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We regard C{¥ as a subalgebra embedded in 45, by a diagram automor-
phism of the latter. Namely, let &, for B, (0<i<2I—1) denote the
Chevalley basis of §=A4{,. Then the elements e, f;, &, (0=i</) given
by

Xo=%, x;=%+xy., (IZiZl-1), x=%,

(x=e,f, h)
together with the derivation d, generate a subalgebra g which can be (and

is) identified with C». Under this identification, the two algebras share
the central element

. L
c= Z}) h,= ;hi

in common. Denote by §) = (®%: Ch)DCd, §h=(®'_, Ch)DCd the
Cartan subalgebras of § and g, respectively. Then the simple roots &; € h*
for § and those &, € h)* for g are related through

Goly=0 A fy=0y =a, (1Zi<I-1),

5( 1 ‘5 = 10

In particular we have the relation of the null roots §=4l, where 5=
Bt @, 0=0y+2 3 21 e, +a,.  We note here the property of 4:

Ah)=2(h) (O<LiLl) ifandonlyif 2= mod Cd (2, 2" e h*).
Denote also by /, € §*, 4, € §* the fundamental weights

AR)=6,, A(d)=0 (0<i j<20-1),
Ai(hj)=5ua A(d)=0 0= j=D).

They are related through
/Iolb:/lm ji]ﬁ=j21—i!b=/1i (léiél'l- 1), /L[r,z/lz

Now let 4 be a linear form on b which is integral (A(%;) € Z for all i)
and dominant (A(%;)=0 for all /). There corresponds an irreducible §-
module L(A)=a(§)v; (a(§)=the universal enveloping algebra of §) such
that &,v;=0 (for all i) and Av;=A(A)v; (for all he ). L(A) is uniquely
dgtcirmmed up to isomorphisms by the set of non-negative integers
k), - - -, A(h,,_,), irrespective of the value A(d). On L(A), each f; is
locally nilpotent (that is, for any v e L(J), there exists an M >0 such that

¥yp=0). Next regard L(/]) as a g-module. Since [f;, fur-]=0, fi=F:+
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Far-s is also locally nilpotent on L(A)*. By virtue of the complete reduci-
bility theorem (Proposition 2.9) in [2], the g-module L(A) then decomposes
into direct sums of the irreducible modules of the type L(A), which are
similarly defined via dominant integral forms 4 € §*. This decomposition
is described more precisely in terms of the characters

ieP

ChL(A) =Z mult,, (Z)el.
_ ieP
Here P, P denote the lattice of integral weights for § and g, respectively,

P,, P, will designate the set of dominant integral weights. In the sequel
we choose A, A so that A(d)=0, A(d)=0.

Proposition 1.  There exist power series E}(q) in one variable q such
that

@n chypn = ,1; E}(q) chy), g=e".

A(ey=A(e),4(d)=0

They have the properties

- 1
(2.2) Ef(@)=0  if dj#Amod @ Za,
. l
2.3) E} (q)=q“ " 1MREL (q), K= 3 jhy
=0

where in the last line A', A’ are defined by

- {/I(ﬁz-i) 0<i<l)
A'h)=1 - ~ :
Ahy-)  (+1=Zi<20-1),
Ah)=Ath,_)  O=i<Z])
and 1'(d)=0, A'(d)=0.

Proof. Set V={ve L(A)|e,v=0 (0<Zi<l)}, and let V=@, V3
(Z={2e P|V,50)) be its weight space decomposition. It is known (Pro-
position 2.9 [2]) that ¥ C P, and that

L(h= DUELAD- - - DL@).

dim ¥V z-times

(*) This can also be shown by using the vertex representation [3] [6].
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Forale Z, let Ae P, besuch that A(h)=2A(h;) (0Li<]) and A(d)=0.
Then A can be written as

N [
A=Ayy— 2 v, =A—nd
i=0

with some nonnegative integers v, and n e Z. This implies that /I[[,E
Amod @iy Zay, A(c)=(c)=A(c) and n=y,>0. Setting E%(q)=
> esedim V,_,;-g™ we obtain (2.1) and (2.2).

It remains to show the symmetry (2.3). Define & € GL(®%;! Ca,),
£e GU®!, Cay) by @)=, 0=iZ]), =ay_; (I+1=<i<2/—1) and
&la)=a,_; (0<Li<]). Then the symmetry of Dynkin diagrams ensures
the relations

é(e_JChL(/i)):e_ﬁ,ChL(/iw
S(e_AChLM)):e‘A,ChL(A/).

