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The BTL, CTL hierarchies: Define 

-r (s· x y)=-r(s. al 
B , , 'Ph -ql 

(4.1.45) 
( q -la 

-r (s· x y)='Z' s· - 1 . 1 o , , 'Ph -ql 

Then we have 

Proposition 4.8. The -r functions -ris; x, y), 'Z'o(s; x, y) have the sym­
metries, 

(4.1.46) 

(4.1.47) 

-rB( -s; x, y)='Z'is+ 1; leX), ley)), 

'Z'o(-s; x, y)=-ro(s; leX), ley)). 

Proof Note that there are more general symmetries, 

(4.1.48) 

(4.1.49) 

(4.1.50) 
( -a ... -a ) ='Z' -s+l; 1 N; -x, _y . 

qlPI ... qNPN 

It is an easy task to verify these symmetries. Applying these to our case, 
we see that 

-ris+ 1; leX), ley)) 

= 'Z'(s+ I; Ph ~ql ql-:~~l:::; leX), ley))) 
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-a l ••• ) ; -x,-y -ql,PI ... 
(by (4.1.48)) 

=1: -s; I ( -a 
ql' -PI 

(by (4.1.50» 

= 1:sC -s; x, y). 

Likewise we can show the symmetry of the C-type (4.1.47). Q.E.D. 

The 1: function (4.1.45) are N-soliton 1: functions of the BTL, CTL 
hierarchies [23, 26]. These 1: functions may be thought of to come from 
the following RH decomposition (however, it is impossible to achieve it in 
a rigorous sense): 

We set 

=Xp,_q-Xq,_p E 0«00), 

XC,pq= L: {(- )nEm,_n_I}-( - )m+IEn,_m_l}pmq-n 
m,nEZ 

We apply the RH decomposition to the matrices 

HsCx, y)=exp (';(x, A)+';(y, A-I»(I+ tl ajxB,pm) 

X exp (.;( -x, A)+';(-y, A-I»), 

HcCx, y)=exp (';(x, A)+';(y, A-I»)(I +.%;. ajxc,pm) 

Xexp (.;( -x, A)+';( -y, A-I». 

Then Proposition 4.7 suggests that the resulting 1: functions should be 
given by (4.1.45). 

At the end of this section, we give some remarks. 

Remark 1. Though we have not considered here, it is possible to 
generalize the RH decomposition to the multi-components. In the /­
reduced KP or TL hierarchy, the RH decomposition reduces to the ordinary 
Riemann-Hilbert problem. These topics will be investigated in detail in 
a future paper. 

Remark 2. Taking into account the remark after Lemma 4.2, the 1: 

functions in Propositions 4.4, 4.7 take the form 
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z{s)=det (A; exp ~(x, A)A exp ~(-x, A)As) 

where A is the matrix that appeared in (4.1.11) or (4.1.24). The rect­
angular matrices A;, As are defined by 

In fact, it is known [33, 34, 22] that the 1: functions of the KP hierarchy 
are expressed in the above form (see also the Appendix I in this paper). 

Remark 3. Let X(p, q) be the vertex operator [22] 

By a simple calculation we see 

where bl=«qz/Pl)/(l-qz/Pl))al. Expanding X(p, q) into a formal Laurent 
series in p, q, 

(4.1.51) 

then we see that the coefficients Zij satisfy the same commutation relations 
that the matrix units Eij do [22]. Hence Xpq (4.1.25) can be identified 
with (4.1.51). 

4.2. Special solutions of the Wronskian type 

In this section we shall show a direct method for the construction of 
special solutions of the Wronskian type, which is a modification of the 
construction in [33] of rational solutions to the KP equation (see Appendix 
1) and in a special case coincides with Date's method [6] for the soliton 
solutions. 

In the following we shall mainly consider the one component case. 
Consider the following functions 

(4.2.1) 

Pi(X) and Pi(Y) are polynomials, while Pi(X, y) is an infinite series of x and 
y with the generating function 

(4.2.2) 
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As the data for the solution we give constant vectors jj=(/t,J),ez, 
j = 1, .. " N, of infinite size, and set 

(4.2.3) jj(s; x, y)= L: P,_.(x, y)/t.J' 
'ez 

Furthermore we assume the following condition 

(4.2.4) det [jj(s+i-l; x, y)1t,J=I .... ,N$O' s e Z. 

