
Advanced Studies in Pure Mathematics 3, 1984 
Geometry of Geodesics and Related Topics 
pp. 183-192 

A Differentiable Sphere Theorem for 
Volume-Pinched Manifolds 

Takao Yamaguchi 

Dedicated to Professor I. Mogi on his 60th birthday 

§ O. Introduction 

A main problein in differential geometry is to investigate the influ
ences of geometrical quantities of complete Riemannian manifolds on the 
topology. The sphere theorem due to Klingenberg states that if M is a 
complete simply connected manifold with the sectional curvature Ky , 1/4 
<Ky < 1, then M is a topological sphere ([7]). A stronger assumption 
for curvature implies that M is diffeomorphic to the standard sphere ([4], 
[8], [10]). In the proof of these results, an estimate of the injectivity 
radius i(M), i(M)~7r, of the exponential map on M plays an essential 
role. On the other hand, by pinching the diameter diam (M) in place of 
the sectional curvature Grove-Shiohama has obtained the following 
theorem which generalizes the Klingenberg sphere theorem. 

Theorem A ([6]). If the sectional curvature and the diameter of a 
complete manifold M satisfy Ky~ 1, diam(M»rr/2, then M is a topological 
sphere. 

Recently by pinching the volume Vol (M), Shiohama has proved the 
following sphere theorem for manifolds M of positive Ricci curvature 
Ricy • We denote by sn the unit n-sphere. 

Theorem B ([9]). For given n, _A2, there exists an s=s(n, A) such 
that if a complete manifold M of dimension n satisfies 

RicM~ 1, KM~ _A2, Vol(M)~ Vol (sn)-s, 

then M is a topological sphere. 

But in the situation of Theorem A or Theorem B, it was not known 
for M to be diffeomorphic to the standard sphere. The purpose of this 
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paper is to give a partial affirmative answer to the problem of this type. 
We denote by f7 RM the covariant derivative of the curvature tensor RM of 
M. We obtain the following 

Main Theorem. For givenn, A~I, A,>O, there exists a a=a(n, A, A,) 
> 0 such that if a complete manifold M of dimension n satisfies 

then M is diffeomorphic to the standard sphere. 

To show that M is a topological sphere, it suffices to cover M by two 
open cells. But in our situation, we need a tool which shows when two 
manifolds are diffeomorphic. For the proof of Main Theorem, we use 
the following general result which has been applied to finiteness theorems 
(See [11], also [5]). 

Theorem C. For given n, A, A" R>O, there exist e, =eln»O and 
r, = r,(n, A, A" R) >0 such that if complete manifolds M and M of dimension 
n satisfy the following conditions, then they are diffeomorphic; 

(1) IKMI, IKMI~A2, IJPRMII, IJPRMII~A" i(M), i(M)~R, 
(2) for some e~e, and r~r" there exist 2-(n+8)r-dense and 2-(n+9)r_ 

discrete subsets {Pi} eM, {qi} eM such that the correspondence P;--+qi is 
bijective and (1+e)-'~d(qi' qj)jd(Pi,pJ~l+e for all Pi, Pj with d(Pi,pj) 
~20r. 

e, and r, can be written explicitly. 
By definition a subset A of M is a-dense (resp. a-discrete) if any x EM 

has the distance d(x, A) <a(resp. if any pair of distinct points in A has the 
distance ~ a). 

After preparing some basic results in Section 1, an estimate of inject
ivity radius is given in Section 2. Main Theorem is proved in Section 3. 

§ 1. Preliminary results 

Let M be an n-dimensional complete manifold with KM~ 1. Then 
Bonnet's theorem implies that diam(M)~1!, hence M is compact. For 
fixed points x EM and p E sn, let I be a linear isometry from S; to M;r;. 
We denote by M;r; the tangent space to M at x, and set ®;r;:={u EM",; 

d(exp;r;v, x)=11 vii} and U:=expp(I-' o6;r;), where A denotes the interior of 
a set A. Let C(x) denote the cut locus of x. Then the map F: U-,; 
M - C(x) defined by F = expx 0 10 exp;l is a diffeomorphism and the Rauch 
comparison theorem implies that II dF11 ~ 1. For a positive number r, we 
denote by vCr) the volume of an r-ball in sn. 
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Lemma 1.1. If a complete manifold M of dimension n satisfies KM):; 1, 
Vol(M»):; Vol(sn)-o, then Vol (F(A»):; Vol(A)-o for every measurable 
subset A of u. 