(Note that these are formal power series in ™% or e~*). Substitution into
(1.1) yields

S M EL (@) = e Egug).
Using &(8)=4 and the identity
§(Ay—A)— (4, — A)=4jo — (4, — o)
we obtain (2.3).

In the next section we shall determine the functions E '1.(q) when the
level A(c)=A(c) of L(A)is 1, i.e. for A=A,. Write Ej‘,c(q)zEjjAk(q), 0=/,
k<1l Properties (2.2), (2.3) are rephrased as

.2y El{¢)=0 if j £k mod 2,
2.3y E! ;- @)=q" " E}(q).
Since E}(q)’s are power series, we see that

o(1) =k

24 qu—k)/?Efk(q)Z{O(q(j,km) (j=k)

for g—0, as a consequence of (2.3Y. :

An important property of E}(g) is that, when multiplied by certain
power of g, it becomes a modular form. As shown in [2], for Euclidean
Lie algebras the characters ch,,, are expressible in terms of classical theta
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functions of several variables. Based on this observation, Kac-Peterson
derived transformation formulas for these characters and the “string func-
tions” [2]. From their results and (2.1), it follows that E} (q)’s also have
automorphic properties. We give below their explicit forms for level 1
modules L(4 ;) and L(4).

Introduce a coordinate on f (resp. §) by setting

~ -1
h= ——27ri<rd+ Z Z.h,+ tc)) (z,5,1) e CXC*'XC
i=1

7
(resp. h= —27ri(1d+ > zh+ tc), (z,2,1) e CXC'XC).
7=1

We set
o N . 3 (2] —i 2/—1
74z, 2, t)y=(e""" chy,))(h), 5= 2 4] D 24
y kQI+2—k) _ 1QI+1)
X4 , ,t — %0 h ’ h N =3 . — .
(7, 2, )=(e™*¥ chy 4, )(h) Sk 4(1+2) 24(1+2)

These are holomorphic for Im >0 ([2]). Transformation formulas for
these characters read as follows:

3z P 211 ceey
2.7<_%’ _i"’ t+ <Z2, ZZ>- l Z exp (27”]‘] )Zj'(f9 Z: t)

t /W2 = 21
0=j=20-1),
1 =z <z,z>> 2 & <(k+1)(k’+1)7r)

(——, 2 4+ 2270 e [ 2 MR TR Ve, 2, t
X’“( R 12 oo I+2 wle21)
O=k=D)

where

20-1

21—-2 -1
(£,2>=2>,75—2 le) 221 {z,z)=2z]4+2 Zl (z,— 2z )
i=0 i= i=

Proposition 2. Let g=¢**"", and set €',(c) =q" " *E}(q).
Then the matrix &,(t)=(€,(2))o<j,x<: 0beys the transformation law

&t+1)=D&()D;*

@2.5) & (_ %) =5.£,0S,

where D,, D,, §,=S5;* and S,=S;* are constant matrices given by
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(5l)jj' = ajj'eZniS"j’ (Dl)kk' — Bkk,eZzigk’
e [2eos(iED (S jsI-1)
ERCT :
cos (j'z/l)  (j’=0,1)

J B2 (5, msin (et DO+ 5/+2),

Using (2.5) we can show that, by the substitution ¢+ 1/(2z+ 1), each
of the blocks (€44(2));,x even OF (€54(7));,10aa Of €'(7) separately undergoes a
transformation of the form (2.5). Consequently, their determinants are

modular forms with respect to the group FO(Z):{(‘cZ Z,) e SL(2, Z)|c=

01
verify the following by an argument similar to the proof of Proposition
4.18 in [2]: For [ odd,

0 mod 2} which has (1 l) and (; (1)> as its generators. In fact we can

det (eék(f))j, peven=det (eik(f))j, roaa=1,
for [ even

det (eg'k(r))j, keven — 77(7'-)77(27)“ !
det (€%(2));, 1 0aa =7(t) " '9(22),

where 7(z)=g""p(q), g=€"" and ¢(q)=[];.0 1 —x"*"). For example,
the formulas above for /=2,3 yield the following identities (cf. [3]), re-
spectively:

K(q)'+qL(q)' = o(q*)'[(qa)*p(q)e(q®)
K(q) — jjo (1 ___an+1)—1(1 _q8n+7)—l’

