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Now we shall consider equation (5.1) under the assumptions (A.1)­
(AA); We keep the riotations of those assumptions. In the following, 

let us prove that if the integral f n Q(y)dy is finite and the integral. 

is also finite, there are positive solutions of equation (5.1) on M,and more­
over if iJ is compact, thereis a uniqu~ solution UQ of equation (5.1) such 
that Uix) approaches to 0 as Pn(x) tends to 00. . 

Proof We first remark that M possesses the Green function GM(x, y) 

of Lx, because the integral r {I / exp s: (T+O }dt is finite. Set 

Let {Mth=I.2 •••• be an increasing family: of compact domains MtcM such 
that for each i, the boundary 'aMt is smooth and intersects transversally the 
boundary iW if the intersection aMt n aD is not empty, and M = Ui=1 Mi' 
Now we fix a point Xo of M. We may assume MI contains Xo' Let us 
consider the case when Xo is not contained in D. We write {Qt.k}r.=I ••••• k(t> 
for the connected components of Mt\Dand 8 i for the solution of equa­
tion: 

Then we have 

(5.17) 

{
Lx8 t+Q=0 

8,=0 

8 t='IF(0) 

on Mi\D, 

on aMt\D, 

on aD\Int (Mt). 

on Mt\D. In fact, by the assumptions (A.l)-(A.4), we see that 'IF 0 Pn is 
of class C2 on M\D and satisfies Lx'IF 0 Pn+Q~O on M\D. Therefore 
inequality (5.17) follows from the maximum principle for Lx-subharmonic 
functions. Moreover by (5.17), we get 

(5.18) 

on aD n Int (Mi)' Since Xo is contained in Mt but not contained in D, we 
may assume Xo is a point of Qt.I' Then it follows from the Green's for­
mula that 
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J Q(y)Gi(XO' y)dy (Glx, y): =the Green function of Lx on M i) 
ni,1 

= L"l -Lx19.cy)GtCxo, y)dy 

=19.(xo)-1Jf(O) J {I7.Gi(XO, y)-GtCxo, y)<X, v>}dy 
aDnaD'.l 

where v denotes the outer unit normal vector field on aD. Therefore we 
have by (5.18) and (5.19) 

(5.20) 
L"l Q(y)G.(xo, y)dy 

Similarly for the other components {Qi.kh=2 .... ,kCi)' we get 

(5.21) 
J D, •• Q(y)Gi(xo, y)dy 

-1Jf(O)J {I7.Gi(XO, y)-G;(xo, y)<X, v>}dy. 
aDnaD, .• 

Noting that 

where Vi denotes the outer unit normal vector field on aMi, we obtain by 
(5.20) and (5.21) 

(5.22) J Q(y)G.(xo, y)dy~1Jf 0 PD(XO) +J Q(y)Gixo, y)dy. 
Mi DnM, 

Thus, taking the limit of the both sides of (5.22) as it + 00, we have 

In the case when Xo is contained in D, the same calculations as above 

show us again inequality (5.23). By the assumption: In Q(y)dy < + 00, 
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we see that the right-hand side of (5.23) is finite, and hence so is the left­
hand side of (5.23). This implies that M possesses a positive solution 

Uix):= f M Q(y)GM(x, y)dy of (5.1). Moreover if D is compact, it fol­

lows from (5.23) that Uix) tends to 0 as PD(X) t + 00. The uniqueness of 
such a solution is clear because of the maximum principle. This com­
pletes the assertion. 

By the assertion which has just proved and Examples (5.14) -(5.16), 
we have the following 

Theorem 5.4. Let M be a connected, complete and noncompact Rie­
mannian manifold of dimension m, X a smooth vector field on M and Q(:t:O) 
a nonnegative smooth function on M. 

(1) Suppose M is simply connected and the sectional curvature is 
non positive. We fix a point 0 of M. Let Po and!o be as in Example (5.14). 
IJ,for some ei>O (i= 1,2,3), 

II XII < (m -1- ej)(Iog 10)' 0 Po, 

and 

outside a compact set. Then there exists a unique positive solution UQ of 
equation (5.1) such that UQ(x) tends to 0 as Po(x) t + 00. 