Proof Since C(x) has measure zero, the Rauch comparison theorem 
implies that Vol(U-A»):; Vol(M -F(A». By the assumption we get 

Vol (F(A» = Vol (M)-Vol(M -F(A» 

):; Vol(sn)-o-Vol(U-A) 

~Vol(A)-o. Q.E.D. 

Remark. Owing to Bishop's result (See [1]), we can use the Ricci 
curvature instead of the sectional curvature in the previous lemma. 

The following lemma will play an important role in the proof of our 
Main Theorem. For the proof see Lemma 4.3 in [2]. 

Lemma 1.2. Let M be a Riemannian manifold of dimension n and let 
{Xi} be a normal coordinate system. Set r:=(L; x~y/2. Then there exist 
continuous functions 0 1 : R+ XR+~R+, O2 : NXR+ XR+~R+ such that if 
IKMI~A2, IWRMII~AI on the normal coordinate neighborhood, then 

1117a;a x i a~. II ~02(n, A, AI> r). 
J 

For example, 0 1 and O2 are taken as 

0 1 =2A2r.exp«2A+ l)r) 

O2=01 +6n(n-1)(A1r. exp(2Ar)+ A2(3+ exp(2Ar) 

+4n3/ 2A2r 2. exp(2Ar»)r. exp(n2A2(1 +r· exp(2Ar)+2A+ l)r). 

§ 2. Estimate of injectivity radius 

For a fixed point x in a complete manifold M, let y realize the 
minimum distance from x to its cut locus. Then either there is a minimal 
geodesic from x to y along which y is conjugate to x, or there are precisely 
two minimal geodesics from x to y which form a geodesic loop at x. In 
the case KM):; 1, we observe the influence of the distance d(x, C(x» on the 
total volume of M. From now on, all geodesics are assumed to be 
parametrized by arc length. We denote by J(t) the Jacobian of exponen
tial map on S; at a point of distance equal to t from the origin: 

J(t) = ( Si; t) n-l. 
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Lemma 2.1. Let M be an n dimensional complete manifold with 
KM ~ 1 and let x E M and y E C(x) satisfy d(x, y) = d(x, C(x» =: I. 
Suppose that there is a geodesic loop r: [0, 2/]~M at x with r(/)=y. 
Then 

( 1) if 1>tr:/2, then C(x) consists of the single point y. In particular, 
M is homeomorphic to S" andVol(M)~v(I). 

(2) if 1~tr:/2, then~3]cJJ(O, tr:-l). Furthermore Vol(M)~v(tr:/2). 

Proof (1) For any z E C(x) let ro be a minimal geodesic from y to 
z. Set ll:=d(x, z), 12:=d(y, z). Since r is a geodesic loop, we may assume 
that (to(O), -t(I»~O. Then the Toponogov comparison theorem and 
the fact II;;:' I imply 

It follows that if 1>tr:/2, then 12=0 since cos I· (I-cos 12)~0. 
(2) Suppose that 1~tr:/2 and d(x, z)=/I>tr:-I. Then it turns out 

and hence cos 1.(I+cos IJ<O. This is a contradiction. Therefore 
63]cJJ(0, tr:-/). We now prove the second part of (2). For a unit 
tangent vector v at x, let tv denote the distance from x to the cut point 
along the geodesic with direction v. We show that tv+Lv~tr:. Set a:= 
SC(v, teO»~, Iz:=d(exp tvv, y). Then the Toponogov comparison theorem 
implies 

cos 12~cos I·cos tv+sin I· sin tv'cos a. 

Together with (*) this yields 

cos tv~cos I (cos I·cos t.+sin I·sin tv'cos a), 

and hence cot tv~cot I·cos a. Similarly cot Lv~ -cot I·cos a. There
fore we have 

.and tv+L.~tr:. For a fixed v, we may assume that t.<tr:/2 and L.>tr:/2. 
"r,hen we get that for any t E [tv, tr:/2], J(t)~J(tr:-t), and hence 

f
g

/
2 J(t)dt~f"/2 J(tr:-t)dt=f"-tv J(t)dt~ft-. J(t)dt. 

t" tv rr:/2 1(/2 

It follows that 



Differentiable Sphere Theorem 187 

VOI(M)~f JClIVIDdv~f J(II vIDdv=v(tr/2). 
5.. B(e.~/2) 

Q.E.D. 