L(q) — }jo (1 _q8n+3)—-l(1 _q8n+5)—1’
G(9)G(¢°)+q"H(q)H (7)) = p(q°)/o(9)e(q°)
G(q) — nljo (1 _q5n+1)—1(1 _q5n+4)—1,

2.6)

H(q)= Tfilo (1 ___q5n+2)-—1(1 __q5n+3)—1'

Remark. For even I, CV contains C {3} as an invariant subalgebra by
the diagram automorphism (see § 5). Restriction of the characters of the
pair A ;D CP to the Cartan subalgebra of C{}} gives rise to the matrix

€Dz, nz1/2 With
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N {eﬁk(f) +eh ) (0=k<I2)
€ jk(f) =
eék(z') (k=1/2).

For this matrix the following can be verified:

{v(rw(zf)-‘n(r/zrl (I=2mod 4)

1 (I=0mod 4),
P2o)(x)™? (I=2mod 4)
(2)n(z/2)! (/=0 mod 4).

det (e,k(f))os; [P

det (€u(tNogs, kz12= {
Jrkodd
In the case /=4 or 6 they are reduced to

j‘:[o (1+q6n+2)(1+q6n+3)2(1+q6n+4)_2qﬁ0 (1+q6n+1)(1+q6n+5)(1+q6n+6)2

=(q)/o(q°),
o(@)o(q*Yp(q"®) + ap(a?’e(q)e(q*) = p(g)e{a’Y (g )o(q *)e(a*) o(g®),
K(9)K(q°)+9°L(9)L(q°) = p(gM)p(q°)ep(a D a ™) o(@)e(q®)e(a*) (g ™)

where K(q), L(q) are given in (2.6).

§3.

We now proceed to determination of E/(g). This is done by con-
sidering the following one-variable specialization (the principal speciali-
zation) of characters

eTN=e M=o =me M=,

It is known in general that the character ch,,, thus specialized reduces to
a simple infinite product. In our case we have

e_jij chL(/Tj) ]e—&o=-~-:e—&2z—1:z:SD(XZL)/SD(X) (0§]§21— l):
e—Aj ChL(Aj) Te""‘0='--=e“‘“l=zZEL+4,ZJ+2(X)/§D(x) (Ogjél)a

where we set
FN,r(x)= ﬁ (1__an+r)(1__an+N—r)(l_an+N).
n=0

Since g=e"?=x%, specialization of (2. 1) yields an identity among power
series in g'/%%,
Using Jacobi’s triple product identity
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ﬁ (1__x2n+2)(1__Zx2n+l)(1___z—1x2n+l): Z (__)nz'nxnz
n=0 nez

we can write down the series expansion of Fy (x). Collecting like frac-
tional powers we get

S I B D M O B
’ neZ

= 2., xX"Piq),

k=j mod2
k mod 21

where

Pliq) :T;Z(_)m+ G=B)/2g QL gy ksm)

3.1 O j, ks m=31(1+2)n* — 3((j+ D —(+2k)n
++( =B —k+2).

Introducing
oo i j—k)/2 j=-k —k+2
Pifg)=(—)u-mrgu-iu-ksnp
we can rewrite (3.1) into a more convenient form

Pl(q)=qu+b¥aasn 57 g~ EDMD P ()
(3 2) J J’=7 mod 2(1+2) ’

=q " > g"MPT(g).

k' =k mod 21

The following symmetry properties are now apparent:

Pij—Z,—-k(q): —P;l'k(q)a Pll+1,k(q):Pl—l—3,k(q)a
(33) Pig)=P;,_(q),  q UVNDPL(g)
(resp. ¢¥*/*'P?,(q)) is periodic with respect to j (resp. k) with

J

period 2(/42) (resp. 21).
We set also
Pi@)+Pj,_(q)  (j=kmod2, 1Zk<I-1)
PL(q)={P(®) (j=kmod 2, k=0o0r )
0 (otherwise).

For the moment assume that / is prime. Equating like fractional
powers in the specialization of (2.1), we then obtain an equality

l ~
7

P(q)0u= 2, g PPEI(q)P(q).

=0
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In other words, the matrix (¢%-?”E}(q)) in question is inverse to the
matrix (p(g)~P} '(¢)). We shall show (Proposition 3) that this is true for
any (not necessarily prime) integer />2.

