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On the Green Funciion of a Complete Riemannian or
Kahler Manifold with Asymptotically Negative
Constant Curvature and Applications

Takeshi Sasaki

Introduction

In this paper we shall consider a complete noncompact Riemannian
or kihler manifold whose curvature tensor is asymptotically close to that
of the real or complex space form of negative curvature. Examples of
such a manifold are supplied by strictly convex bounded domains with a
certain metric in R™ and by strictly pseudoconvex bounded domains with
the Bergman metric in C™ (see § 5 and Appendix B).

Our main concern is to find an asymptotic estimate of the Green
function of such a manifold. The result is that it behaves just like the
Green function of space forms (Theorems 2, 4).

As an application we give a differential geometric proof of Malliavin’s
estimate ([22]) of the Green function of a strictly pseudoconvex bounded
domain relative to the Bergman metric (Corollary 1 in § 5). Namely, let
D be such a domain with the smooth boundary 8D and G(p, g) be the
Green function. Fix a point g. Then for some constants ¢;, the ine-
qualities

edy(p, aD)" < G(p, 9) < cd(p, OD)"
\V,G(p, q)|<cdi(p, 9D)"

are valid for all p away from ¢g. Here d,(p, dD) is the euclidean distance
to dD. Unfortunately our proof needs some assumption on the metric,
which probably restricts the topological type of the domain.

Another application in the real case is to construct bounded harmonic
functions (Corollary 2 in § 6). For that purpose we will give a geometric
description of the Martin boundary and solve the Dirichlet problem for
harmonic functions relative to this boundary (Theorem 8). In this case
the curvature is assumed to be strictly negative and asymptotically negative
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constant. The author thinks that the construction of bounded harmonic
functions in the k#hler case will be proved in this approach.

Finally we mention some technical tools used in this paper. The
estimate of the Green function is established relying on the estimate of the
Laplacian of the distance function. And, as usual, the latter is reduced to
the study of the Jacobi equation; the problem is to study asymptotic
behavior of solutions of such a system with lasymptotically constant coef-
ficients. _

At the last stage of completion of this paper the author had several
discussions with Professor K. Shiga and Dr. A. Kasue. He would like
1o express hearty thanks to them.

§1. Laplacian of the distance funetion

In this section we will state known results on the Laplacian of the
distance function on a complete Riemannian manifold following mainly
A. Kasue’s paper [17].

Let M be a complete noncompact Riemannian manifold of dimension
n. Let T,M denote the tangent space of M at p and {, ) the Riemannian
inner product. Set || X|f=<(X, X). For a C*function f on M its hessian
I*f is defined by (X, V)=V V,f—FyY)f. The trace of V¥ is the
Laplacian of f and denoted by 4f.

Let R(X, Y) be the curvature operator. The sectional curvature of
the plane spanned by independent tangent vectors X and Y is denoted by
K(X, Y). Namely, (R(X, Y)Y, X>=K(X, Y)||XAY|’. The Ricci cur-
vature in the direction X is denoted by Ric(X). Other undefined terms
and some properties used below are easily referred in the book [4] by
Cheeger-Ebin.

Now let N be a hypersurface of M and 7" be a geodesic in M starting
at ge N, 7:[0,I1-M, 7(0)=q. The parameter ¢ of 7 is always assumed
to be the length parameter. By V, we denote the set of all vector fields
Y(¢) along 7 with the properties Y(0) € T,N and (¥, y>=0. Let « denote
the second fundamental form of N. Then the index form is defined by

IX, Y)=a(X©), YO)+ || ((F,X.7, ¥y~ (RUK, . ¥))di

for X, Yin V,.

Let p(p)=d(p, N) denote the distance function. Fix p and let 7 be
the geodesic realizing the distance d(p, N). Assume the exponential
mapping is a diffeomorphism near some convex open neighborhood in
T,N+ of the preimage of 7 under the exponential mapping. Then there is
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no focal point of N along 7 and p is differentiable at p. We define func-
tions r(¢) and k(¢) by the equations

(1.1) r(t)=Ric (P)/(n—1).
(1.2) k(t)=max {K(X, 7); X e T,M, (X, 75=0}.

Define functions f(¢z) and g(¢) as the solutions of the following equations
respectively:

(13)  f"+1f=0 with f(0)=1 and f/(0) = trace er,/(n1—1),
(14)  g”+kg=0 with g(0)=1 and g’(0) <min {eigenvalues of ,}.
Then we have the following lemmas.
Lemma 1. ([17); cf. [12], [24)) dp=(n—1)f (o) (o).
Lemma 2. ([17]) Assume g(¢)>0 for all . Then
PoCX, D)= (1 X — G, X8/ (02 (o).

The proof will now be sketched. Let ¢;, 2<i<n, be parallel vector
fields along 7 so that {7, e,, - - -, e,} is an orthonormal basis. Let Y, be
N-Jacobi fields such that Y,(!)=e /). Then it is known that dp=

7 o I(Y,, Y,)). First, note that fis positive. In fact, by definition

5 (fec fe)=alfeiO). feO)+ || (1P, feulP—K(few D Pt

Here s is an arbitrary value in (0, /] and the indices /, are taken with respect
to the geodesic 7|,,;. By the conditions (1.1) and f(0)=1, we have

2. 1(fes, fe,) <trace oy +(n—1) fs (f*—rf*at.
0
In view of the equation (1.3), we have

22 I(fes, fe) < (n—1) () S (s).

Since the left hand side is positive by the condition the N has no focal
point along 7, we see f(s)==0. This makes possible to consider the vector
field (f(¢)/f(D))e;. Then, by the index lemma ([4], p.24),

I(Y,;, YY) I(fe/f(), fe.[f(1)).
Hence we have > I(Y,, Y)<(m—1)f"(1)/f(I). This shows Lemma 1.
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The proof of Lemma 2 is done in the same way. We may assume
{X,7>=0. Let Y be the N-Jacobi field along 7 such that Y(/)=X. Set
y(t)=||Y(¢)|]. By the Schwarz inequality |y'(¢)|<||V,Y(r)], and by defi-
nition

9 I Dz, YOI+ [ (K e

Since (g’y*gY =y —ky*—(g’y/g—y')’, we can estimate the righthand side
of (1.5) from below by a(Y(0), Y(0))+(g’y*/g) |k, which is not smaller than
@DO/g| X by (1.4). Since I*p(X, X)=1(Y, Y), we have Lemma 2.

Remark 1. The Laplacian and Hessian of the distance function from
a point o instead of from a hypersurface can be estimated analogously
under the assumption that the exponential mapping at o is a diffeomor-
phism, i.e. 0 is a pole. Namely, fixing a geodesic 7(¢) from o, we define
functions k(¢), r(¢) by (1.1) and (1.2). As for the functions f(z), g(t) we
impose another initial conditions

.3y f7+rf=0  with f(0)=0, f(0)=1,
1.4y g’ +kg=0 with g(0)=0, g’(0)=1.
Then, for the distance function p(p)=d(o, p), one has the same statements
as in Lemmas 1 and 2. More generally, as is done by Kasue, we can do

calculations concerning the distance function from a closed submanifold
of arbitary dimension. See [17] on these matters.

With Remark 1 in mind we set p(p)=d(p, x) where x=a hyper-
surface N or one point 0. Suppose the differentiability of p and g(z)>0
for all . Then, making a direct use of these Lemmas, we have

Proposition 1. For any non-increasing C*-function + on [0, 1], the
Junction (p(p)) satisfies

W+ =DV [0 = () (' + (n—1)¥'g’/g)p)-
Proof. This is seen because of Ay(p)=+""+'(0)dp and the non-
increasing property of .
§2. Green function of a complete Riemannian manifold

Let M be a complete noncompact Riemannian manifold. Let G(p, q)
be the Green function of M if it exists. The aim of this section is to give
estimates of G(p, ¢) at infinity applying Proposition 1.

Let N be a closed hypersurface bounding a compact set B. We call
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the part M — B the outward. We have made the assumption:

(A.1) The exponential mapping restricted to the set of outward normal
vectors to N is a diffeomorphism.