Then we can define the functions w1(s; x, y), .. " WN(S; x, y) such that 

N-l 

(4.2.5) !;(s+N;x,y)+ L: wN_,(s;x,y)jj(s+i;x,y)=O, j=I,·. ·,N. 
t=o 

Using Cramer's formula we have 

. (i=l, ... ,k) 
jj(s+l-l;x,y) j=l, ".,N 

(4.2.6) WN_k=-det jj(s+N;x,y) (j=I,·. ',N) 

. (i=k+2, "', N) 
jj(s+l-l;x,y) j=l, "',N 

/ det [jj(s+ i-I; X, y)]t,J=l ....• N 

for k=l, "', N. In particular 

(4.2.7) 
WN= -det [jj(s+i; x, y)]t,J=l ..... N 

fdet [jj(s+ i-I; x, y)]',J=l ..... N$O 

for any s e Z. 
Now we set 

(4.2.8) 

(4.2.9) 

N 

WN(x, y)= L; diag [wls; x, y)]AN-J, woes; x, y)= 1, 
j=O 

{
W(OO)(X, y)= WN(x, y)A-N exp [';(x, A)+';(y, A-l)], 

W(O)(x, y)= WAx, y) exp [';(x, A)+';(y, A-l)]. 

Then we have 

Theorem 4.8. W(oo) and W(O) solve the linear problem (1.2.8) for 
certain suitable matrices Bn and en, so that they solve the Toda lattice 
hierarchy. The corresponding" function ,,'(s; x, y) is given by 

(4.2.10) ,,'(s; x, y)=det [jj(s+i-l; x, y)1t,J=l .... ,N. 
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It is remarkable that the 1: function is obtained in the Wronskian form 
(cf. Lemma 4.11). Therefore we call the solution obtained above a 
special solution of the Wronskian type. 

Example 4.9. Suppose that};" takes the form 

(4.2.11) 

where kl and aI" ([=1, "', M,j=l, "', N) are constants. Then 

M 

(4.2.12) jj(s; x, y)= L; k~al,j exp [~(x, kl)+~(Y' kll)], 
1=1 

and we obtain a soliton-type solution. 
Furthermore if M =2N and 

k _ {ql (l <[<N), 
1- Pl-N (N+l<[<2N), 

then we recover the classical soliton solution of the Gram determinant type 
(up to simple exponential factors) 

Applying the expansion formula for det (l + X), remarked in the previous 
section, to the last determinant, we get 

N 
... '(s;x,y)= IT e~(qtlq~. IT (qi-qj) 

(4.2.13) 
i=1 i>i 

N I 

xL; L; Ci, '" ci,ai,(s)· .. ai,(s) exp L; (r;(Pip)-Tj(qi u))' 
1=0 i'<"'<i, 1'=1 

Here the notations are the same as in (4.1.35) and 

Thus we get the soliton solution (4.1.35) up to the trivial multiplier 
IT f.,l e~(qt)q~. IT i>, (qj - q,) which can be absorbed in the trivialarbitra-
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riness of wave matrices indicated in Theorem 1.2. 

Remark 4.10. In the expression of the solution there appeared 
infinite series of the form L:nEZ cnPn(x, y), where cn(n E z) are constants. 
Using the integral representation 

we can estimate 1 pix, y) I, where the integration contour is chosen to be 
in the convergence domain of the Laurent series ~(x, A)+~(Y, A-I). In 
this way we can easily prove, under the condition lim. sUPlnl_oo 1 cnl l / n< 00, 

that the series L:nEZ cnPn(x, y) converges absolutely in the domain 

l
li~~~uP'lxnll'n'li~~uP'lcnll/n<I' 

1· 1 11/n l' 1 1-1/n< 1 1m. sup. Yn . 1m. sup. Cn , 
n_oo n __ oo 

lim. sup. 1 Xn 11/n . lim. sup. 1 y n 11/n < 1. 
n_oo 

Now we proceed to the proof of Theorem 4.8. 
We prepare two lemmas. 

Lemma 4.11. We have the following formulas. 

OXjPi(X, Y)=Pi_j(X, Y), oyJPlx, y)=pi+ix, Y), 

OXJk(S; x, y)= fk(s+j; x, y), OyJk(S; x, Y)=fk(s-j; x, y). 

This is an immediate consequence of(4.2.2) and (4.2.3). 