For 4, N e Z with p=N mod 2, we put

0N(T)= Z (__)nNem'Nr(n+;z/2N)’.
# nez
They have the transformation property

3.4 5N( —1 ) \/ —ir ) ST emimaNg (),

N mod 2
vmod 2N

In this notation (3.1) is written as
(3-3) Phq)=q (=), - anil)
with g=¢*** and
e U k1
Jk— T
4(l+2) 8
- . 1
=5;—8——(—k)+-——.
S5 — S8k 5 (] )+ 24

Set further pl(c)=q*P}i(q), Pi(c)=q**Pli(q) and Z,(z)=(y(z)~*P}(c)),
where 7(z)=q"*¢(q) signifies the Dedekind eta function.

Proposition 3. 1=¢,(0)Z (7).

Proof. Recall that the matrix &,(r) obeys the transformation law
(2.5) with respect to SL(2, Z). We infer that £2,(r) has the corresponding
properties

Z(c+ l)=Dl~gzz(T)51 !

(3.6) gjl( :1 )zslyl(r)ﬁl.

The first one is obvious. To prove the second, we apply (3.4) to (3.5).
Since (//2, (I4+2)/2)=1 for even [ and (/, [+2)=1 for odd I, v=I(j+1)—
(+2)k with 0 j+1Z14+1, —(I—DZEkZLL j=kmod 2 (or —(I+ D)
<0, —I<k=ZI—1,j=kmod2) runs over the set {ve Z/2NZ|v=
Nmod2}, N=I(I4+2). This gives
11+2) 2) ( —1 )
k T

—ir

=i Y exp(( (I+ll~){512+1) + )ni)p}k,(r)
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j + D +1 kKN .
:l-l—lgﬂgo eXp((—- (]+ 1)5_]2-1— ) + / >7Tl)p§-,k,(r)_

=Lk =l-1

j’=k’ mod 2
Along with the symmetry (3.3) we obtain (3.6). Formulas (2.5) and (3.6)
show that each of the matrix elements of &,(z)#?,(7) is invariant under the
action of the full modular group SL(2, Z). To prove &,(t)#,(r)=con-
stant (== 1), it then suffices to show the estimate (& ,(2)%(z)) ;1. — 6;: =0(1)
as]z—ioo. This can be checked by using (2.4), noting that only the terms
with n=0 or n=1in (3.1) have possible contributions to the lowest order.

The next step is to compute the inverse matrix of #,(z). Namely we
are to solve the linear equations of the form

L 5 ; P
G > PulgVio=o,  O=ij=)

with VP =p(g) 'q*~?"E},(q). Let us extend the range of suffixes of ¥,
by requiring for 0<k<[—1

Va=v®.
The equation (3.7) then reads

2. P;k(Q)Véi):aﬁ 0=, j<0).
~l+15ksl R
k=7 mod?2

For —]/—3<j< —1, we have, by using (3.3)

5 PM@VO=— % Pl @V
I:E;: mod 2 7;57 Trod 2

= Z Pij—z,q;(q)Vlgi)

Note that, for j=—1,
PLlpViP=— >, PL_(V=0.
~1+1Zk<1 —1+1sk=l
k=-1mod 2 k=-1mod 2
Likewise we have
Z Plo@VP = Z P, (@)VP
~1+1Zk<t —1+15k<1
k=l+1mod?2 k=—-1-3mod?2
=- Z P @V =0.

~l+1<k=l
k=l+1mod 2
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Thus we obtain

2. lelk(Q)V(i)zaji“a—j-z,i 0=ig], —1-2<j<14-1).

~l+1<k=

k=j mod2

By virtue of the quasi-periodicity of P!, in j, this can be extended to all
values of j as

~(J+1)2/4(1+2) Pl 8) — g~ @+ 12/l +2
q (j+)/(+)ij(q)V]gl)_q @ +1)2/4(L+2) Z (511,—5,,_2.,_2)

—l+1sksl i’=1i mod 21 +4
O<i<lje Z).
Finally, substituting (3.2) we obtain

B 5 PUOVO=g @ 5 (5=, )

/=i mod 2l +4
k=j mod 2

where V" is defined for all k € Z through
q By =g-EryhH if ¥’ =k mod 2..