In this section we need one more assumption:

(A.2) N is convex outward in the sense that the second fundamental form
is positive definite with respect to the outward normals.

(A.2) is satisfied when N is a geodesic sphere and the sectional cur-
vature is non-positive. (A.1) is satisfied when the sectional curvature is
non-positive outside B under the assumption (A.2).

Let r and k be functions defined in (1.1) and (1.2) for a geodesic from
ge N. We put g to denote the reference point: r,, k,. Now define

2.1) r(t)=min r,(2), k(t)=max k,(1).
geEN qEN
Next, define functions fand g as the solutions of the equations
2.2) f"+rf=0 with f(0)=1, f/(0)=(max trace «,)/(n—1),
qEN
2.3) g”’+kg=0 with g(0)=1, g’(0)<(min {min eigenvalues of «,}}.
geN

We will in the following assume the conditions

(2.4) f and g are defined on [0, o),

2.5 g(¢) is positive for all ¢,

and

(2.6) al———j:f“"dt and %:J:. g'~"dt are finite.

Now define a new function +,(¢) by

1

(241

\Vl(t):

r‘ fs)=ds.
t
Then 4,(0)=1 and +,=0 at infinity. Set 4,(p)=1,(o(p)). Proposition 1
implies
@7 Ah,>0.
Similarly define +r(¢) by
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Po(t) =

! r g(s)'~"ds,
2 ¢

o

and set A,(p)=+(o(p)). Again by Proposition 1,
(2.8) 4h,<0.

Next set ¢;=inf {G(o, p); p ¢ N} and ¢,=sup {G(o, p); p € N}. Both
are positive and we have

(29) o ZGlo, pp=chy

on the boundary N and at infinity. Hence we have by the maximum
principle

Theorem 1. Under the assumptions (A.1), (A.2) and the conditions
(2.4)-(2.6), there exist constants ¢, and c, such that

ah(p)=<Glo,p)=ch(p)  forallpe M—B.

Remark 2. (1) On any geodesic ball with center o and containing B
we can obtain the likewise estimate of the Green function of this ball. Since
the limit of this Green function when the radius diverges is the Green
function of M with pole at 0 and the condition (2.6) assures the existence
of this limit, it is not necessary to assume the existence of the Green func-
tion in advance. (2) Obviously constants ¢, and ¢, depend on the point o.
But, as far as the point o remains in a compact set, these constants can be
chosen dependent only on this set.

In the situation that M is a manifold with a pole, we have the esti-
mates of the same kind using the estimates of the Laplacian of the distance
function from one point. In order to state this estimate, we change some
of definitions. Fix one point 0. Let r and k be functions defined in (1.1)
and (1.2) for a geodesic 7 from 0. Denote these by r, and k,. Set

@1y r(t):rrrlin r(1), k(t):mrax k).
Define functions f and g as the solutions of the equations
.2y J7+rf=0  with f(0)=0, [f'(0)=1,
2.3y 8" +kg=0 with g(0)=0, g’(0)=1.

Instead of +r,, Jr, we define

= [ g0=

n-1

! r gl rdt,
W,y JE

¢1(t ) =
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where w,,_, is the volume of the euclidean (n— 1)-dimensional unit sphere.
Then we have

Theorem 1’ ([17]). Suppose the point o is a pole and the functions ¢,(t),
&.() are finite for t >0. Then, under the conditions (2.4) and (2.5),

$:1(p(P) = G(o, p) = :(o(P)).

For the proof one only needs to notice the- singularity of G(o, p):
G(o, p)~d(o, p) "**/(n—2)w, ) (1=3) or —1/2xlogd(o, p) (n=2). Then
the theorem follows from the maximum principle in view of Proposition 1.

§3. Complete manifold with asymptotically negative constant curvatures

Theorems 1 and 1’ show that some curvature conditions imply the
existence of the Green function and restrict the order of decay. Let
us recall that on a simply connected Riemannian manifold there always
exists the Green function if its sectional curvature is non-positive (#>>3)
or strictly negative (n=2) ([1] or Theorem 1/). Moreover, when the sec-
tional curvatures are bounded by negative constants from both sides, the
Green functions are estimated in terms of the Green function of the unit
ball with the constant curvature metric ([7]). This follows easily from
Theorem 1.

In this section we will give the condition on the sectional curvature
so that the functions %, and 4, in Theorem 1 have the same order at infinity.

Let M be a complete noncompact Riemannian manifold and choose
a point p. For a negative constant — c% we put

xUp; X, Y)=|K(X, Y)+c’|
for X, Y e T,M and put
3.1 X(p)=max {X(p; X, Y); X, Ye T,M}.

Let 7(¢) be a geodesic in M tending to infinity, i.e. not remaining in
any compact set and define

3.2 X (t)=max {y(7(t); X, 7); X e T, ,,M}.
Then

Definition 1. A complete noncompact Riemannian manifold is called
of asymptotically negative constant curvature —c? if the sectional curva-
ture is non-positive outside some compact set and
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(C.1) f " 1 (0)dt< oo

for all geodesics 7 tending to infinity.

The meaning of the condition (C.1) will be observed in the next
lemma and the following arguments.

Let us consider the differential equation of the form

(3.3) V' =@ 4x())y=0.

Here %(2) is defined and continuous for 0 <1< 0.

Lemma 3. Assume Jm |X|dt is finite. Set ¢(t)=Jm |%(s)|ds. Then,
0 t
(1) Any solution of (3.3) can be written in the form

(3.4 ae* (14 A(t))+be (1 + B(1))

where a, b are constants and A(t), B(t) are functions which tend to zero as
t—o0. (2) There exists a constant C such that

(3.9 |A(2)], | B()|< Cle*+¢(t/2)).

This lemma is a special case of Theorem 5.4.5 in Hille’s book [14];
see Lemma 6. For the convenience of the reader we will reproduce the
proof in Appendix A.

Now we shall apply this lemma to the estimate of the Green function
of a complete noncompact Riemannian manifold with asymptotically
negative constant curvature —c? Let M be such a manifold. We use
notations in Section 2. As a hypersurface N we take a geodesic sphere
S'=>5(o, p) with center o and radius p for the sake of simplicity. Choose p
sufficiently large so that the sectional curvature is non-positive outside the
ball B=B(o, p). Assume (A.2). Then the function g(¢) defined by (2.3)
can be supposed to have the initial condition g’(0)>0. Moreover we
have

Proposition 2. The functions f(¢) and g(t) are positive and increasing
for all ¢.

This is seen by the next lemma.

Lemma 4. Let a(t) be defined and continuous for t ¢ [0, oo) and h(t)
be the solution of h" —ah=0 with h(0)=1 and h'(0)>0. Moreover suppose
a=0. Then h(t) is positive and increasing for all t.
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Proof. Set h(t)=1-+H(0)t. We have h’hl—hh{=r.—ahh1 . 1f
0

h(t,) =0 for some #,>>0 for the first time, then A'(¢,)h,(¢,)=0. Since #'(¢,)
<0 and A,(2,)>0, this is a contradiction. Hence 4(z)>0. Then A”(¢)=
—ah is non-negative always and, hence, #'(¢) is positive. This implies
that 7 is increasing.

On the other hand, by Lemma 3, f and g have the form (3.4).
Choosing the radius p sufficiently large if necessary we may assume | A(¢)|
<1, where A(z) is the function used in Lemma 3. Then the coefficient a
in (3.5) must be positive by the increasing property of f and g. This means
that both f'and g increase like ae*®. Hence the condition (2.6) in Section
2 is satisfied and Theorem 1 will imply in the present case

Theorem 2. Let M be a complete noncompact Riemannian manifold
of asymptotically negative constant curvature —c*. Suppose every geodesic
sphere S(o, p) is strictly convex for a sufficiently large p, (A.2). Let K be
a compact set in B(o, p). Then there exist positive constants ¢, and ¢, such

that
e~ DGR < G(g, p)< e D@D
forpin M—B and q in K.