(2) Suppose the sectional curvature of M is bounded from above by 
some negative constant K and M contains a totally convex subset C. Then 
if, for some ei>O (i= 1,2,3), 

IIXII«m-l).v -K -ej , 

and 

Q<e2/p}/" 

outside a compact set and further if the integral f c Q(y)dy is finite, M pos­

sesses positive solutions of equation (5.1). Moreover if C is compact, there 
is a unique solution UQ of equation (5.1) such that Uix) tends to 0 as 
Pc(x) t + 00. 

(3) Suppose the volume of M is finite and the sectional curvature of 
M is bounded from above by some negative constant K and from below by 
some negative constant k (k<K <0). Let D be a compact domain as in 
Example (5.16). Then if, for some ei>O (i= 1,2,3), 

<X, f7 PD»(m-l).v -k +ej> 
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and 

outside a compact set, or if, for some e;>O (i= 1,2,3), 

and 

outside a compact set, there exists a unique positive solution UQ of equation 
(5.1) such that UQ(x) tends to 0 as Pn(x) t + 00. 

Corollary 5.2. Let M be as in the first assertion of Theorem 5.4. 
Suppose the' sectional curvature of M is bounded from above by _ejp~+a· 
and II XII is bounded from above by espo outside a compact set, where 
e,(i= 1,2,3) are positive constants and Po denotes the distance to a fixed 
point 0 E M. Then there is a unique solution Uj of the equation: Lxu+ 1 =0 
on M such that Uj(x) tends 0 as Po(x) t + 00. 

Proof Let fo and!o be as in Example (5.14). By the assumption, 
we can take fo(t) = -e j t 2+... Then the same calculations as in the proof 
of Theorem 5.2 show that (log!o)'(t»ljt jH• for some l,>0(i=1,2). 
Therefore the corollary follows from the first assertion of Theorem 5.4. 

Remark. Let N be a connected compact Riemannian manifold 
without boundary. Let f be a smooth function on R such that f(t)= 
a j exp a2t for t<O and f(t)=as exp a4t 2+a. for t>ae, where a's are all 
positive constants. Set M:=RX,N (the warped product of Rand N) and 
D:={(t, x) E M: t<ae}. Then the assertion after Theorem 5.3 and its 
proof tell us that M possesses a positive solution Uj of equation: L1u + 1 = 0 
such that Uj(t, x) tends to 0 as t t + 00. On the other hand, since the 
Ricci curvature of M is bounded from below by some constnat on D, we 
see by Corollary 3.2 (1) that any positive solution of the above equation 
tends to + 00 as t ~ - 00. (See [5: pp. 26-27] for the curvature formula 
of warped products.) 

5.4. In this section, we shall consider the Dirichlet problem "at 
infinity" of visibility manifolds. Let M be a complete connected Rieman­
nian manifold of dimension m. Suppose M is simply connected and the 
sectional curvature is bounded from above by a negative constant K. 
Two geodesic rays r j and r 2 are called equivalent if dis (rj(t), r2(t» is 
bounded for t >0. The set of all equivalence classes of geodesic rays is 
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denoted by M(oo). We assume that M=MUM(oo) is equipped with 
the "cone topology" (i.e., a subbase for the topology is the set of open 
cones of geodesic rays), which makes M homeomorphic to a cell (cf. [19: 
Theorem 2.10]). 

Let us consider the Dirichlet problem on M for the elliptic differential 
operator Lx = L1 + X, using the Perron-Wiener-Brelot method (cf. [7: Chap. 
V] or [S]). The following lemma is obvious, since M is compact. 