In (3.8) the coefficients PJ;(g) depend only on the difference j—k. Hence
it can be easily solved by taking Fourier transforms. The result is as
follows:

o -1
P I (B (EES))
keZ n=0

>< Z q A+2)v2+ (T + l)p(ZZ(l+2)v+i _Z—2(l+2)v—i—2).
vEZ
A residue calculus then gives ¢(q)’V{? as a double series. Returning to
the original notation, we obtain

o(@)’qV P EI (@) =(@)E{-;,1-(q)
(39) =( Z . Z )(_)nqn(n+1)/2+(k+1)m+(—j+k)n/2+(l+2)m(m+n)

m=0,n=0 m<0,n0

+( Z — Z )(__)nqn<n+1)/z+(k+1>m+<j+k)n/z+<z+z)m(m+m
mz0,n>0 m<0,ns0
for j=k mod 2, 0<j<k=ZI. Replacing m+n/2 by m, and separating the
sum over # into even and odd parts, we rewrite (3.9) as

n(e)'esi() =n(c)e;;,-u(7)
=( Z + Z _ Z . Z )q(l+2)(7n+(k+1)/2(l+2))2—~l(n+j/21)2

Enz0 20>n 030> nz0>
(3.10)  m=n=d BRSO Smam

F(OT 4+ 3T = 3T — 3T )gUnme iz Genaaam- i /2 202

0>n>m n20zm = m2n20 mz20>n
0>m+n+1 m+n+1>0

(j=kmod2, 0Lj<kZ])
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As we have mentioned in the introduction, (3.10) is expressible in
terms of a theta series associated with an indefinite binary quadratic form,
which happens to be exactly the same for the string functions (1.2) for 4®
({11, 12D-

Let LCR® be a lattice of rank 2, and let B(¥, 7) (I ¢ R*) denote an
indefinite binary quadratic form such that B(7,7) e 2Zfor 7 e L. Let L*
={r e R*|B(1,7") € Z for all " e L} denote the dual lattice. Let further
G={ge O(B)|gLC L} and G,={g € GN SO(B)| g leaves L*/L pointwise
fixed}. Finally, take a decomposition B(7, 7)=1[,(7)(7) into real linear
forms /(¥). For pe L* we set

(3.11) 2= > signl(7) e Ben,

T €GN\ (L+p)
B(y,r)>0

This type of series has been studied by Hecke [7], and is called in [2] a
Hecke indefinite modular form. They have the following transformation
properties:

0%,z + 1) =e"#r47 (o),

3.12
12 7 (.:L>:W;;: e EEIGE (7).
& VILF[L] émn i

Note that (3.11) are not all linearly independent, for we have the relation

(3.13) 7 e ()=e(g)07 () forge G

where e(g)= -1 is defined by sign /,(g7)=e(g) sign /,(7") for B(7.7)>0.
Now we take L=2Z" and set

B(, 1)=201+2)x* =2y =I()I(7)  for T = ( ¥ )
Yy

with L) =+20+2)x++ 2 .
2
Then L*=(1/2(I+2))Z®(1/21)Z. The group G is generated by

(1 ), (—1 ) and a:<l+1 I)eG,
—1 1 142 141

whereas G is a cyclic group generated by a*. If we set F={(x, y)|—|x|<
y=<|x|}, then F (resp. FUa(F)) is a fundamental region for GN SO,(B)
(resp. Gy). Writing down the sum (3.11) explicitly and comparing with
(3.10), we arrive at the conclusion
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Theorem.
k+1
2(l42)
I
2/

p(o)yel(t) =07 (1),  p=

§4.

In this section we consider the case A5 DAY by embedding it into
the case A3, DCP,..

By a technical reason we need a slight modification of our formula-
tion of the problem. So far, we included the derivation d corresponding
to the 0-th node in the definition of algebras. For the case A ,DC®
(or A D AP) we could identify d for both algebras. Now we need to
consider the embedding A4S, , D 45 and C{,, DAY, for which we cannot
choose a common derivation. To avoid technical complexity we shall
consider algebras without derivations in this and the next section. Then,
we consider ¢4 ch,, as a formal power series of g=¢7? and e, e~ %,
etc., rather than ch;., as a function on the Cartan subalgebra. The
decomposition reads as

-4 . . -4

e chypl= >, Epe’chyy
A€ P 4
Ae)=A(e)

with Ejz(q)=e™"*E;, depending only on ¢g. Here |, means the appro-
priate specialization of variables. In the following we refer to Ej;,(g) as
the coeflicients of the decomposition of (- - -, ch;, - - -) with regards to

(-, chyepy, o)
Let, ¢, ¢, € ©,;,, be involutive automorphisms of the Dynkin diagram

of AP, given by
w(H=j+21+1 (mod 4/+2),
t()=41+2—j  (mod4/+2).