Proof. Theorem 1 tells us that, for some constants ¢; and cj,
“ f " flsyrds < Glo, T() = f g(s)!~"ds.
¢ 1

By the asymptotic constancy of the curvature, we have seen
f()y=ae*“(1+o(1)+o(1) and g(t)=ae*(1+o(1))+o(1).

Then

’
lim e*®~DG(o, T(1)) £ —2—lim "~ Vig(1)'~"< co.
c(n—1)
This implies the right side inequality (see Remark 2 (2)). The left side is
proved similarly.

Remark 3. In the statement of the theorem it is not necessary to
assume (A.2) for a geodesic sphere. It is sufficient to assume the existence
of an arbitrary large hypersurface containing o and satisfying (A.2). This
remark is valid also for Theorems 3 and 4 in Section 4.
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Remark 4. Theorem 2 can be proved using Theorem 1’ under the
assumption that the sectional curvatures are always non-positive instead of
(A.2).

Remark 5 (Gradient estimate of the Green function). In [5] Cheng
and Yau proved the next theorem: (a special case of Theorem 6 in p. 350)
Let M be a n-dimensional complete Riemannian manifold. Let f be a
non-negative harmonic function defined on a geodesic ball B(a) of redius a.
Then we can find a constant c, depending only on n such that

2

LN )0k I+

a
a—r’
where r is the distance from x to the center of B(a) and K is the lower
bound of the Ricci curvature on B(a). From this theorem and Theorem 2

we have
\V,G(q, p)|Scie” 0@ D(14-d(p, q)7")

for some ¢,>0, if we assume further that the Ricci curvature is bounded
from below.

Example. The real hyperbolic space form obviously satisfies the
conditions in Theorem 2. It is classical that this space form has a reali-
zation as a unil ball with the Hilbert metric, so-called the Klein model.
Generalizing this model, Loewner and Nirenberg defined on any strictly
convex bounded domain £ in R" a canonical complete metric in terms of
the unique negative convex solution u of the equation: det u,;=(—u)"""*
on £, u=0 on 82. ([20], [6]). The metric is —u~'d*s. But the boundary
regularity of u is not still well known even if the boundary 92 is smooth.
So we here consider another metric which seems somewhat artificial but
looks like the above metric and, moreover, becomes equivalent to this if
the boundary regularity of #® is established at the third order of differenti-
ability. Namely we let 2={¢<0} be such a domain with ¢ strictly
convex and dp=+0 at the boundary. Set v=+—¢ and define ds*=
—v~'d*v. When ¢=|x['—1 for example and £ is the unit ball, ds* is the
Hilbert metric. Calculations show that the curvature function K satisfies
|K+1|= O(¢) near the boundary. Moreover we can see that every
geodesic not remaining in any compact set tends to the boundary and
touches transversally the boundary. These facts imply that the manifold
£ with ds® is of asymptotically negative constant curvature —1 and Theo-
rem 2 holds for £2. Calculations will be given in Appendix B.
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84. The kiihler case

In this section M will be a complete kdhler manifold of complex
dimension n. J will denote the complex structure tensor. In order to
define the asymptotic constancy of curvature in this case we will give some

notations.

Let D be the unit ball with constant holomorphic sectional curvature
—c* Choose a point o e D and denote by K, the sectional curvature
function at 0. Let p be any point of M and fix arbitrarily a unitary iso-
morphism § between T,M and T,D. Then we set

Up; X, Y)=|K(X, Y)—K5(0X, 0Y)|
for X, Ye T,M and
“.0 Up)=max {X(p; X, Y); X, Ye T,M}.
Let next 7(¢) be a divergent geodesic in M and define
4.2) L () =max X(7(2); X, 7); X e T,., M}.
Then we can state

Definition 2. A complete noncompact kihler manifold is called of
asymptotically negative constant curvature — c?, if the sectional curvature
is nonpositive outside a compact set and, for any diverging geodesic 7,
the function X,(¢) tends to zero and satisfies

(C.1) r 1,(6)dt < co.

We are now in the same situation as in the preceding section except
the following. The difference is seen in the limit values of r and &.
Namely in the present case

lim r(t)= —((n+1)/(4n—2))c?, lim k(2)= — c*/4.

t—oo

Hence we have the estimates of the Green function
“.3) ce” VD=1l 0,0 < G(p, g) Lo PYDEED

for some constants ¢, and ¢,. But we can sharpen these estimates reason-
ing more carefully the treatments in Section 1 and Section 2.

Let M be as above. Recall the notations in Section 1. N is a real
closed hypersurface in M. Set p(p)=d(p, N). 7(t) is a geodesic starting
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from one point g in N defined for ¢ ¢ [0, /], and #(0) is normal to N. e,
is the second fundamental form of N at q. X(¢) is a vector field along 7.
Define functions s,(¢) and A,(t) by
s,=min {K(7, X) with (X, 7>= 0 and (X, J7>=0},
hy=K(t, J7).
Set 1,=max {eigenvalues of «,}. Let a,(¢) and b,(¢) be any functions
satisfying differential equations
al +5,(t)a;=0 with a,(0)=1 and a{(0)=2,,
b +h,(t)b,=0 with b5,(0)=1 and 5b(0)=2,.
Now let e be a parallel vector field along 7 such that ||e]|=1, (e, })=0

and (e, J7>=0, and Y be the N-Jacobi field satisfying Y(/)=e(/). Then
we have seen already in Section 1 that

(4.4 I(Y, Y)<I(a/a(l)e, ai/a(l)e) <ai(l)]a(]).
If we denote by Z the N-Jacobi field satisfying Z(/)=J7(/), we can see
(4.5) I(Z, Z) <bi(1)[b,(D).

The inequalities (4.4) and (4.5) imply
Lemma 5. Ao(1(1)) <(2n—2)ai(l)/a(1)+ bi(1)/b,(!).

The proof is similar to that of Lemma 1. Next, following Section 2,
we set

s(t)=min s,(t) and A(t)=min A,(¢)

and define functions a and b by
a’+sa=0 with a(0)=1 and a'(0)=max 2,
q
b"4+hb=0 with b(0)=1 and &'(0)=max 2,.
q

Moreover we define

P(t)= 1 r a**-mp-ds,
o Jt

where a=Jm a*=mb-'dt is supposed to be finite. Then we have the
0

estimate
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(4.6) c"Y(p(p) = G(o, p)

as in Theorem 1. It is necessary, of course, to assume (A.1) and (A.2).
Let us now proceed to the case of asymptotically negative constant
curvature —c®. In this case s and / have limits:
lims(t)=—c*/4 and limA(t)= —c>
t—oo t—oo
Hence the functions a and b have asymptotic behavior such as e®*/? and e°*
respectively up to positive constants. These imply that

_\!,\I —~ e—nct.
Therefore, with (4.3) and (4.6), we have

Theorem 3. Let M be a complete noncompact kdihler manifold with
asymptotically negative constant curvature — c*. Assume the strict convexity
of a geodesic sphere with sufficiently large radius. Let K be a compact set.
Then there exist positive constants ¢, and c, such that

@7 e 0 <G(p, g) e e
for p away from K and q in K.

In the rest of this section we shall give the condition to improve the
upper estimate. The problem is to improve the lower estimate of 4p. For
the sake of simplicity we take a geodesic sphere S as a hypersurface N.
Suppose the radius is sufficiently large so that the curvature is nonpositive
outside the ball B and suppose S is strictly convex, (A.2). 7(¢)is a geo-
desic from ¢ € S defined for ¢ e [0, c0). Fix a positive number /. Let
Y'(t) denote any one of S-Jacobi fields along 7 |, ,; such that {Y*(I), 7(/)>
={Y¥I), J#(I))=0 and Z(¢) be the S-Jacobi field along 7|, ;; such that
ZY(l)=J7(l). Define functions 5} and k% by

Si(0)=max {K(7(1), Y1)} and  ky(t)=K(Z'(®), (1)),

and set
5(t)=max 34t) and k,(t)=max ki(?).
L l
Also set p,=min {eigenvalues of «,} >0. If we define functions ¢, and d,
by equations

e +5le,=0 with ¢0)=1 and 0<c{(0)=p,,
d/+kid=0 with dO)=1 and 0<dI(0)<p,,
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then by the reasoning in Section 1 for Lemma 2, we have
I(YY, Y)zci(Dfe(l) and  I(ZY, ZHYzd{(D)/d(]).