(5.24) Lemma. For any Lx-superharmonicfunction cp, the condition: 

lim inf cp(p) > 0 for every x E M(oo) implies cp~O. 
M:Jp~x 

Let cp be an extended real valued function on M( 00) and 2'1' a family 
oflowerbounded Lx-superhramonic functions ifJ such that lim infM:Jp~xifJ(p) 
>cp(x) for any x E M( 00). Then the lower envelope D<p of 2'1' U {+ oo} is 
+ 00, - 00 or Lx-harmonic, and /2,':::;;"D<p, where /2, is by definition -D_'P 
(cf. [7: Theorem 16]). If D", is finite and D<p=/2" cp is called resolutive, 
We call a point x E M(oo) (Lx-) regular if for any function cp bounded 
above, 

(cf. [S: Sec. IS]). We see that if e-iiery point of M( 00) is regular, any 
continuous function cp on M( 00) is resolutive and 

for every x E M( 00), because of Lemma (5.24) and 

cp(x)= lim inf cp(y) <lim inf /2,(p)':::;;"lim sup D",(p) 
M(oo):JlI~X M~p~x M:Jp~x 

;;:::: lim sup cp(y)=cp(x). 
M(oo):JlI~X 

In [32], we have considered the case of Lx=L1 (i.e., X=O) and shown that 
if m = 2 or M has constant curvature outside a compact set, every point 
of M( 00) is regular. Let us now generalize this result. 

Theorem 5.5. Let M be a complete, simply connected Riemannian 
manifold of dimension m. Assume the sectional curvature is bounded 
from above by some negative constant K and the length IIXII of a smooth 
vector field X on M is bounded from above by (m -1).v - K - e for some 
positive constant e>O. Suppose m=2, or the following conditions holds: 
there exist a point 0 E M and positive constants a, {3, rand (5 such that 



(5.25) 

Laplacian and Hessian Comparison Theorems 

]
! a~i log-v'G!-;;2ap-I-PexP2-v'-Kp. 

! agiJ ! ~r -1-0 ao· - p , , 

377 

where (p, 01,' • " Om-I) (p:=dis (0, *)) is a polar coordinate system around 
oEM, G:=det (gij), (gij):=(gij)-I and gij:=<ajaOi, ajaO j). Then for 
every point of M( 00) is regular, so that for any continuous function cp on 
M( 00), there is a unique Lx-harmonic function Dp such that limM~p~" Dp(p) 
=cp(x) for each x E M( 00). 

Before proving Theorem 5.5 we shall give examples of M which 
satisfies (5.25). 

Example. Let M be a complete, symply connected Riemannian 
manifold whose sectional curvature is bounded from above by a negative 
constant K. Suppose the Riemannian metric g is rotationally symmetric 
around 0 E M, that is, g can be written in the form: 

in a polar coordinate system (P,OI' .. " Om-I) around 0, where f is a 
smooth function on [0,00) satisfyingf(O) = O,J'(O) = 1 and -f"jf-;;2K, and 
d82: = L.'t;;~l go.ijdOidOJ denotes the standard metric on the unit sphere 
of Euclidean space Rm. Then M satisfies the condition (5.25), since 
giJ=f-2(p)g5J and f(t)~sinh -v' -Kt/-v' -K. Therefore another metric 
on M which is close enough to the above metric g in the sence of C=­
topology satisfies all the conditions of Theorem 5.5. 

Example. Let Mo be the unit ball in en with Bergman metric go. 
That is, Mo:={z=(zl' .. " zn): Izl< I}, go:=go.ijdzidzj and 

Then it is not hard to see that Mo satisfies (5.25). Therefore if M is a 
strictly pseudoconvex domain in en with smooth boundary which is close 
enough to the unit ball M o, M with the Bergman metric satisfies all the 
conditions of Theorem 5.5 (cf. [24]). 

Proof of Theorem 5.5. The key of the proof is to construct a 
"barrier" at each point x E M( 00). 

(A) Suppose the dimension of Mis 2. Then every point x E M( 00) 
has a fundamental neighborhood system 'PI such that the complement of 
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each U E Ci!i is totally convex, because every pair of points of M( 00) can 
be joined by a unique geodesic line (cf. [19]) and a domain whose bound­
ary is a geodesic line is totally convex. Moreover for each totally convex 
set C of M, there is a Lx-superharmonic function Fe on M such that 
Fe= Ion C and Fe(P) tends to ° as Peep) t + oo(Pe:=dis (C, *)). In fact, 
we put Fe=1 on C and 

Fe(p):=af= {1/exp ft (r+ c- V-K)(u)du}dt 
pc(p) 0 

on M\C, where ret): = V -K sinh V -Ktjcosh v-Kt and 

Then by the assumptions, we see that Fe is Lx-superhamonic on M (cf. 
Example (5.15)). Therefore the theorem follows from the same arguments 
as in the proof of Theorem (7.3) in [32]. 