Lemma 4.12. For any matrix U= L:n;o diag [uj(s)]Aj there exist two 
matrices Q and R uniquely such that 

(4.2.14) {
U=QWN+R, 

Q= L: diag [q;(s)]AJ, 
j?;O 

Similarly, for any matrix U' = L:i;;;;o diag [u;(s)]Aj there exist two matrices 
Q' and R' uniquely such that 

(4.2.14), {
U'=Q'WNA- N +R', 

Q' = L: diag [q~(s)]Aj, R' = ± diag [r;(s)]Ai. 
j;;;;O j~l-N· 

Proof Equating the coefficient matrices of Ai in the equalities 
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we get a series of linear equations for qJ' rJ, q;, r;. Since Wo= 1 and WN 

is invertible (cf. (2.2.7» we can solve them recursively and uniquely. This 
proves Lemma 4.12. Q.E.D. 

Let us prove, by use of these lemmas, that there exist an upper 
triangular matrix Bn and a lower triangular one en of infinite size such 
that the following equations are satisfied for n= 1,2, .. '. 

(4.2.15) 

(4.2.16) 

Rewrite (4.2.5) in the form 

(4.2.17) 

where we set/lx, Y)=(h(i; x, Y»iEZ' Differentiating (4.2.17) with respect 
to Xn and using Lemma 4.11, we have 

On the other hand the former half of Lemma 4.12 implies that there exist 
certain matrices Bn and Rn of the form 

N-l 

Bn = L: diag [bn./s; x, y)]AJ, Rn = L: diag [rn.is; x, y)]AJ 
j~O !-o 

such that 

Hence 

Rnh(x, y)=o (j= 1, .. " N), 

or equivalently, 

(ro, .. " rN-J(h(S+i; x, y»i.J-l ..... N=O. 

In view of (4.2.4) we conclude Rn = 0, and hence (4.2.15). 
Similarly, from the equalities 

we can show (4.2.16), using the latter half of Lemma 4.12. 
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(4.2.15) and (4.2.16) implies that W(~) and W(O) defined by (4.2.9) 
solve the linear equations (1.2.8). Hence Bn and Cn solve the Toda lattice 
hierarchy (cf. (ii) of Theorem3.3). 

For the proof of (4.2.10) it suffices to prove the following. 

det [ft(s+i-I; x-e(.<-l), y)ki=l, ... ,N 

det [jj(s+i-I; x, Y)]t,J=l, ... ,N ' 

det [ft(s+i; x, y-e(A))]t,J=l, ... ,N 

det [ft(s+i-I; x, Y)]t,J=l, ... ,N 

If we notice the formula 

(4.2.19) {
jj(S; x-e(.<-l), y)= jj(s; x, y)_.<-ljj(S+ I; x, y), 

jj(s; x, y-e(.<))= jj(s; x, y)-.<jj(s-l; x, y), 

we can show (4.2.18) by a simple calculation of linear algebra, comparing 
(4.2.6) with the right hand side of (4.2.18). (4.2.19) is an immediate 
consequence of the formulas 

{ PlX-e(.<-l), y)=PJ(x, y)-.<-lPJ _l(X, y), 

plx, y-e(A))=PJ(x, y)-'<PJ+l(X, y), 

which are derived from (4.2.2) and the formula 

exp ~(-e('<), .<')= 1-'<'<'. 

Thus we have proved Theorem 4.8. 
Next, let us consider a condition for the I-periodicity, i.e. a condition 

under which we have 

(4.2.20) 

Theorem 4.13. Suppose that for the ZXN matrix /=(f't,j)tez, 
j=l, ... ,N 

there exists a constant N X N matrix C such that 

(4.2.21) A!/=/C. 

Then (4.2.20) holds. Moreover we have 

(4.2.22) {
[WN, A!]=O, 

a"" .. wN=O, alll"wN=O, n=I,2,···. 

Proof. Set lex, y)=(jj(i; x, y))tez, (2.2.21) implies 
i=l, ... ,N 
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A!f(x, y)=f(x, y)C, 

and in view of (4.2.17) it leads to 

WNA!f(x, y)=O. 

85 

Then we can show, as we derived (4.2.15), that there exists a matrix Q= 
I:~=o diag [qtCs; x, y)]AJ such that 

(4.2.23) 

Hence we have two expressions for Q in terms of L= W(~) AW(~) -I and 
M= W(O)A- 1W(O)-1, 

Q= W(~)A!W(~)-l=V, Q= W(O)A-!W(O)-l=M!, 

which immediately imply the following. 

(4.2.24) 

From (4.2.23), (4.2.24), (4.2.15) and (4.2.16) we have (4.2.21) and 
(4.2.22). This proves Theorem 4.13. 