Note that ¢, and d, are positive by the assumption on curvature. More-
over if we define functions ¢, and d, by equations

¢y +35,6,=0 with ¢,(0)=1 and c}(0)=c{(0),
dy +k,d,=0 with dy(0)=1 and d}0)=d;(0),
then, by the Sturm-Liouville comparison theorem, we have
ciDfezeiD/e(l) and  di()/d(1)Z diy(1)/dy(1).
Hence we have shown
Lemma 5. dp(r(1))=@2n—2)ci(1)/c.(1)+ di(1)]dy ().
Next, set
4.8) k(t)=mqax k() and 3(2) =mqax 5,(1),
and define functions ¢ and d by equations
¢”+5¢=0 with c()=1 and ¢’(0)=min g,
4.9 ¢
d"+kd=0 with d(0)=1 and d'(0)=min pg,.
Here we have supposed min g, >0. Then, defining a fu;llction ¥, by

e L[ eromgay
o Ji

where ozl=‘[°° c**=-md-'dt is supposed to be finite, we have by Lemma 5’
0
before the estimate

(4.10) G(o, p)=c"Y(p(p)).

In order to estimate r,(¢), we quote a lemma on a system of differ-
ential equations:

(4.11) Y'(t)=(4,+ 4,#)X(2)
where Y (¢) is a n-vector, 4, and A, are n by n matrices and A4, is constant.

Lemma 6 ([14], Theorem 5.4.5 and [19], Theorem 2). Suppose A, is
diagonalizable with real eigenvalues 3, - - - = 2,, and that jw [4,()||dt< c0.
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Then (1) the equation (4.11) has a solution of the form

“4.12) Y(t)=72 k-1 (Eu+ Ru(1))e™
where E, is the eigenvector of A, belonging to 2, and lim,_., || R,(¢)|=0.
(2) Define B,=(2,—A,,,) when 2,=---=2,>2,,, and B,=o0 when 1=

««+=2,. Then, for some constants C,,

@13 IROIZC[ o (—l—DI A s+ [ 14O ds).

Remark 6. The proof is done analogously to that of Lemma 3. It
is not necessary to suppose that eigenvalues are real ({19]). The part (2)
is contained in the proof of Theorem 2 in [19], p. 177.

We shall apply this lemma in the following situation. Choose parallel
vector fields ey, - - -, e,, along 7 so that {7, J7, e, - - -, €,} is an ortho-
normal frame. Let Y=f,J74 > ,;=;f;e, be a vector field orthogonal to 7.
Define a vector function Y ()= (/. fJ, - -+, fen-fo). Then the Jacobi
equation for Y is written as a system of differential equations of type
(4.11). Here note that {(R(e,, })7, J7)>={R(e;, )7, e;)i=j)=0 for the
space of constant holomorphic sectional curvature. The eigenvalues of
A, are ¢, ¢/2, - -, ¢/2(2n—2-times), — ¢/2, - - -, —c/2 (2n—2-times), —c.
The values ¢ and — ¢ correspond to the direction J; and others correspond
to e,. The absolute value of each component of A,(¢) is bounded by a
constant times of X,(¢), (4.1). Hence

(4.14) (D= ek (1)

Lemma 6 then shows that there exist 4n—2 linear independent solutions
of the form e**((1+r)J 7+ Ry), e (1 +5.)J 7+ Sy) and e**((1+r,)e,+ R,),
e ¥ (14s)e,+S,), 3<i<2n; where r,, s, are functions and R,, S,, R;, S;
are vectors orthogonal to J7, J7, e;, e; respectively. By Lemma 6, |r,|,
|8:)s 1R, || S;|| are all estimated like (4.13). Since the norms of S-Jacobi
fields under question will diverge by the non-positivity of curvatures and
the strict convexity of the geodesic sphere (cf. Lemma 4), we come to the
situation that there exist 2n—1 independent S-Jacobi fields

4.15) JzzeCt((I""rz)J?;‘!'Rz(t))a
Ji=e" (1 +r,)e; + R,(1)), 3<iL2n,

where r, and R, are probably different from the above.
Letusfix . Then

(e—CLJm e_chB: tr e-CZ/ZJZn)=(J7;(l)= 63(1), MY eZn(l))(1 +E(l)):
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where E(/) is a 2n—1 by 2n—1 matrix whose components are linear com-
binations of r,(/) and the coefficients of R,(/). Choose a sufficiently large
! so that (14 E(/)) is invertible, which is possible by Lemma 6. Then

Jr(D)y =1+ g(Ie WD)+ 225250 ,(De 1T (0),
eD)=(1+ (e~ T (1) + gu(De~ (1)
+ 2 szsgwiPes(De T (D).
Here and hereafter ¢(¢), ¢.(¢) and ¢,,(¢) denote terms whose absolute value

is bounded from above by a linear combination of |r,(¢)]| and || R.(?)|,
2<k<2n. Now set

Z()=(1+g(I)e T (t)+ 27 guD)e 2T (1),
(4.16) Y()=(1+ ¢ii(l))e_d/2‘]i(t)+ ¢iz(1)3_ LIy (t)
+ 20 do(De 12T (2).

Z is the S-Jacobi field with Z(/)=J #(/); namely, the Jacobi field Z* which
we defined before.

In order to estimate K(Z, #) and K(Y,, ), we pose one more assump-
tion on the curvature:

(C.2) L(t)ScemCrots for some positive constants ¢ and c¢,.

This assumption then implies by (4.14)

(417) “Ax(t)Héclcze'(”é)‘/i.
Next note that 8,’s in Lemma 6 are, in our case, f,=¢/2, fy="- - = P01
=¢, fon="+-=Pin-s=c/2 and f,,_,=o0. Hence, by (4.13).

(4.18) 1ol IR < checer,

Therefore (4.17) implies
4.19) 1), ¢, (1) e
Combining (4.15) and (4.16), we have

Z(#)e* 0 =1+ g1 +1)T 7+ Ry(1))
+ 25 gDt (L+re+ Ry(2)).

Set R(z)=>2 || R«(t)|l. Then, by calculations, we can see
1 Z1fe* =2 =1+ g(D) (1 + 1))+ O+ g(De Y(R(1) + &),
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and

(RZ, P Z)e
= {1+ B+ RO+ OGO e K (G (0), T (1)
+ 0@ )R+ 77,

where ¢(/) is a certain linear combination of ¢,(/) and ¢,;(/). Therefore
by (4.18) and (4.19) we have

(4.20) K(Z, =K (7, J)+ O(e-"),

As for Y, the calculations will be the same. Let Y be one of Y,, say Y,.
Then it has the form

Y(t)et " =1+ gu(O(L+ro)es+ 25 O(1+B)(R; +e))
+O(p)e™ "= (1 +r)J7 + Ry).
Then we can see
| Y e = (14 os(D)'(1+ o)+ O(S(D)R(2) + O($(1)),
and
(RQY, P, ¥yest=
= (14 o))’ (1 +r3)*K(es, 1)+ O(L+ () R(2)+ O($(0)).

Since />t in our consideration, ¢(/) < c’e~**/* for some ¢’ by (4.19). There-
fore we have

4.21) K(Y,, 7'/)_—_[{(3“ 7'/)_‘_0(6-61:/2).

Now recall the definition of k and 5. See (4.8). Then the identities
(4.20) and (4.21) imply

limk(f)=—c® and lim5(t)=—c%4,

and
4.22) |[k(2)+c?|, [5(t)+c*/4| <L ce?

for some ¢,>>0. Hence the functions ¢ and d defined in (4.9) have the
asymptotic behavior such as e*** and e respectively up to positive con-
stants. Then this implies

_\!’{Ne_nny
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and we have by (4.10) the upper estimate of the Green function. Namely

Theorem 4. Let M be a complete noncompact kéhler manifold satis-
Sying (C.2): L (t) < c'e €+~ for some positive constants ¢ and ¢’.  Assume
the strict convexity of a geodesic sphere with sufficiently large radius and the
non-positivity of curvature outside some compact set. Let K be a compact
set. Then there exist positive constants c, and c, such that

“23) Ce PO G(p, ) Seem
Sor p away from K and q in K.