(B) In order to prove the theorem in the case when the metric satisfies 
the condition (5.25), it suffices to show that for each point x E M( 00), 
there exist an open neighborhood U of x E M( 00), and a positive L x -

-superharmonic function !!J x on U n M such that !!J x(p) tends to ° as p----+x 
and the infimum of !!J x over the complement of any neighborhood U' c U 
of x is positive (cf. [8: Theorem 15]). For the sake of brevity, we call 
such a function a (Lx-) barrier at x. In the following, let us consider the 
Dirichlet problem at infinity of a Riemannian manifold which satisfies 
more general assumptions than that of Theorem 5.5 and seek certain con­
ditions which ensure us the existence of a barrier at each point of infinity. 

(C) Let M be a connected, complete Riemannian manifold of di­
mension m and X a smooth vector field on M. Suppose there is a domain 
D with smooth boundary aD such that the exponential map eXPfD restrict­
ed to ].i+(aD): = {t].iD(X): t >0, x E aD} induces a diffeomorphism between 
].i+(aD) and Q:=M\D, where].iD denotes the outer unit normal vector field 
on aD. Moreover suppose there exists a continuous function r: [0, 00) 
such that the Hessian f12p of the distance function P to D satisfies 

(5.26) 

for any point p E Q and every tangent vector V E M p , where we write V 1. 

for the component of V perpendicular to f1 P (i.e., V 1.:= V -<V, f1 p)f1 p). 
Let iJ be a positive smooth function on [0, 00) such that the integral 

f IjiJ(u)du is finite. SetgS(t):= f: IjiJ(u)du (t E [0,00)). Then a map 

®: Q----+[O, gS( 00)) X aD defined by ®(exPfDt].iD(X)): = (gS(t), x) induces a 
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diffeomorphism between Q and (0, if!( 00)) X aD. We write M( 00) (resp. M) 
for if!( 00) X aD (resp. MUM ( 00)) and assume M has the natural topology 
induced by ®. Now we fix a coordinate neighborhood {U, 0=(01, •• " 

Om-I)} of aD. We may assume O(U) contains the closed unit ball around 
(0, ... ,0) E Rm-\ Set W:={p E U: .67'~10lpY~lj4} and fix a point 
Po of W. Then (s, 01, .. ,,0 m -I) (s: = if!(p)) is a coordinate system on if/': = 

eXptD({tvD(x): t >0, pEW}). Then the Laplace operator .1 of M can be 
expressed as follows: 

1 [ a2 a ] .:1=--- -+,9op(.:1p-{1og,9)'op)- +.1-1, 
,920 P as2 as 

where 

.1-1:= Y;1 1 JL(.JGgijJL), 
i,j~l .J G ao j aOj 

G=det(gjj), gjj=<alaoi, ajaOJ) and (giJ)=(gij)-\ For two positive con­
stants a and b such that a<b<min {I/2, if! ( 00 )}, we put 

and 

Then f!# a, b is a positive smooth function on if/' such that f!# a, b(P) tends to ° as P E"/Y approaches to Po:=(if!(oo),po) E M(oo), and the infimum of 
gj a, b over the complement of any neighborhood of Po in ifl is positive, 
where ifl denotes the closure of if! in M. Moreover there exist positive 
constants $1 and $2 such that 

(5.27) 

on Ba,b' Therefore if «m-l)!'-(log,9)' +rr) 0 p:2.0 on Ba,b' we have by 
(5.26) and (5.27) 

(5.28) 
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on Ba ,,,, where 7r is a continuous function on [0, 00) satisfying 

on "fr. Let a, X and w be continuous functions on [0, 00) which satisfy, 
respectively, 

IIXl.llsaop 

I a log..jc.i I <X max = op 
l;;;i;;;m-l ao i 

max -g- swop I a ij I 
l;;;i,j;;;m-l aOi 

on "fr. Then there are positive constants Ck (k= 3, 4, 5, 6) such that 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

on Ba .". (The proof of the above inequalities (5.29) ~ (5.32) will be given 
at the end of the proof for Theorem 5.5). Therefore we see by (5.27) ~ 
~ (5.32) that 