At the end of this section we shall briefly comment on the multi­
component case. Also in this case special solutions of the Wronskian 
type are constructed in the same way as we have just discussed. We shall 
show only the results: 

In the r component caseft,J and Wt are replaced by matrices of size 
r Xr, and we set 

(4.2.25) 

Wt (i= 1, ... , N) are defined by (4.2.5) under the condition (4.2.4). 
Since Lemma 4.12 is also valid in the multi-component case under the 

condition that WN is invertible, we can derive 

(4.2.26) {a",,~a)WN+ WNAnEa=B~a)WN' 
ayj,a)WN+ WNA-nEa=C~a)WN' 

for the matrix WN= I:f=o diag [wj(s; x, y)] AN-J with wo= IT. Hence W(~) 
and W(~) defined by 

f W(~)= WN.A- N exp (tl ~(x(a), A)Ea+ tl ~(y(a), A-1)Ea), 

1 W(O) = WN exp (tl ~(x(a>, A)Ea+ tl ~(y(a), A-1)E,,), 
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solve the linearized equation of the r component theory. 
Similar argument as in the proof of Theorem 4.13 leads to a con­

dition for the reduction to the system of the Zakharov-Mikhailov type: 
If there exists a constant matrix C of size Nr X Nr such that 

(4.2.27) A/=/C for /=(h,,j)iEZ, , 
j=l, ••. ,N 

then we have 

(4.2.28) 

Appendix. A Brief Summary of the KP Theory. 

In this appendix, for the reader's convenience, we shall briefly sum­
marize the recent results [12], [20-25], [33], [34] in the study of the KP 
hierarchy. 

1.1. Microdifferential operators. 

Let (f) be a differential algebra with a derivation o. A microdifferential 
(or pseudodifferential) operator with coefficients in (f) is, by definition, a 
formal sum L.jEZ ajo j with aj E (f) and aj=O for any sufficiently large j 
(the integer m=max {j; aj*O} is called the order of L.jEZ ajoj), and the 
sum and the product of two microdifferential operators are defined by the 
following. 

(A. 1) {

L. ajoj+. L. bjo'=L. (a,+bj)oj, 
j j j 

L. ajo j· L. bjo' = L. CjO' where 
j j j 

Cj= L. (j )ak.oabL• 
k,LEZ,a01;O a k+L-a=j 

We denote by t! (resp. !!), t!(-I» the totality of microdifferential 
operators (resp. differential operators, microdifferential operators of order 
<0). Then!!} is a subalgebra of t!, and there is a direct sum decomposi­
tion 

(A. 2) {
t!=p) g:; t!(-I), 

L. ajo' = L. ajo' + L. ajoj. 
JEZ j~O J<o 

We denote by ( )'" the projections to!!) and t!(-I); 
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CA. 3) 

The formal adjoint P* of a microdifferential operator P is defined by 

(A. 4) (~ajaj)*= ~ (-Waj, 
j j 

which induces an anti-isomorphism of <C. 

1.2. One component theory 

In this case t!J is a suitable differential algebra consisting of functions 
in the independent variables x = (XI' xz, ... ) with the derivation 

(A. 5) 

As the dependent variable we introduce a micro differential operator 
L of the form 

(A. 6) 

We set 

(A. 7) 

Then the one component hierarchy is defined by the system of the Lax­
type equations 

(A. 8) 

where a/axn denotes the differentiation of the coefficients of L with respect 
to X n • 

(A. 8) is equivalent to the system of the Zakharov-Shabat type 

(A. 9) 

The equation aBz/ax.-aBs/ax.+[Bz, Bs]=O is nothing but the KP 
(Kadomtsev-Petviashvili) equation 

(A. 10) 

where U=U_ I and (x, y, t)=(XI' x z, xs). Thus (A. 8) and (A. 9) give a 
hierarchy for the KP equation. 

The linearization is achieved by the system 

(A. 11) LW=AW, 
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(A. 12) 

where w=w(x; it) is a formal Laurent series of it of the form 

(A. 13) {
W(X; it) = (to wix)it- j) exp ~(x, it), 

wix) E @, wo(x) = 1, ~(x, it) = tl xnitn, 

or equivalently, given by 

(A. 14) {~(X; it) = ~(x; a) exp ~(x, it), 

W(x; a)= ~ wj(x)a- j E Iff. 
j~O 

Remark. Here we used the convention that the action of microdif­
ferential operators on exp ';(x; it), or on a series of the form 

~ bjit j exp ';(x, it) (~ bjaj E Iff), 
j j 

is defined by the formulas 

(A. 15) {(~ ajaj) exp ~(x, it) = ~ ajitj exp ~(x, it), 
j j 

(~ajaj)(~ bjitj exp ';(x, it» = ~ c)j exp ~(x, it), 
j j 

where cj is the element defined in (A. 1). Thus exp ~(x, it) generates a 
free Iff-module of rank one. 