Since by the previous lemma Vol (M) > 1/2 Vol (sn) implies that y is 
conjugate to x, we are forced to treat the conjugate point case. To do 
this, we need upper bounds on IKMI and IIVRMII. 

Lemma 2.2. Let M be a complete manifold of dimension n with 
IKMI~A2, IIVRMII~Au and let xeM and yeC(x) satisfy d(x,y)= 
d(x, C(x)):=I. Suppose that there is a unit vector we (M",)zu such that 
d(exp",) (w)=O. Let W be the parallel vector field on M., with W(O)=w. 
Thenfor an arbitrary e e (0, tr), there are tl e (1/2, I) and 'I)='I)(n, A, Au I, e) 

such that B(tlv, 'I))C@)", and Ild(exp",) (w)II~e on B(tlv, 'I)). 'I) is monotone 
decreasing in n, A, Au I and monotone increasing in e. 

Proof Let {ei} be an orthonormal frame at x with el = wand {Xi} 
the normal coordinate system on M - C(x) based on {e,}. By Lemma 1.2 

IIVa/aT a~; II ~QI(A, I), II Va/ax; a~J II ~Q2(n, A, Au I) on B(x, I). 

Notice that II a~1 (ro(t)) II =lId(expx)(W(tv))II~O as ttl. Since I ~ II a~11I1 
~ II Va/aT a~1 II, setting tl: =1-e/(2QI(A, I)) we have II a~1 (rv(tl)) II ~ e/2. If 

7j:=e/(2nQ2(n,A,AI,/)), then B(tlv,'I))C~x and since l_a_ll_a_lll~ 
ax; aXI 

II Va/a"" a~1 II, we get that for every u e B(tIV, 'I)) 

III a~l (exp", u)II-11 a~l (expx tlv)!!1 ~nQ2(n, A, Au 1)lIu-tlvll 

~nQ2(n, A, AI> 1).'I)~e/2, 

hence IId(expx)(W(u))II= II a~1 (exp", u)l! ~ II a~l (exp", tlV) II +e/2~e. 
Q.E.D. 

Proposition 2.3. For given n, A~ I, AI>O and for e e (0, tr/2), there 
exists a 01 =ol(n, A, AI, e»O such that if M is a complete manifold of 
dimension n such that I~KM~A2, IIVRMII~AI' Vol(M)~Vol(sn)-ol' 
then i(M»tr-e. 
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Proof Let M satisfy Vol(M);;::' Vol(sn)-ol for some 01>0. Sup
pose thatl: =i(M):!(n--e. Then two points X,Y E M with Y E C(x), d(x, y) 
=1 satisfy the following (1) or (2); 

(1) there is a closed geodesic r: [0, 21]~M such that r(0)=r(21)= 
x, r(l)=y, 

(2) y is conjugate to x along a minimal geodesic a: [0, l]~M. In 
the case (1), Lemma 2.1 implies that Vol(M):!(v(n--e). In the case (2), 
there is a unit vector W E (Mx)la(O) such that d(expx)(w)=O. Let Wbe the 
parallel vector field on Mx with W(O)=w. Then for el:=(1/2)J(n--e), the 
constants tl> 1/2<tl <I and r;=r;(n, A, AI> n--e, el) as in Lemma 2.2 satisfy 
that B(t/J(O), r;)c~x and II d(expx)(W) II :!(el on the ball B(t/J(O), r;). 
Setting ql:=F-I(a(tl», tc:=r;(sin(n--e)/(n--e», we have exp;;l(F(B(ql> tc») 
cB(t/J(O), r;), where F: U~M - C(x) is the diffeomorphism constructed 
in Section 1. This implies 

VoIF(B(ql' )tc)=f det(dF)dS n 
B(Ql,K) 

On the other hand, Lemma 1.1 implies that VoIF(B(ql' tc»;;::'V(tc)-OI. It 
turns out that 01 > (1/2)v(tc). Thus the required 01 is obtained as 01 = (1/2)v(tc) 
since v(e»(1/2)v(tc). Q.E.D. 

Remark. By the remark in Section 1, an observation similar to 
Lemma 2.1 yields that the previous proposition holds for the following 
class of manifolds M: RicM;;::,1IKMI;;::,A2, IWRMII:!(A I. 