Remark 7. The condition (C.1) follows trivially from the condition
(C.2).

Remark 8. Theorems 3 and 4 can be proved under the assumption
that the sectional curvatures are always non-positive instead of the as-
sumption (A.2). Modifications necessary are on the definition of functions
a,b,c,d, ---. Let e be one of these. Then the initial conditions must
be ¢(0)=0 and ¢/(0)=1. Remaining arguments are the same.

Remark 9. The gradient estimate of G(p, ¢) is shown in the same
way as in Remark 5 of Section 3.

§5. Example: A strictly pseudoconvex bounded domain in C™ with the
Bergman metric

Let D={y4- >0} be a strictly pseudoconvex bounded smooth domain
in C”, where +» is a C=-function defined in a neighborhood of D. —+
is strictly plurisubharmonic on D, ie. (—1,;)>0, and |dv-|0 on the
boundary 9D. Denote by K(z, w) the Bergman kernel function of the
domain D. Fefferman [9] has proved that K(z, z)=@(z)y~ "*Y(z) X
A+ ™0 log ¥(2)) where, @, ¥ e C~(U) with >0, U being a
neighborhood of the domain D. Let ¢g=1y(O(1+T "+ log )/,
Then K(z, z) =¢(z)~*". Note that the rate of ¢-—0 is the same as the
rate of —0. Put ;= —¢,;/¢+ ¢.$;/¢* and g,;=(n+Dh,;. The Berg-
man metric is given by ds*=}" g,;dz'dz’. Fix a point ¢ in 8D and choose
a holomorphic coordinate (z;, - - -, z,) near ¢ such that 3/dy, is outward
normal to 0D at g and 0/dx,, 9/0x, (i=2) and 9/0y(i=2) are tangent to D
at g. Here we have set z,=x,++/ — 1y,. Hence

¢ |0¢/ay,|>0 near q.

Let 7(z) be a divergent geodesic with respect to the Bergman metric.
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Then Fefferman proved 7(¢) tends to the unique boundary point as t—co
and, moreover, the geodesic is transversal to the boundary at the limit
point (Lemma 3 in [10], p.57). Letting this point be ¢, we have

(5.2) dg/dy,=dg(7(¢))/dt/dy,(1(¢))/dt has a positive limit at g.

Now we will follow Klembeck’s calculations for a while, [18]. The
curvature tensor S,3;; of the metric 3| ,;dz'dz’ is given by the formula

1

(5.3) - E Siiki = (hijhki + hzzhkj) - (¢¢1]ki - ¢qu—511)/¢2
— 22 W (PP iem — Pixbm)(PPi1n — P16/

and Klembeck has proved

(5.4) = Sint (hsha-+hahe) = 0(1/9)

as the point tends to dD. He used (5.1) and the fact that the eigenvalues
of (%;;) go to infinity at least as fast as 1/¢. By the equality g,;=(n+1)A;;
the curvature tensor R;;;; of the Bergman metric ds* satisfies

(5.5) R0+ —2——(gijgki+giigki)=0(1/¢)
n+1

near the boundary. Hence the function X defined in (4.1) satisfies

(5.6) 2 p)=O(¢(p)).

Here the curvature constant is —c?= —4/(n+1). Especially for any
geodesic 7 we have

(5.7 2(8)=O0((7(1))).

We will next examine the condition (C.2). Let again 7(¢) be a
geodesic tending to the boundary point g. We fix a point p,=7(#,) for a
large ¢,. Since 8/dy, is normal to 8D, we have

ds*=((n+1)/4)g;,/$°dyi+ O(1/¢)|dz[

near g. The first term is not zero by (5.2). Therefore, for sufficiently
large 7, and ¢,

a0, p) =" ds =~ ¥ Liog (5 +00).
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This means
9 BI(1)) ~ ce*1 /751

for all large . Since the curvature constant is c=2/4/n+1, we can see,
combining (5.7) and (5.8), the condition (C.2) holds for e=c¢/2. Therefore

we have

Theorem 5. A strictly pseudoconvex bounded domain is of asymp-
totically negative constant curvature —c*= —4/(n-+1) with respect to the
Bergman metric. Moreover it satisfies the condition (C.2).

Theorem 6. Let G(p, q) be the Green function of a strictly pseudo-
convex bounded domain with the Bergman metric. Assume every geodesic
sphere with a sufficiently large radius is strictly convex. Then, for any
compact set K, there exist constants c, and c, such that

(5.9) c,e~ Yn+1d(p,q) <G(p, q9) gCZe*Zn/Jn;Td(p,q)
or p away from K and q in K.
K and q in K.

Since ¢(p) and the euclidean distance dgz(p, dD) to the boundary 6D
behave similarly to each other near oD, we obtain from Theorem 6 and
Remark 9.

Corollary 1. With notations and assumptions in Theorem 6

CldE(p9 aD)néG(pa q)écsz(p: aD)n’

(5.10)
IVpG(p> Q)|§CsdE(p’ oD)"

Sor some ¢,>0.

Remark 10. This corollary assumes the strict convexity of a geodesic
sphere. This is satisfied when the sectional curvature of the Bergman
metric is non-positive, which, however, is not always the case. Hence, this
corollary is weaker than Malliavin’s estimate in this sense. According to
Remark 3, in order to avoid this assumption, it is enough to show the
existence of the closed strictly convex hypersurface which is arbitrarily
large. But the author does not know anything about this problem.

§6. An application in the Riemannian case: Martin boundary and bounded
harmonic functions

The aim of this section is to construct nonconstant bounded harmonic
functions on the manifold considered in Section 3. This is done by the
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geometric description of the Martin boundary.

In Section 3 we have proved the estimate c,e~*®9 < G(p, q)<
c,e” @9 for the Green function G(p, q), where k=c(n—1). Here con-
stants ¢, generally depend on the initial point, say p, and this estimate is
valid for d(p, g)=c; >0, ¢, being a constant also depending on p.

First we shall control this dependence under more strong conditions.
Let M be a simply connected noncompact complete Riemannian manifold
of non-positive curvature. In Section 3 we defined the function X which
measure the difference between the curvature and the given constant —c?
Let p, be a point which we fix once and for all. Define a new function

%(t) by
X,(t)=max {x(7(¢)) for all geodesics 7 from p,}.
Then we will set the following condition:
(C.3) There exists a non-increasing function X,(¢) such that X,(z)=2(¢)
and J: X.(s)ds=: a is finite.

Remark 11. Since we are assuming the non-positivity of curvature,
we can see that, if M satisfies (C.3), then M is of asymptotically negative
constant curvature —c? (see (6.2)).

Theorem 7. Let M be a simply-connected noncompact complete
Riemannian manifold of non-positive curvature and satisfying the condition
(C.3) for a constant —c®. Assume X, <b* for some constant b. Then there
exist constants ¢, and ¢, depending only on a, b and ¢ such that

6.1) e~ k@0 < G(p, g) < c,e @D
for d(p, g)=1.
The proof relies on the next lemma, which we prove in Appendix A.

Lemma 7. Let y be the solution of ¥y’ — (X +X(t))y =0 with the initial
conditions y(0)=0 and y'(0)=1. Assume 0+ X<b* and a=r [x]ds <
0

co. Then there exist constants c, and ¢, depending on 2 and b such that
cgt < y(t)Zcfet Sfor t=1.

Proof of Theorem 1. We first see

(6.2) j : 10(0) dt<2a
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for any normal geodesic 7. In fact, when 7 is through p,, the assertion is
the condition (C.3) itself. Assume 7 is not through p, and the geodesic
joining p, and 7(0) is perpendicular to 7 (translate parameter if necessary).
Since curvature is non-positive, we have d(p,, 7(¢))=|¢| by the triangle
inequality. Hence X(7(t)<X(d(p,, T(#))<X(2z]). This implies (6.2) by
(C.3).