They induce involutive automorphisms of A{,,, which we also denote by
¢; and ¢, Then we have

gi={X € 4D [ o(X)=X}= 47,
B f{Xe AP | (X)=X}=CP,,

gga——;f{XG 8| a(X)=X}
={Xe 8| a(X)=X1=A49.
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The Chevalley basis for g, (i=1, 2, 3) is chosen by the following rule: Let
g be a subalgebra of § induced by its involution ¢. Let &,, f;, &, denote
the Chevalley basis for § and let ey, f;, #; denote that for g. Then

) e=8,fi=F»h —hj if ‘(])—J,

2) e;=8;+& fi=Fit+Fun hy=h;+h, if (j)#] and «(j) is dis-
connected with j, L o

3 e=8&+&u, [i=2 i+ ) hi=2(h;+h.p) if «(j)#j and «(j)
is connected with j.

Thus we have the following diagram.

EZ_Lk+1
_ j -
AP DCPu e~ ChL(J;) e~ chy g,y
o1 1
“.1) U U Gy g Hig
Fj’k'

APDAP e ¥ chy i,
Fig. 2. Commutative diagram and decomposition of characters

—-A'g
e k chL(Alk,)

We remark that the numbering of nodes in the Dynkin diagram for?A
here is different from that in [2]. Namely, we have

0 1 -1 )
Cithat 0 =0 ¢ oo 2
O jO—-—- « o0
U 2+ 2 142 141
AP 0 1 -1 1

O Z=>0—— ¢ e’e —0O Z—>0 o

Fig. 3. Dynkin diagrams for C{},, and 4

In the previous section we determined the coefficients of the decom-
position of (¢hy 1y, * * +5 Chyizy, ) for 4G, with regards to (Chzeg, - :»
chmﬂﬂ)) for C§,,, which we denoted by E}.*'(g). Now denote by A
(j=0, - --,2l) (resp. 47 (j=0, - - -, 1)) the fundamental weights for A‘”
(resp. A“)) and denote by Fl(q) (0< J, k<) the coefficients of the decom-
position of (ChL(;p), . chL(,y >) with regards to (chyey, - -+, Chrug_ps
chyeay). We show that

Proposition 4.
Fi )=Ejtiq)  (j,k=0,---,]).
where j*=j (for j even), =2I41—j (for j odd).



Irreducible Decomposition 113

Let us denote by G%(g) (072141, 0<k<L20) the coefficients of
the decomposition of (chz sy, -« +5 Chzesy, ) With regards to (chyuy, - - -,
chyi,y), and by H}(q) (j, k=0, ---,1) those for the pair (ch,y,, - -,
chzuy) and (chyeg, -+ +5 ¢hrwy_p, Chieay) (See Fig. 2).  Then Proposition
4 follows from the diagram (4.1) and the following.

Proposition 5.

(4.2) Gh=0up(@e(q)  (J; k=0, ---,2D),
Gl =0up(q)plq) k=0, ---,2)
4.3) Hi(@)=0u0@Vel@d)  (J, k=0, -, 2]).

Proof. The vanishing of the off diagonal elements of (G%.(¢)) follows
from the same reasoning with (2.2). Then by computing the principal
specialization we can deduce (4.2). To prove (4.3) we exploit the vertex
representation of gl(eo) [3], [6]. By considering C., and A as sub-
algebras of gl(oo), the highest weight modules (L(4,), - - -, L(4;)) and
(LAY, - - -, L(4;_), L2A4})) are realized in the polynomial ring C[x;, X,
Xap o v 0] The vertex representation of C{},, contains the multiplication
by x, with odd n. On the other hand, that of A does not contain oper-
ators depending on x, or 9/ox, with n=2/+41, 22I4+1), 3QI+1), - - -
Thus L(4;) (j=0, - - -, I} realized in C[x;, x,, x;, - - -] contains a subspace
V= ClXaan Xs@ens Xsians -+ 1O LA} (G#1) (or = Clxyis Xserins
Xyarens - - 1@ LAY (j=1)). Note that 317, dim V,x"—(x1*3p(x"*?)
where V,={fe V|deg f=n}. Identifying g with x**!, denote by %,(x),
X{(x) the principally specialized characters ch; 4, ch;, 1 (O chy ey, if j=1)
respectively. Then considerations above imply

(4.4) 1,69 HL @) > S"((q)) 1),

(The notation F(x)>G(x) signifies that all the coefficients of the series
F(x)—G(x) are non-negative). On the other hand, a direct computation
shows

4.5 __SD(Q) X’
(4.5) Xy(x)= o) X5(x).