1 
Lx!J#a,,,?:'o2~[c2-(1-cl){.{)«m-l)z--(log.{))' +7r)} 0 p 

v op 

+ {.{)2(C3a + C4 +c5X)T-2} 0 P+C6(.{)2W) 0 p] 

on Ba,,,, and hence Lx!J#a,,,?:'O on Ba,,, for sufficiently small a and b if the 
following conditions hold: 

(5.33) 

lim B(t)=+oo (B:=.{)«m-I)z--(log.{))'+7r)), 
t-+oo 

lim sup (.{)2a)(t) =0, 
t~+= (BT)(t) 

.{)\t) lim sup 0, 
t~+oo (BP)(t) 
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and 

lim sup (i)2X)(t) 0, 
t~+oo (BT 2w)(t) 

lim sup (,92W)(t) O. 
t~+oo B(t) 

(5.34) 

Thus we have seen that there is a (Lx-) barrier at each point jJ: = (<p( 00 ), p) 
E M( (0) n if under the conditions (5.33) and (5.34). 

(D) We shall now return e the proof of Theorem 5.5. We keep the 
notations as above. At first, we put .,9(t):=(t+ 1)1+o'(O<ol<min {,B, oD. 
Moreover by the assumptions of the theorem, we can take D: = a metric 
ball around 0 E M, 

-r(t):= V -K sinh V -Ktlcosh V -K t, a(t):=c:-(m-l)V -K, 

a(t):=(m-l)V -K -c:, 

X(t):=at- 1 - P exp 2".1 -Kt and w(t):=rt- 1- o• 

Then the arguments of the preceding paragraph (C) show that for each 
x E M( (0), there is a (Lx-) barrier at x, that is, every point of M( (0) is 
regular. 

(E) It remains to show the inequalities (5.29) ~ (5.32). Inequalities 
(5.32) is clear because of the choice of w. The inequalities (5.29) and 
(5.31) are direct concequences of the lemma below. Moreover inequality 
(5.30) follows from the positive semidefiniteness of the matrix (a2.'?# a, blao iao j) 
and the following lemma again. 

Lemma. Under the assumptions of the paragraph (C), let Y be a 
tangent vector at p E if/' such that < Y, 17 p) = 0 and f a smooth function 
defined near p. Then: 

(1) II YW= i~ll g ij Y i yJ:;::;;K2 exp fP) 2-r(u)du· ('%ill PI2), 

(2) I Y-fI~K-l exp fP) --r(u)du·11 YII{'%t (aflaOi)2r2, 

where Y = L:7'~11 p(ajaOi)(p) and K is a positive constant independent of p, 
Yandf. 

Proof. We identify if/' with [0, (0) X W by the coordinate system 
(P,Ol' "',Om-l)' Let c: [-c:,c:]-+Wp(P):=p(p)XW be a smooth curve 
such that c(O) = p and c(O) = Y. Define a smooth map g;: [0, (0) X 
[-c:, c:]-+if/' by .'F(p, u)=(p, 01 0 c(u), .. " Om-l 0 C(u)). Set Y:=.'F * (ajau). 
Then we have 
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Therefore we get 
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a - - - --<Y, Y)=2<17a/ap Y, Y) ap 
=2<17y17p, Y) 

=2172p(Y, Y) 

> 2r 0 p .11 YI12 by (5.26). 

and hence, integrating the both sides, we have 

- fP(P) 
IIYI1 2(p(p), O)~IIYW(O, 0) exp 0 2r(u)du 

(m-l ) fP(P) 
~K2 ~ I yi 12 exp 0 2r(u)du 

for some K>O. This proves the first assertion, from which the second 
assertion follows. In fact, 

fP(P) {m-l ( aj )2}1/2 
:;;;K-1 exp -r(u)dull YII .L: - . 

