1) \cdots n$. In particular, when $l=0$, it is equal to $n!$. The invariant part $\boldsymbol{H}^{n}\left(V_{t}, \nabla_{\omega_{t}}\right)^{\varsigma_{n}}$ is just 1-dimensional. It is known that the corresponding integral is equal to a product of Γ-factors ([25]).
5) Correlation functions for 2-dimensional vortex system in statistical mechanics ([27], [28]).

$$
\int \exp \left[-\frac{1}{2} \sum z_{j} \bar{z}_{j}\right] \sum_{1 \leq i<j \leq n}\left|z_{i}-z_{j}\right|^{\beta} d \bar{z}_{l+1} d z_{l+1} \cdots d \bar{z}_{n} d z_{n}
$$

Here we have $X=C^{2(n-l)}, T=C^{2 t}$ and

$$
W=\bigcup_{i<j}\left(z_{i}-z_{j}=0\right) \cup \bigcup_{i<j}\left(\bar{z}_{i}-\bar{z}_{j}=0\right) .
$$

The cohomology $\boldsymbol{H}^{n}\left(X-W_{t}, \nabla_{\omega_{t}}\right)$ has a basis of the forms

$$
\begin{aligned}
& \varphi\left(\left(i_{1} j_{1}\right) \cdots\left(i_{p} j_{p}\right) \mid\left(i_{1}^{\prime} j_{1}^{\prime}\right) \cdots\left(i_{p}^{\prime} j_{p}^{\prime}\right)\right) \\
& \quad=\frac{d z_{l+1} \wedge d \bar{z}_{l+1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{n}}{\left(z_{i_{1}}-z_{j_{1}}\right) \cdots\left(z_{i_{p}}-z_{j_{p}}\right)\left(\bar{z}_{i_{1}^{\prime}}-\bar{z}_{j_{1}^{\prime}}\right) \cdots\left(\bar{z}_{i_{p}^{\prime}}-\bar{z}_{j_{p}^{\prime}}\right)}, \quad 0 \leq p \leq n
\end{aligned}
$$

for $i_{1}<j_{1}, \cdots, i_{p}<j_{p}, i_{1}^{\prime}<j_{1}^{\prime}, \cdots, i_{p}^{\prime}<j_{p}^{\prime}, l+1 \leq j_{1}<\cdots<j_{p} \leq n, l+1 \leq$ $j_{1}^{\prime}<\cdots<i_{p}^{\prime} \leq n$, so that its dimension is equal to $\{(l+1) \cdots n\}^{2}$. The semidirect product of the group \mathfrak{S}_{n-l} and \boldsymbol{Z}_{2}^{n-l} faithfully acts on $\boldsymbol{H}^{n-l}\left(V_{t}, \nabla_{\omega_{t}}\right)$. In particular when $l=0$, we have

$$
\operatorname{dim} \boldsymbol{H}^{n}\left(V_{t}, \nabla_{\omega_{t}}\right)=(n!)^{2}>n!2^{n} .
$$

Namely $\operatorname{dim} \boldsymbol{H}^{n}\left(V_{t}, \nabla_{\omega_{t}}\right)^{\mathfrak{S}_{n-l} \cdot Z_{2}^{n-l}}>1$. This fact strongly suggests that the partition function of the 2-dimensional vortex system

$$
\int_{C^{n}} \exp \left(-\sum_{j=1}^{n} z_{j} \bar{z}_{j}\right) \prod_{i<j}\left|z_{i}-z_{j}\right|^{\beta} d \bar{z}_{1} \wedge d z_{1} \wedge \cdots \wedge d \bar{z}_{n} \wedge d z_{n}
$$

can not be described by any product of Γ-factors as a function of β, although this satisfies linear difference equations over rational functions of β (see [11]). From the view point of statistical mechanics it seems very interesting problem to compute the Gauß-Manin system of infinite order for correlation functions when n tends to the infinity.