We notice that in terms of W, (A. 11) and (A. 12) are rewritten in 
the form 

(A. 16) 

(A. 17) 

L=waw-l, 

aW/axn=BnW-Wan, n=I,2, .... 

The equivalence of three systems (A. 8), (A. 9) and (A. 11) + (A. 12) 
are established in the same way as we did in the case of the Toda lattice. 
We call a solution to (A. l1)+(A. 12) a wave function of the KPhierarchy. 

The wave function w(x; it) is characterized by the following bilinear 
equation 

(A. 18) f w(x; it)w*(x' ; it)dit=O for any x and x', 

where the integration contour is a small circle around it = 00, while 
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(A. 19) w*(x; l)=(W(x, a)*)-I exp ~(-x, l), 

and W* is the formal adjoint operator of W. (A. 18) is a generating 
functional expression of infinitely many equations with the indeterminate 
x-x'. 

The -r function -r (x) is consistently introduced by the formula 

(A. 20) w(x; l) -r(X-e(l-I» exp ~(x, l) 

-rex) 

Then the original hierarchy for the dependent variable L is transformed 
into the bilinear equation for the -r function of the form 

(A. 21) ~ p ( 2u)m (D- )e<U,Dx> -0 D- - (D DX2 Dxs ) L-J j - 'Yj+l x 'C""C-, X- Xl' --, --, ••• , 
j~O 2 3 

which is a generating functional expression, with the indeterminate u = 
(Ul> U2, ••• ), of infinitely many bilinear equations of the Hirota type. 
The first one is 

(A. 22) 

which is equivalent to (A. 10) with u=a2(log -r)/axi. 

Remark. The wave functions of the BKP and CKP hierarchies [23-
25] are characterized by the following bilinear equations 

(A. 23) f w(x, l)w(x', -l)lndl=ono for any x, x', 

(n=O for BKP, n= 1 for CKP), where the evolution is restricted to the 
odd sector {X2=X4=' .. =O}. 

Sato [34] discovered a remarkable fact that the structure of the -r 
functions is completely discribed in terms of the (infinite-dimensional) 
Grassmann manifold as follows: 

(A. 24) 
-r(x) = det (I/o exp (xIA+X2A2+ .. . )1) 

I: Xy(x)fy, 
Y: Young diagram 

where f and /0 are constant matrices of size ZXNc, f=(ftJ)iEZ ,fo= 
jENC 

(OiJ)iEZ , NC={ -1, -2, ... }. fy is the PHicker coordinate of the 
jENC 

"frame" f corresponding to the Young diagram Y. Xy(x) is the character 
polynomial (the Schur function) which we encountered in Section 4.1. 
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We omit the precise definitions of these concepts (cf. [34]). 

The rational solutions, i.e. the solutions with polynomial 1: functions, 
are constructed and parametrized as follows [33]: As the data we give~a 
constant matrix 1= (f'tj)i=-m.l-m, .... n-l of size (m+n) Xm (m and n are 

j=-m,l-m, ... ,-l 

positive integers), and set 

(A. 25) 

where A=(Oi-j+l)i.j=-m.l-m ..... n-l. Notice that we have the Wronskian 
structure 

(A. 26) 

We assume the condition 

(A. 27) rank/=m. 

Then det (ft.lX»i.j=-m..l-m ..... -l$O. Hence the functions w1(x), .. " wm(x) 
are uniquely determined by 

Furthermore in the same way as we discussed in Section 4.2, using a 
division theorem for differential operators instead of that for matrices of 
infinite size, we can conclude that the microdifferential operator W = 1 + 
wiJ-1+ . .. +wmo- m solves (A. 7). Hence the L defined by (A. 16) solves 
the hierarchy. The corresponding 1: function is given by 

(A. 29) 
1:(X) = det (110 exp (xIA+X2A2+ . .. )~) 

I: XI_m ... 1_1(X)/"_m·"/_I' 
-m:!il-m<···<I-l<n 

where 

and /"-"''''/_1 = det (izi.j)i,J = -m .... ,-l· 
The transformation/~/C(C e GL(m» changes 1: into 1: det C. Thus 

the polynomial 1: functions are parametrized, up to constant multipliers, 
by the equivalence classes of "frames" I (i.e. (m+n) Xn-matrices with 
(A. 27» with respect to the equivalence relation 1-IC(C e GL(m», 
namely by the Grassmann manifold GM(m, n). 