The proof of Proposition 2.3 suggests that it is possible to bound 
II dF11 from below. This is done in Lemma 2.5. 

Lemma 2.4. If a complete manifold M satisfies that K~f;;::' 1 and 
M-B(x, n--c)=I=-ifJfor an e, then diam(M-B(x, n--c»:!(2c. 

Proof For arbitrary two point YI and Y2 of M -B(x, n--e) let ri be 
a minimal geodesic from x to Y i and let Ii denote the length L(r i) of r i' 
i=1,2. Let 1i denote geodesics in sn such that 11(0)=1'2(0), 1:(1'~(O), 
r~(O»= 1:(r~(O), r~(O». Then the Toponogov comparison theorem implies 

Q.E.D. 

Lemma 2.5. For given n, A;;::' 1, AI>O and for e E (0, n-/2), e' E 

(0, 1), there exists a 02=ozCn, A, AI> e, e'»O (:!(Mn, A, AI, e/2» such that 
if M is a complete manifold of dimension n such that 1 :!(KM :!(A2, II f7 R,w II:!( 
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AI, Vol(M)~Vol(sn)-o2' then 1~lldFII~I-e' on B(p,71:-e)cSn, 
where F: U-+M - C(x) is the diffeomorphism constructed in Section 1. 

Proof Take a 02 with 02 < ol(n, A, AI> 10/2) and let M satisfy the 
conditions. Suppose that there are qo e B(p, 71:-(0) and a unit vector 
w e S~o such that IldF(w)II<I-e', where qo=: expptou, lIulI=l, u-Lw. 
Set w:=d(exp;l)(w) and let {ej} be an orthonormal frame at x such that 
el=I(w)/III(w)lI, en=I(u). Let {Xj} denote the normal coordinate system 
based on {ei}' Then the comparison argument yields 

at F(qo), hence, 

Let ... = ... (n, 10, 10') be the solution of 

( sin (71:-10) )n-l 
(1-10') +... =(1-e'/2)J(71:-e), 

71:-10 

and set 7):=(I-e') ... /(n[)2(n, A, AI, 71:-10/2)). Then for every we B(toI(u), 7)) 

III O~i (exp:cw)II-11 O~j (F(qo)) II I <n[)2(n, A, AI> 71:-10/2) II w-toI(u) II 

<(1-10')"', 

hence, 

II O~l(exP:cw)11 «1-10')( Si~to + ... ), 

11 ~(exP:cw)ll< sin to +"" (2<i<n-l). 
oXj to 

Since II O~n II < 1, this implies that on exp .. (B(tol(u), 7))) 

II~A' . . 1\_0_11 «1-10')( sinto + ... )n-l «I-e'/2)J(to). 
oXI oXn to 

Setting "I: = 7) sin (71:-10/2) , we have exp:;lF(B(qo, "I)) cB(toI(u), 7)). Choose 
71:-10/2 

a "2="2(n, 10, 10') which satisfies the following inequality; 
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(l-e' /2)J(t)/J(t+s) ~ l-s' /3 

for every t E [0, n-e] and every s E [0, KJ. In fact, since the function 

get) = ( Si~ t ) / ( sin/t ~ K2) ), ° ~ t ~ n - K2, is monotone increasing, K2 is 

+ 2 (I '/3 )I/n-I obtained as the solution of g(n-e)= -e . Thus if K:= 
I-s'/2 

VolF(B(qo, K»=f det(dF)dS n 

B(qo,lC) 

«I-e'/2)J(to)v(K)/J(to+ K) 

~ (l-e' /3)V(K). 

On the other hand, Lemma 1.1 implies that Vol F(B (qo , K»~ V(K) -:02, 

Hence it appears that Oz>e'v(K)/3. Therefore the required O2 is given as 
oz=min{ol(n, A, AI, e/2), e'v(K)/3}. Q.E.D. 

§ 3. Proof of Main Theorem 

The proof of Main Theorem is, roughly speaking, achieved as follows. 
In the situation of Lemma 2.5, if 0: and 0:' are taken sufficiently small, then 
diam(M-B(x, n-e» is also small, and then Fis almost isometric. As a 
result, for a suitable choice of {Pi}CS n , {Pi} and {F(Pi)} will satisfy the 
conditions in Theorem C. 