(4.4) and (4.5) prove the equality (4.3).

§5.

This section is devoted to the case C§ D C{P(Fig. 4). We denote by
¢ € ©,,,, the following involution of the Dynkin diagram of C{:
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dp=2—-j  (G=0,---,2D.

Then we have

5.1) CPO{X e CP|dX)=X}=CP
Do + oo
Cé? a0 s e . :Z>O
U

cy T——>0— ¢ s e —0<TD |
Fig. 4. Dynkin diagrams for C{P’ and C{

‘We denote by d the null root in C{" and set g=e~°. Note that the speciali-
zation of the null root in C{> with respect to the embedding (5.1) gives
rise to 24.

We denote by J}.(q) (0< j, k<I) the coefficients of the decomposi-
tion of (chy,, - - -, chyg,y) With regards to (chyyy, -+ €hyyy), Where
A ;s (resp. A,’s) denote the fundamental weights of C$P (resp. C). Note
that J}.(¢)=0 if j =k mod 2.

We introduce a quadratic form B’ and the associated modular forms:
We set

B, D=2+ —8(+ 1)y,  T= ( ; )

and

If we set L=Z®Z, then the dual lattice is given by L*=Z/2(/+2)®
Z/8(I+1). Let

a=(21+3 41+4) < S0(B)
142 2143

and
G,={a"|neZ}.

Then G, fixes L*/L elementwise. Now we define 67 () by (3.11). Identi-
fying q with €**", we obtain the following explicit formula for J,,(q).

Theorem 2.

(5.2) ”(zf)v(f)ql/8+(j—k)/z—(j+1)ﬂ/4(l+1)+(k+1)2/4(l+2)lek(q)=0€:‘u(r),
(j: kan Ty l)
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where
1, K+l
_ 2 2(+2)
11 j+1
4+4(l+1)

Proof. We exploit the following commutative diagram.

Ag,DCp
U U
AP D Cp

Fig. 5. Commutative diagram A{ ;>C{ and AP >C{»

Since we know the decompositions for AL, DAR ., AP DCP and
AP DO C, by a similar argument as in Section 4, we have

(5.3) qu=Il(q)= Z P Vila),
(ijs o '3219 i=0 s "ty l)a

where V/,(q) denotes V¥ in (3.7). Let us define J/(q) for arbitrary j, i
by the right hand side of (5.3). Then we have

];; 2'o(q*)p(@)g " T 1 (q)

l_[n 1(1_ 2n)2 R
nn 0(1—2 q2n+l)(1 z—2q2n+1)

X ;Zq(l+2)m2+(z+1)m(22(l+2)m+i_2—2(l+2)m—i—2)'
m

A residue calculus gives the following sum: For 0 << k< (resp. 0k
<j=l)

o(q)e(9)q V=P 1(q)
G4 =( Z — 30 )(—)rgrr D Genm G DI QR D (DMt (k=) /2)
m<0

n>0(resp n>0) n<0(resp.n<0)
__(Z Z)( )n n(n+1)+ (T+2)Mm2+ (k+1)ym+ Cn+1) ((L+2)m+ (kK + j+2)/2)

m=0 m<
nz0 n<0

Finally, by rearranging the summation in (5.4), we obtain (5.2).

As for the determinant of (J;,) we have the following.
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Proposition 6.

det (ij)j,k=o,2,---,l=S0(9)_”2S0(qz)l/2
det (Jj)y,k=1,3,--.,1-1= (@)~ *p(g") """
det (1), k=0,5,.--,0-1=0(q) """ "p(q") " =" 0(q")
det (Jj),k=1,5,-.,. = 0(@) "D 0(g*) =" Pp(q*)

For the proof, we set

I: even,

I: odd.

m

200+ 2
o) =07 ), = | TR

80+ 1)

In the present case the coefficients of the decomposition J;.(q) (U, k=
0, - - -, ) corresponds only to those @, ,(zr) with even n. Let us denote

by T(z) the matrix (6%, .())m=1,s,...,..1- Because of the symmetry relation
n=0,2,++,21

(3.13) we have 6%,,; 4.5(:)=0 and 6%, ,.(c)=0. In other words, the
square matrix 7,(z) splits into two blocks:

Ty(r)= (0£n.n(f))m=1,3,---.2E€/§%+1

n=0y4,+++,4[1/!

and

T(©)= (0 (=24, 21412 -
n=2,6,-~~.4[(l+1)/2] -2

Then Proposition 6 follows from

Proposition 7.

det Ty(c) = {77(‘L')77(2‘L')l+1 I: even,
7(27) +*p(4e)~! I: odd

det Ty(r) = {77(2?)1 I: even,
7((27) " y(de)  I: odd.