Now the proof is immediate. Recall that the estimate of the Green
function is given by the estimate of functions f and g defined by (2.2 and
(2.3Y in Section 2. See Remark 4 in Section 3. So it is sufficient to get
estimates of these functions which are dependent only on a, b and ¢. But
this is accomplished in Lemma 7 in view of (6.2).

To state the next theorem let us first recall the visibility boundary of
M. Let? and § be two geodesic rays. They are said to be asymptotic
if d(¥(z), 6(¢)) is bounded. Then the visibility boundary is by definition
the set of all asymptotic classes of geodesic rays ([9]). We denote it by
M (o0). Since we are assuming that the curvature is non-positive, to every
geodesic ray g, there exists a unique geodeisc ray 7 from a fixed point p,
such that 7 and & are asymptotic. This means M (oco) can be identified
with the set of all geodesic rays from p,. We can give a topology on
M(0), taking as a subbase of the topology, the set of open cones of
geodesic rays. With this topology MU M (oo) is compact and homeo-
morphic to a n-cell.

We will next recall the definition and some properties of the Martin
boundary. Proofs and other properties can be found in the original paper
of R. S. Martin [23] or in [16], [13]. Let M be for a while a noncompact
complete Riemannian manifold admitting the Green function G(p, ¢).

One chooses a reference point p, and sets

K(p, 9)=G(p, 9)/G(p,q)  (=1if p=p,=q).

This is non-negative and harmonic on M —{g} as the function of p. Con-
sider a divergent sequence {¢,} of points in M. In any bounded domain
in M the functions K(p, ¢,) form a normal family by Harnack’s principle.
Hence a subsequence, say K(p, q,), is convergent to a harmonic function.
Writing £={q,.}, we denote this limit' by K,(p) and call this sequence &
fundamental. Two fundamental sequences & and &’ are called equivalent
if K,=K,,. The set of all equivalence classes of fundamental sequences is
called the Martin boundary of M and denoted by M. The function K,
is called the Martin kernel function with pole &.

One can introduce a metric topology on M UM such that K.(p) is
continuous with respect to (p, §). With this topology MU9M is a com-
pactification of M. A positive harmonic function /4 is called minimal if
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every non-negative harmonic function u with ¥ <A is a constant multiple
of h. The set 3,M={& € M K, is minimal} is called the minimal part of
the boundary. K, is minimal if and only if the reduced function of X,
relative to the set {¢} is equal to K, itself. Then the Martin representation
theorem says that every non-negative harmonic function % can be written

as h(p) =LM K.(p)dp(&) using some Borel measure # on dM with its sup-

port in 8,M. This measure is uniquely determined by 4. We write by v
the measure corresponding to the function 1. Then one can solve the
Dirichlet problem using v as a reference measure on the boundary. Namely
Brelot’s theorem ([3], [12] Theorem 12.22) says: Every continuous func-

tion f on dM is resolutive; that is, the function I SfEK(p)dv(§) is the

Dirichlet solution for the boundary value f.
Now we can state

Theorem 8. Let M be a simply-connected noncompact complete
Riemannian manifold of strictly negative curvature and satisfying the con-
dition (C.3) for a constant —c®. Assume X, <b* for some constant b. Then
the visibility boundary M(co) is homeomorphic to the Martin boundary oM
and every boundary point is minimal.

The proof is divided into several steps. Let 7(¢) be a geodesic ray
from the fixed point p,, When 7(¢)=p, p,, then K(p, 7(t))=G(p, 7(¢))/
G(p,, 7(t)) by definition. The inequality (6.1) implies

(6.3) a-le=ta@ -0 < K(p, 1(1)) <ae @ r)1-n,

where k=c(n—1) and a=c¢,/c;. If £&={7(¢,)} is a fundamental sequence,
then

(6.4 a~te ™ LK (p)<ae Fr®,
The function +,(p) here is defined by
V(p)=lim (d(p, T()—1)

called the Busemann function associated with a geodesic ray 7.

The estimate (6.3) enables us to consider a mapping @: dM—M (o0)
as follows. Let £={p,} € 9M be a fundamental sequence. 7, denotes a
unique geodesic ray joining p, and p,. Take one of limits of {I,}, say 7.
Then, by the continuity of -(p) with respect to p and 7 ([8] Proposition
2.3) and by (6.3), we have (6.4) for 7. If {r,} has another limit J, (6.4) is
valid also for §. But this is possible only if 7=4 by the simple fact that
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lim, ¥ (7(t))= — co and lim, .y (6(¢))= oo for 74, which is the con-
sequence of the strict negativity of curvature. Hence we have seen that a
fundamental sequence & € 9M determines a unique 7 € M(o0). Now define
d(&)=7r. Then we have

(a) The mapping @ is surjective and continuous.

Proof. The surjectiveness is clear from the definition of M. The
continuity is an easy consequence of the continuity of ,(p). Namely, let
a sequence {£,} tend & and set 7,=9(§,) and 7=0(¢). We have to show
7, tends to 7. If § is one of limits of {7}, then K, ~e~*¥ in the sense of
(6.4). Hence K, ~e~*¥s shows 7=34.

Let us next see the injectiveness of @. Pick a compact set B in M
and let U be an open neighborhood of @(B) in MU M (o). Then we
have

(b) There exists a constant k such that K.(p)<k for any £ e Band p € U".

In fact, by the estimate (6.4), it is enough to show y,(p) =k for some
constant kK when p e U° and 7 € @(B). But this follows from the strict
negativity of curvature; namely, for any positive constant ¢ and a constant
k, there exists a constant f, such that, for any ray § through p,, the value
,(3(t)) is greater than k if the angle between 7(0) and §(0) is greater than
¢ and t > 1, (compare with the negative constant curvature case; [4]).

Let 4 be a non-negative harmonic function on M. It is written as

65 W)=, K(P)u
for some Borel measure ¢z on dM. Set B=supp p. Then
© lim,_, A(p)=0 for 7 ¢ @(B).

Proof. Choose a neighborhood U of @(B) such that7 ¢ U. By the
fact (b), K.(p)<k for £ e Band p € U°. The representation (6.5) implies
h(p)<ku(@M)< oo for p e U°. Hence we can take the limit of the integral
when p tends to 7. But lim,_, K,(p)=0 implies lim, ., #(p)=0.

Fix 7 and asssme lim,_; #(p)=0 for any §=+7. Then

(d) supp pC@(7).

Proof. Let B be a compact set in dM such that BN@~'(7)=¢.
Define a new function A, by

)= KdpIL©du),
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where X is the characteristic function of the set B. Obviously i, <h.
Hence 0<lim,_; h,<lim,_, h=0 for d7. If7 ¢ &(B), lim,., h,=0 by
(b). Hence h,=0 and especially u(B)=h,(p,) =0, where p, is the reference
point in the definition of the Martin boundary.

(¢) The mapping @ is injective and any boundary point is minimal.

Proof. The fact (d) implies @-(¥) contains at least one minimal
point, since the measure y can be chosen so that the supp g is contained
in the minimal part ,M. Let one of them be & and 5 € @~'(¥) be another
point. The estimate (6.4) implies

a K, <K,<aK,.

Hence K,=K, and 7=¢. Namely, @ is injective and every boundary
point is minimal.

The facts (a) and (e) complete the proof of Theorem 8. Now we can
confuse @(¢) with & Let f be a continuous function on M(co)=aM.

Then H( p):f S®OK.(p)du(¢) solves the Dirichlet problem for f. But, by

virtue of the fact (c) above and a general theorem on the Martin boundary
(I3]), Théoréme 15), H, is a solution in the strict sense. Namely,

Corollary 2. With the above notations and under the assumptions in
Theorem 8, lim,_. H (p)=f(&).