For an 0:>0, a system of points {Xi} in a metric space X is said to be 
an o:-maximal system if {Xi} is maximal with respect to the property that 
the distance between any two of them is greater than or equal to 0:. Notice 
that {Xi} is an o:-maximal system if and only if it is an e-dense and e-discrete 
subset. 

Proof of Main Theorem. For n, A~ 1, AI> R=n/2, let 0:1 =sl(n), rl = 
'I(n, A, AI, n/2) be the constants given in Theorem C. For 'f):=3/4. 
2-<n+8)rl , set 

Then the required constant 0 is obtained as 0 = oz(n, A, AI> 0:, e') where O2 is 
the constant given in Lemma 2.5. Let M satisfy the conditions in Main 
Theorem. Take an 'f)-maximal system {Pi} of sn and choose a point p of 
sn such that d(p, {Pi}) ~ 'f)/2. Let P be the antipodal point of p, and for a 
fixed point X E M, let F: U-,>-M-C(x) be the diffeomorphism constructed 
in Section 1. Notice that i(M»n-e/2and l~lldFII~ 1-0:' onB(p, n-o:). 
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Assertion. If Yi:=P(Pi), then {Yi} is 2-<n+8)rl-dense and 2-<n+9)rl_ 
discrete and satisfy (1+el)-I~d(yi' Yj)/d(pi,pj)~l+el for every i=l=J. 

Therefore by Theorem C, M is diffeomorphic to sn. 
Proof of Assertion. (1) denseness. Take an arbitrary point yin M. 

If Y E JJ(x, tr-e), then we can take a Pi with d(Pi, P-I(y» ~1). If the 
minimal geodesic from P-I(y) to Pi intersects the ball JJ(p, e), replacing 
the intersection by a minimal curve in the boundary 8JJ(p, e), we construct 
a curve from P-I(y) to Pi in M -R(p, e) with length~1)+tre. Since Pis 
length nonincreasing, dey, Yi)~1)+tre<41)/3. If Y E M -JJ(x, tr-e), take 
Y' E 8R(x, tr-e) and Pi with dey, Y') ~ e, d(Pi, P-I(y'» ~ 1). Then the 
above argument implies 

dey, Yi) ~d(y, y')+d(y', Yi)~e+(1)+tre) ~41)/3. 

Hence {Yi} is 2-<n+8)rl-dense. 
(2) discreteness. For any Yi' Yj' let q be a minimal geodesic from 

Yi to Yj' and let ql' qz be the maximal geodesic segments of q such that 
ql(O)=Yi, qz(L(qz»=Yj, Int q/ccR(x, tr-e), k= 1,2 (possibly ql=q). Notice 
that L(q/c)~(l-e')L(P-I 0 qk)~ (1-e')(1)/2'-e) by Lemma 2.5. This yields 

d(Yi' Yj)~L(ql)+L(qz)~(1-e')(L(P-I 0 ql)+L(P- 1 0 qz» 

~2(I-e')(1)/2-e»21)/3. 

Hence {Yi} is 2-<n+9)rl-discrete. 
By estimating the constant d(Yi' Yj)/d(Pi,pj) we will complete the 

proof. Let r be a minimal geodesic from Pi to PJ and let rl> rz be the 
maximal geodesic segments of r such that ri(O)=pi' rzCL(r z»=Pj, Int rice 
R(p, tr-e), k= 1,2 (possibly rl =r). Then Lemma 2.4 implies 

d(Yi' Yj)/d(Pi, Pj) ~(L(P 0 rl)+L(Po rz)+2e)/(L(rl)+L(rz» 

~(L(rl)+L(rz)+2e)/(L(rl)+L(rz» 

= I + 2e/(L(rl)+L(rz», 

where L(rlc)~d(pi,p)-e~1)/2-e, hence 

d(Yi' Yj)/d(pi,PJ)~ I + 2e/(1)-2e) < I +el • 

On the other hand, under the notations in (2), we have 

d(Yi' Yj)/d(pi,PJ)~(L(ql)+L(qz»/(L(P-l 0 ql)+L(P- 1 0 qz) + 2e) 

~ (l-e')(L(ql)+L(qz»/(L(ql)+ L(qz)+2e(1-e'» 

=(1-e')-2e(1-e')2/(L(ql)+L(qz)+2e(l-e'», 

> I-(e' +e(1-e')Z)/«(1-e)(1)/2-e» 

Q.E.D. 
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