We note here that the method stated above is also valid in the case 
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n= 00, m< 00. Then we obtain the special solutions of the Wronskian 
type to the KP hierarchy (cf. § 4.2). 

The formula (A. 24) is established in a suitable limit procedure as 
m, n-+oo. 

An alternative expression of the t' functions is given in terms of the 
vacuum expectation values of Clifford operators [20, 22]. 

1.3. Multi-component theory 

In the r component theory we introduce the independent variables 
x = (x(!), .. " X(T», x(a) = (xia) , x~a), ... ) (a= 1, .. " r), and (!) is a suitable 
differential algebra consisting of matrix-valued functions of x of size r X r 
with the derivation 

(A. 30) 
T 

a=~ a",ca) 
«=1 1 

As the dependent variables we consider micro differential operators L 
and Ua(a= 1, .. " r) of the form (cf. § 3.1) 

(A. 31) {
L= jt;.; uja' withuj e (!), U! = 1" uo=O, 

Ua= ~ u"aaJ with uj,a e (!), uO,j=Ea, 
j=-oo 

(our notations are slightly different from those used in [34]), and assume 
the following algebraic conditions 

(A. 32) 

We set 

(A. 33) 

Then ther component hierarchy is defined by the system of the Lax type 

(A. 34) 
aL/a"'l.a)=[B~a), L], aup/a3:l.a)=[B~a), Up], 

a, f3=I, "', r, n=l, 2, "', 

which is equivalent to the system of the Zakharov-Shabat type 

am;,) /a:J:~jl) - aB;t) /a"'i,a) + [B5,:), Bit)] = 0, 
(A. 35) 

a,f3=I, ···,r, m,n=I,2, .••• 
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The linearization is achieved by 

(A. 36) 

(A. 37) 

where W = W{x; l) is a matrix-valued formal Laurent series of 1 of the 
form 

Using the microdifferential operator 

(A. 39) W{x;a)= t wix)a- J, 
j=O 

we can rewrite (A. 36) and (A. 37) into 

(A. 40) 

(A. 41) 

L= waw-t, Ua= WEaW- I, 

aw/axl.al=B~alW - WEaa n • 

In the r component case we need several 1: functions 1:{x) and 1:ap(x) 
(a*[3) which are consistently introduced by 

(a= [3), 

(A. 42) 
(a *[3), 

(fil 
where ep(l-I)={O, ",,0, e{l-I), 0, .. ·,0), and the subindex (a, [3) indi-
cates the (a, [3) component of a matrix of size r Xr. 

The 1: functions have a parametrization like (A. 24) in terms of the 
(infinite-dimensional) Grassmann manifolds. Also in terms of the vacuum 
expectation values 1:t{x) {I = (II> .. " Ir) e zr with r;~=1 la = 0) introduced 
in [22] they are parametrized as follows. 

(A. 43) {
1:{X) = (a signature factor) ·1:o ... o{x) 

1:"p(x)={a signature factor) ·1:0 ... 1 ... -1 ... 0(X) 
(al (ft) 

The wave functions Wt{x; l) and Wrcx; l) are introduced by the 
formula 
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(A. 44) 

z , a~ , 

7:'z(x) {

W(X. l) = qa~(l)7:'h ... la+l."I~_l ... lr(x-ep(l-l))lz~+aa~-l exp ~(x(~), l) 

W*(x. l) _ qa~(/)7:'ll" .. la_l ... I~+l ... Zr(x+e~(l-l))l-z~+aa~-l exp ~(-x(~), l) 
I ,. a~ , 

7:'1(X) 

and satisfy the bilinear equation 

(A. 45) f Wz(x; lYWt(x'; l)dl=O for any I, I', x and x', 

where qap(l)=( -l)Za+1+ ... I~(a<f3), 1 (a = {3), (-l)Zfl+1+···+ Za(a>{3), and 
(/l···la±l···/~+l···lr) is replaced by(ll···lr )whena={3. (Here our 
normalization of wave functions is slightly different from the original one 
used in [22].) 
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