Example. We continue the discussion on the example in Section 3.
Let £2={¢< 0} be a bounded strictly convex smooth domain in R* with the
metric defined there. We have seen that the curvature is asymptotically
negative constant. Moreover it is not hard to see that the curvature as-
sumptions in Theorem 8 are satisfied provided that £ is a sufficiently small
deformation of the unit ball in the sense of C~-topology. And, in this
situation, the boundary £2(c0) is canonically identified with the geometric
boundary 652 (This is proved following arguments in p. 61-p. 64 of [10]
with necessary modification and with use of results in Appendix B). Hence
the Martin boundary of £ with respect to the present metric is identical
with 2. The property lim H;=f in Corollary 2 is proved more directly
in this case. Choose b ¢ 02 and fix an affine coordinate (x*) with origin
atb. Setu= —(—¢)”—e|x[. Then one can see, by the straightforward
calculation making use of the explicit form of the metric tensor and the
Christoffel symbol given in Appendix B, that u is subharmonic near & for
a sufficiently small . Since it is non-positive on 2 and takes O only at b,
u is a barrier function at b. This implies the above property ([13]).
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Appendix

A. Proof of Lemmas 3 and 7.

Proof of Lemma 3. First choose a constant a such that ¢(a)<<24,
which is possible by the assumption ¢(z)—0 as r—oco. Define functions
y:i(t) and y,(¢) for ¢ € [a, o) by the integral equations

()= —e-“ + L j (™Ht=9) — i)y (s)y,(s) ds,

y2<t>=—e"—i{j ey + [T ds .
22 22 Ue ¢

It is easily seen that these functions, if they exist, satisfy the equation (3.3).
To see the existence, set v,(¢t)=e*y(¢) and v, (t)=e *y,(¢). Then v, is
given by

vi(t)— - ——j (1 —e¢=)yv,ds,
(1) 22
Uy(2)— % =— —211 {j e =7y ds+f szds}

Since ¢(a)<<24, each of these integral equations has a unique bounded
solution which can be seen by the usual iteration method. Denote its
bound by L: |v,(¢)|<L. Then, taking absolute values of both sides of (1),
we have

vl(t)_ -——¢( )a

22 |_ 22

(2)
vz(’)—

2 }_ L e 9@+ ().

Since these inequalities show that y, and y, are linearly independent, any
solution of (3.3) has the form stated in (1) in the Lemma. The part (2) is
seen from (2).

Proof of Lemma 1. For the proof of Lemma 7 we prepare another

Lemma. Let y be the solution of y'— (24X())y=0 with initial
conditions y(t,)=A=0 and y'(t,)=B=0, (4+B+0). Assume 3*+2=>0.

t1
Define t, by‘[ |X(s)|ds =22k where k is a constant determined below. Set
- to
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t,= oo if lex(s)]ds_s_ﬂk. Then there exist constants c,;, d, (i=1, 2) de-
to
pending on 2 such that

AL y(t)e -0 <d (A+ B)
B y/()e ¢ 9 <dy(A+B)

fort, <t <t

Proof. We may assume #,=0. Put y,(#)=4 cosh ¢+ B/ sinh 2t.
The solution y is given by the equation -

6) y(t)=y1<t)+} [ sinh 26— syt wisyas
Define
Yoo =2 0)+ 1 [ sinh 26— )s)y.(s)ds

succesively. Then
ey —y:| SkF max {e7 ¥y (s); 0=s<t}.

If we assume k<1, this implies

&2 k B
—n|= 1=V S (A4 )et f <t<i,.
Iy »yll—glyz 1 yil__. 1—k< + 27 )e or 01y,

Hence
B\ i
@ YO (A4 2 )t (1 -,
Differentiating (3) and substituting (4) we obtain
) YOZHO+[ cosh M=) A+ 2 )ef(1—Ryds
0

‘g(ZA 1+3k+B 1 )e“.
22k 1—-k :

To obtain lower estimates, define z (resp. w) to be the solution of the present
equation with z(0)=4 and z’(0)=0 (resp. w(0)=0 and w'(0)=B). Then
z<yand w <)’ because 2*-+X=>0. z (resp. w) is given by the above y set-
ting B=0 (resp. A=0). Hence we can use estimates for y and we obtain
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1—-3k
(6 Z(t);ﬁ

Ae* and w()< _B
22(1—F)

Substituting the latter inequality into
t
w’(t)= B cosh 2t+I cosh A(t—s)X(s)w(s).Is
0
we have

1-3k
7 '(t) = ——=_Be*.
G Wz o

Choosing k smaller than 1/3, we complete the proof.

We give the proof of Lemma 7 applying the above lemma repeatedly.
Start with the case #,=1. The values 4, B are estimated by absolute
values due to the assumption on X. ¢, is defined as in Lemma. Set s5,=1¢,.
Then ¢, < y(s) <die*, c,e*' < Y'(s)) <dye*t for some constants ¢; and
d,. Next, putting f,=s, in Lemma and define #, which we now write s,.
Let y, be the solution with y,(s;)=c,e** and y/(s,))=c,e*, then by com-
parison and by Lemma, we have

V(82) = 1(82) = €122V y (5,) = cle*,
V' (59) = yilsp) = ¢, = y((s,) =cier™.
Repeat this process. By the assumption of finiteness of azr |X|ds, this
0
process will terminate at the a/24k -th step. This finishes the proof of the
lower estimate. The upper estimate is given similarly.
B. Curvature behavior of the metric —(1/v)d*v.

Let 2={$< 0} be a smooth strictly convex bounded domain in R".
The defining function ¢ is strictly convex in some neighborhood of £.
We set

v=v/—¢
on £2. In this Appendix we consider the metric

ds*= —%dzl}: —_ll)_ 2 Uy dxtdx?

defined on . We first calculate the curvature tensor of this metric and,
second, we investigate the boundary bahavior of the geodesics.
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Remark 1. The metric ds* depends on the choice of the defining
function. But it has a “projective invariance” in the following sense.
Let 4: R*—R" be a projective transformation defined as (Ax)‘=
C aix’+a")/(3] ax*+a); aj, - - -being constants.  Set k(x)=2 ax'+a.
For a given strictly convex domain £={¢<0} we define on the domain
A~'Q the function ¥ by ¥(x)=Kk*(x)¢(4x). We denote by ds} (resp. ds;)
the metric defined by + (resp. ¢) as above. Then the mapping 4 is an
isometry from (47'Q, ds}) to (2, ds;).

We fix a coordinate system (x', - - -, x™) of R".

The fundamental tensor of the metric ds® is 1/2(g;,) where

¢y 8ii=— i/ ¢+ $:ip;/24".

Proposition B-1. The metric ds* is complete.

Proof. Let (¢*) be the inverse matrix of (¢,;). Set |dg[=> ¢" ¢4,
and ¢'=3 ¢"¢,. Then the inverse of (g;,) is given by

i
1y go=—g(00+ 005
—|dgf
Let |dv| be the norm of grad v relative to the tensor g;;. Then we have

gl
jdvp—H198L < —g.
2¢—|dg [’
Hence |dvf<v. Let 7 be a curve tending to 0f2. Taking arc-length
parameter ¢, we see

the length of?’—j dt>J L av—co.
T
Hence ds*® is complete.

1. Calculations of the curvature tensor

For the sake of convenience we treat the metric 2ds*® for a while. The
summation convention is used. The Christoffel coefficients and the cur-
vature tensor are given by the formulas

@) szz'i‘g (gmj kT 8&mk,; gjk,'m)

1
3) R ='E(gil,jk+gjk,il_gik,jl'_gjl,'llc)
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Where g 1 =08m;/0X", g4y, ;=081 /0x'0x", - - .. Taking derivatives of (1),
we have

@ 8y=— Pl 9+ iy b/ + Dy + 1P 11) 28" — .8, 64/ 8,

8ij=—Pusni/ P+ (¢ijk¢t ~+ Gi51P+ Db/
F (Piri®; + Pubsi+ Pubin+ b 26°

5
( ) - (2¢ij¢k¢L + ¢ik¢j¢l + ¢jk¢i¢l + ¢il¢j¢k + ¢jl¢i¢k + ¢kl¢z¢])/¢3
+3¢:8 65/ B
We put 4,,,,=8n; x+8&mni;—&sm- Lhen by the substitution of (4)
(6) Amje= = Pmiil $+ (PniPs + GG F — S bil &

Since I, =g An;:/2, we know the second term of the right hand side of
(3) is equal to g™ (A nsxdny— Anjdau)/4. Now we can express the cur-
vature tensor in terms of derivatives of ¢ using (5) and (6). Then, using
the identity (1) we have

Proposition B-2. The curvature tensor is given by the formula:

@) Riy= (gilgjk _gikgjl)/z +g7fb n(¢jkn¢ilm - ¢jln¢ikm)/4¢2'

With this formula we will estimate R,;,, near the boundary. By
equations (1) and (1Y, g;; is at least as fast as 1/¢ on one hand, and g% is
at most O(¢) on the other hand. So the main term of R,;,, is the first
one:

‘Rijkl = (gugjk _gikgjl)/2 = 0(1/¢)

Since g,,8;+—8&uxg;; is the curvature tensor of the metric with constant
sectional curvature —1 and since R,;,, is the curvature tensor of 2ds? we
have

Proposition B-3. The sectional curvature of the metric ds* is equal to
~ 14 O(@) near the boundary.