o ,~l aei 

Before we state a corollary to Theorem 5.5, we recall some definitions 
in [19]. Let T be a freely acting, properly discontinuous group of iso­
metries of a complete, simply connected Riemannian manifold M whose 
curvature is bounded from above by a negative constant K. We write 
MjT for the quotient manifold of M by T. A unit speed geodesic ret) 
t :2:0) in MjT is called an almost minimizing geodesic if there is a positive 
number c such that dis (r(O), r(t))>t-c for t>O. Two unit speed geo­
desics r 1 and r2 in MIT are called equivalent if dis (r/t), r2(t)) is bounded 
for t >0. The set of all equivalence classes of almost minimizing geodesi­
cs in MjT is denoted by MjT(oo). Let r be an almost minimizing geo­
desic in Mj T and t a lift of r in M. If t represents an equivalence class 
in M( 00 )-L(T), where L(T) is the cone limit set of T, r represents, by 
definition, a class of F(MjT). We assume that MjT:=MjTUMjT(oo) 
is equipped with the topology induced from the cone topology and the 
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"horocycle topology" (i.e., a subbase of the neighborhoods of a point 
x e M( =) with respect to the topology is the set of all limit balls at x) on 
M. Then the covering map 'K: M ---+ Mj T extends naturally to the covering 
map also denoted by 'K, from MU OCT) onto MjTUF(MjT) and the 
restriction map 'K: O(T)---+F(MjT) is again a covering map, where OCT) 
=M(=)-L(T). Then by the same arguments as in the proof of Theo­
rem 5.5, we have the following 

Corollary. Let M be a Riemannian manifold which satisfies all the 
conditions of Theorem 5.5. Let T be a freely acting, properly discontinuous 
group of isometries of M. Suppose the length of a smooth vector field X 
on MjT is boundedfrom above by (m-l)xJ-K-e for some positive 
constant e and MjT is compact. Then there isfor any continuous function 
cp on MjT(=) an Lx-harmonicfunction D<p on MjT such that 

for any x E F(Mj T). 

We remark that Mj T is compact, for example, if Mj T is corecompact, 
that is, MjT contains a compact totally convex set, or if the dimension 
of M is equal to 2 and T is finitely generated (cf. [19]). 

We shall conclude this section with the following 

Remark. (1) Let M be a complete, connected and noncompact 
Riemannian manifold and X a smooth vector field on M. Let (~t' 1;, P:e, 
X E M) be the minimal diffusion process on M with the differential gene­
rator L x :=L1+X, where 1; is the explosion time of ~tCw). If there is a 
positive solution U of the equation: LxU+1=0 on M, it follows from 
the Dynkin's formula that U(x»E:e[t;] for any x E M(cf. e.g., [21]: Pro­
position 8BD, and hence 1; is finite almost surely, for every starting point 
x E M. For example, if M and X are as in Corollary 5.2, we see that 1; is 
finite almost surely (cf. [30, II] in the case when X =0). On the other 
hand, if M and X satisfy, for instance, the condition (3) of Theorem 5.2, 
it turns out from the proof of the theorem and the approximation theorem 
due to Greene and Wu [26] (cf. the proof of Proposition 4.1 in Section 4) 
that there is a smooth function ([>: M ---+[0, =) such that ([>(x)---+ + = as 
x---++ = in M and Lx ([>~a on M, for some constant a, and hence we 
see by Theorem 6A in [21] that 1; is infinite almost surely for every starting 
point x E M (cf. [30, II] in the case when X=O). 

(2) Let M be a complete, simply connected Riemannian manifold 
of negative curvature. Recently, Sasaki [44] has proved that if the sec­
tional curvature is "asymptotically negative constant", the Dirichlet prob-
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lem for harmonic functions can be solved on M =M U M( 00). However 
both his condition and ours in Theorem 5.5 seem to be very restrictive, 
and it would be wishful to solve the Dirichlet problem on M under a 
weaker condition. Moreover it would be interesting to describe the Martin 
boundary of M from a view point of geometry. 

Added in proof After the completion of this paper, the author 
recieved a preprint [52] from M. T. Anderson on May 7, 1983. In his 
paper, it is proved that a complete, simply connected Riemannian mani­
fold whose sectional curvature is pinched by negative constants admits a 
wealth of global convex sets so that the Dirichlet problems for the 
Laplacian can be solved at infinity (cf. Theorem 5.5). The author would 
like to thank M. T. Anderson for sending him his preprint. 
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