Proof. The transformation property (3.12) implies

’ 2r—1 ,
6% ( T >= e
S 2 1) T TR DT 2) v Bt V@)

with

N 271 (B(g+p’s2) + B, 2
S(#’#)_M;:/Len pu+p’s2)+B( )}.
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0

’
Note that for 2 _2+<1/2

1/2
( 0 ) we have

) we have B(X, 2)=B(2, 2), and for 2= 21+

B2, 2) I[: even
B(ll/, 2//)= /
B, D)+1% I: odd.
If we set
2(14+2) - 2(1+2)
= and u/'= , s
_n _r
8(+1) J 8(+1)
then
’ 4
Byt ¥ —2)=— ”“;” and B(utp/, ¥ —2)= m—;m :
Thus we can show that
s(y, )=0 if n==n’ mod 2
and
s(y, )=0 if I:even, m=“m’ mod?2
or [:odd, m=wm'mod?2.
By using (3.13) we obtain
5.5) Tt )=Ce- DS TS, =12

with some matrices S; and S;. Here 1¥=1, 2*=2 (/: even) and 1*=2,
2*¥=1 (I: odd), respectively. By a similar argument we can show that

(5.6) Tj(ﬁ)=(4f— NS, 1,08,  j=1,2,

with some matrices S; and 3.

The transformation property (3.12) implies that det Ty(z)= det Ty(z)
-det Ty(z) is a modular form of weight /41 with some multiplier system
for I'y(2). We can show that for r—ico

GT) 0L ()=0(grrern-en-visay 1 <m< I,
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and
(5.8 O on(T) = O(g ™1+ B - R =DHALD) 1<m<I+1.

Using (3.13), (5.7) and (5.8) we can estimate the order of zeros at cusps 0
and oo for det Ty(z), and we obtain det Ty(z) =5(z)p(2z)**".

The transformation property (5.5) implies, for even /, each det Ti(z)
(j=1, 2) is itself a modular form with some multiplier system for I7y(2).
Using (5.8) we can estimate the order of zeros at co for them to show that

CdetThy(e) _ o)

( ) def (T) 77(27'.)l + 1

and

det Ty(z) _
tz(f)gf* (2 ) o(l).

Since we know that 7,(z)-#,(c)=1, one of #{z) (=1, 2) does not have a
pole at the cusp 0, and hence it is equal to 1. Hence we conclude #,(z)
=1{j=1,2).

For odd /, (5.6) implies that det 7, (j=1, 2) is a modular form with
some multiplier system for I'y(4). Among the cusps 0, 1/2 and oo for I"(4),
we can easily estimate the order of zero at o directly, and at 1/2 by using
(5.5). Since we know that det Ti(z)-det Ty(z)=n(z)p(2z)***, this esti-
mation is enough to conclude Proposition 7 for odd /.

For I=2, not only for the determinants but also for the matrix ele-
ments 6, () explicit representations in terms of Dedekind 7 function are
available:

1)+ 020 = o 5 ) /o Yo,

01.0)—020) = 1 £ ) Geyute( 25 s,
0.0)+0.() = 7@ ),

—~0,+ 8.0 = 7@ 25 Y6230,

03,2(t) =7(27),
03,1(2) + 05 «(2) = 7(2)y(3c)’/7(67),
0} {(z) — 63 ()= n(c)p(4c)’[n(2z)y(8)’,
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1 o(0)=19(2)7(62)*/n(20)7(37),
63 5(z) = 9(2)n(8c)/7(4).

We note that in this special case for /=2 Proposition 7 leads to the fol-
lowing equality between Dedekind 5 functions;

(@) n(4c)p(62)° +1(27)’p(37)"p(122)°
=29(z)y(2)n(37)’y(4c)*n(62)p(127)"
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