2. Boundary behavior of geodesics and asymptotic constancy of curvatures

In this part we shall see that every divergent geodesic has a limit in
the boundary. The reasoning for that is already exhibited by Fefferman:
Lemma 3 in [10]. We follow it with little modification. Since we are
dealing with the real case, the argument is easier than that in [10]. To
avoid minus sign we consider a positive defining function ¢ of the domain,
which is strictly concave. We use the notation { , ) to denote the inner
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product of the metric ds? and the notation { , > to denote the euclidean
inner product relative to a fixed coordinate system.

Proposition B-4. Let 7(2) be a divergent normal geodesic. Then there
exist positive constants C and ¢ such that

® “ Co(r ()= —dg(r())/dt Z c (1))
for sufficiently large t.

Proof. Since —¢~'dg/dt={—¢ ' grad ¢, 7>z and (7, 7>=1 by the
normality, the left hand side inequality is a simple consequence of the
definition of g,;. In the sequel we show the right hand side inequality.
Assume that for a point p,=7(¢,) near 352, we have

&) ag(r(t))/dt | = — cig(po)*”.
Then the estimate
(10) —dg(T(2))]dt Z c.(7(2))

is valid for #,+a=<t <t,+10a. Here a is an absolute constant.

The first step is to prove (10) for the Hilbert metric of the unit ball.
Let ¢=1—|x|* and B={¢>>0}. Fix p, ¢ B. Since it is known that any
geodesic is a segment of an affine line, the geodesic 7(¢) through p, is
written as

et—1
)=po+ (P — Do)
7@)=po+(p Po)et I

P. is the limit point of 7(¢) on the boundary. Then

N 2et '
71)=(p- po)ﬁet )

Hence we have

—d¢(r())/dt =21, )x
4et

= W {(€ =1 Peos P —Po) 5+ 2{ Pos Pos—P0) 5}

and

T E)=1—<T, 7= {€ ¢ Pw—Pos P} 5+ Pos Pos— Do) 5}

4
@+
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Then, noting that (9) is equivalent to {p,, P —poYr= —c,:d(Dp)*?, We can
easily verify that there is a constant a such that (10) is valid for ¢ >¢,+a.
Next let 2 be a general domain. Fix a boundary point ¢ € 62 and
choose coordinates (x*) with origin at gq. Take an ellipsoid B which is
tangent to £ at the second order. Making a linear change of coordinates
we may assume that B is the unit ball with the Hilbert metric (see Remark
1). Namely B={¢;=2x"—|x">0} and 2={¢,>0} for ¢,=¢,+ O(x[).
Put p=(3,0, - - -, 0) for small §. We compare ds* with ds} as is done in
[10], p. 58—59. Choose new coordinates (%) at p by y'=48"'(x'—9), y'=
0-12xt i =2. Then
dsz=2_ gudy‘dy’
ds*= Z (glj + 5htj)dyidyj
near p. Set N={x e B; dy(p, x)<<100a}. Then g;; and 4,, are C* on N
and det g;, is bounded from below by a positive constant depending on a.
In the following the letter ¢ is assumed to denote a positive number
which, at each step, depends on a or on the defining functions.
Let 7, (¢) be a given normal geodesic with 7,(0)= p and determine a
normal geodesic 75(¢) relative to ds; by 75(0)=p and 75(0)=7,(0). The
perturbation result of ordinary differential equations show that

7o) —=750)], |7a(t) —75()|<cd  for 0=t <50a.
Coming back to the original coordinate (x*), we have
(11) [72@) =7 55> | 70(t) —75(t) |z << 6> for 0=t <50a.

By the way of choice of B, |grad ¢,—grad ¢;|z<c|x[, and we can
see |[xP=<cd on N. Therefore

(12) |grad ¢, —grad ¢p|.<cd on N.
Since 7, travels with unit speed, we have
(13) |78(t)|p=cd*  on N
for small 6. Then by (11)-(13), we have inequalities
[{7a(?), grad $o(To(2)))x—<75(t), grad ¢5(75(t)))z|
S <o) —75(2), grad ¢o(To(?))) 5]
14 +[<75(2), grad ¢o(Fo(2)) —grad ¢x(7o(1))) x|

+[<75(t), grad (T o(2)) —grad ¢5(75(2)) x|
<cd?,  0<t<50a.
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Now assume (9) for £2. Then the estimate (10) for the unit ball and (14)
imply (10) for 2. To finish the proof, find ¢, such that 7(¢,) is near 222
and —dd¢/dt =0 at ¢, and apply (10) repeatedly.

Proposition B-5. Let 7(¢) be a divergent geodesic. Then there exists
lim,_,, 7(¢) in 3%2.

Proof. We have set I';,=g'"4,,,, and 4,,,, is defined in (6). By (1)
(15) F§k= _gim¢mjk/2¢_(¢jaik+¢k5ij)/2¢'

Note that g'/¢ are bounded ((1)’). We define tangent vectors v, by v,=
d¢/ox" and set =2 Q'v, for a normal geodesic 7. Writing 7(¢)=(x"(2))
we have

(16) X'=¢0 X+ I =0,
Taking derivatives of Q° we have

O'= —X'§/¢"+ 5 |p=(—$udul§" — ful P)'5*
=(— (40, + ¢j5ik)/2¢2 — F},c/ng)xka

Then, by (15)
1
a7 QI—’:‘Z'gimSZSmijij-
We next set N(¢)=>,|Q'((¢))[. Since ¢g,;= —¢,; and ¢ is strictly con-
cave, we have 1=(7, 7>=2, Q'Q'¢’g;;=cpN. This implies
(18) N<cg™

near the boundary.
Now we introduce a new time = by

c;jb S ().

Proposition B-4 shows C = —dg(r)/dc=c. Hence for some finite value
TDO’

(@) ~(t—7).
By (18),
(19) N@<Zcle,—1)
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However

|dNJdz|=2|5" Q'dQ*/dz| < cN** max |dQ%dz).

Then, from the equation (17), we have
(20) |dN/dc|< N2,

Substituting (19) in the right hand side and integrating this inequality we
obtain '

N@)Zelr,—1) 1A
Again substituting this into (20) we obtain
N@)=Zc(r,—o) " +c’.

Namely N(z) and, hence, Q' are bounded. On the other hand the
ordinary differential equations (16) and (17) are written as

dxtjde=0', dQ"/df=2_;g""‘¢mijjQ",

which shows the existence of lim Q* and lim x°.

Remark 2. Take another basis of tangent vectors g, such that p,=
—¢ grad ¢. Defining P* by =2 P’u, we can show that P* tends to a
positive constant by Proposition B-4 and, by this fact, that a divergent
geodesic hits the boundary transversally.

Proposition B-6. A strictly convex bounded domain with the metric ds*
is of asymptotically negative constant curvature — 1.

Proof. We have by Proposition B-4
P (1)) ~c'e

for some positive constants ¢ and c¢’. Since Proposition B-3 implies
| K+ 1|~ ¢(7), we have the desired result.
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