References

[1] D. Mumford, Geometric invariant theory, Springer, 1965.
[2] J. Leray, Un complément au théorème de N. Nilsson sur les intégrales de formes différentiélles à support singulier algébrique, Bull. Soc. Math. France, 95 (1967), 313-374.
[3] T. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc., 75 (1969), 240-284.
[4] D. T. Lê et B. Teissier, Cycles evanescents, sections planes et conditions de Whitney II, preprint (1982).
[5] P. Deligne, Equations différentielles à points singuliers réguliers, Lec. Notes in Math., 163, Springer, 1970.
[6] M. Sato, T. Kawai and M. Kashiwara, Micro-functions and pseudo-differential equations, Hyper-functions and pseudo-differential equations, Lec. Notes in Math. 287, Springer, 1971.
[7] T. Kawai and M. Kashiwara, On holonomic systems of micro-differential Kyoto Univ., 17 (1981), 813-979.
[8] H. Majima, ∇-Poincaré's Lemma and an Isomorphism Theorem of de Rham type in Asymptotic Analysis, preprint, 1982.
[9] F. Pham, Singularités de systèmes différentiels de Gau β-Manin, Prog. in Math. 2, Birkhäuser 1979.
[10] M. Kashiwara, Systems of microdifferential equations, Prog. in Math. 34, Birkhäuser 1983.
[11] K. Aomoto, Les équations aux différences linéaires et les intégrales des fonctions multiformes, J. Fac. Sci. Univ. Tokyo, 22 (1975), 271-297.
[12] - Une correction et un complement à l'article "Les équations aux différences linéaires et les intégrales des fonctions multiformes", J. Fac. Sci., Univ. Tokyo, 26 (1979), 519-523.
[13] M. Kita and M. Noumi, On the structure of cohomology groups attached to integrals of certain many valued analytic functions, Japan. J. Math., 9 (1983), 113-157.
[14] K. Aomoto, On the structure of integrals of power product of linear functions, Sci. Papers College. Gen. Ed., Univ. Tokyo, 27 (1977), 49-61.
[15] V. Lakshimibai and C. S. Seshadri, Geometry of G/P-II, Proc. Indian Acad. Sci., 87 (1978), 1-54.
[16] K. Aomoto, Configurations and invariant Gau β-Manin connections of integrals, I., Tokyo J. Math., 5 (1982), 249-287 and II, ibid. 6 (1983), 1-24.
[17] G. Belardinelli, Fonctions hypérgéométriques de plusieurs variables et résolutions analytiques des équations algébriques générales, Gauthiers-Villars, 1960.
[18] M. Sato, Singular orbits in prehomogeneous vector spaces, Lec. Notes at Univ. of Tokyo, 1971.
[19] L. Pochhammer, Über die Differential-gleichungen n-ter Ordnung mit einen endlichen singulären Punkte, J. Reine Angew. Math., 108 (1891), 50-87.
[20] K. Okubo, On the group of Fuchsian equations, Prog. Report for Grant-inAid, Sci. Res., in Japan, 1981.
[21] T. Kimura, Hypergeometric functions of two variables, Sem. Notes, Minnesota Univ., 1973.
[22] B. Malgrange, Sur les deformations isomonodromiques I, II, Sem. E. N. S. 1979-81.
[23] K. Aomoto, Un théorème du type de M-M concernant l'intégrale des fonctions multiformes, J. Math. Pures/Appl., 52 (1973), 1-11.
[24] M. L. Mehta, Random matrices and the statistical theory of energy levels, Acad. Press, 1967.
[25] M. L. Mehta, A method of integration over matrix variables, Comm. Math. Phys., 79 (1981), 327-340.
[26] A. Selberg, Bemerkninger om et multiplelt integral, Nordisk Mat. Tidskr., 26 (1944), 71-78.
[27] L. Van Hove, Queques propriétés générales de l'intégrale de configuration d'un système de particules avec interaction, Phys. XV, (1949), 951-961.
[28] J. Fröhlich-D. Ruelle, Statistical mechaniscs of vortices in an inviscid two dimensional fluid, I, Comm. Math. Phys., 87 (1982), 1-36.

Department of Mathematics
Faculty of Science
Nagoya University
Chikusa-ku, Nagoya 464
Japan

