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by R.C.T. and an estimate of the area of geodesic triangles in terms of
curvature.

§3. Gromov’s approach ([G 7))

Now Gromov ([G 7]) considered to embed a compact d-dimensional
riemannian manifold M with |K,|< 4, d,,<p and v, >V into euclidean
space RY of dimension N, where N may be estimated in terms of 4, p, V
and d. Take 0<r<c,:=min {z/2¢/ 4, i,/2}. We choose an e-dense
subset N={m,}i=¥ with e<min {r/8, 5,(r)/2-(1—(1/+/ 2 +a))*?, 1/2(rd+
16/r))-(1—r/(8s,(r/4))}, where a will be determined later. From this e we
may estimate N<b% ,(0)/bi(e/2) (see (1.1)).

Taking a C* cut function #: R—R* such that A(z)=1 if 10, A(t)=0
if >r, and #'(¢) <0(0<t<r), we define a smooth mapping f: M—R" as

(ER)) f(p):=(h(d(m, p), - - -, W(d(my, p)).
Note that there exists k(r) >0 such that |//(z)], |/(¢)|<k(r).

1°. Firstly we see that f is immersive at any point p € M. Take an
orthonormal basis {e;} of T,M and choose m,,, - --, m,, € N such that
d(m,, Exp, r/2-e,)<e (j=1, ---,d). Note that 3r/8<d(p, m,)< 5r/8.
We take u; e U,M (j=1, - - -, N) such that m, =Exp, t,u;, t;:=d(p, m)).
Then from R.C.T. (1.2.20) we have

_‘S“"('_r)_lr/2~ej”‘tjuj|£d(mz,a Exp, r/2-e;)<e<ls,(r)/2-(1 _(1/ﬁ+a)2)1/z,

from which we easily see that g(e;, #;)>>1/4/ 2 +«. This implies that {u,}
are linearly independent. Now remark that rank df(p) >rank (d-h(d(m,,, -)

(), - -+ d-h(d(my,, - ) (p)) = rank (7 (d(m,,, p)w, - - -, W' (d(ms,, P))us)
=d, because grad d,,, = —u; ((1.4.4)).

2°. Secondly we show that f is injective. Suppose that f(m)=f(n)
for m,n e M (m=n). We have then d(m,, m)=d(m;,, n) for all m, e NN
B.(m)=NNB,(n). Note that d:=d(m, n)<2e(<r/4). Let7 be the mini-
mal geodesic from m to n and z:=7 (r/24-d/2). Then z e B, ,(n)\B,(m)
and B,(z) C B,(n)\B,,(m). Now there exists a point p ¢ NN B,(z). Let2
be the minimal geodesic from n to p and put u:=2(0) ¢ U,M and d’:=
d(p,n). We estimate g(u, 7(d)). From R.C.T. (1.2.20) we get

|(r/2—d[2)i(d)—d'u]|
=|Exp;' z—Exp;*' p|<d’[s,(d")-d(p, 2)<d'[s(d") ¢
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from which follows

r/2-g((d), w)>(r/2—d[2)g (#(d), u)
=g((r/2—d|Dj(d)—d'u, u)+d' >d'(1—¢/s(d"))
=(r/2—d[2—e)(1 —¢[s,(r[2— d|2— &) = r/4(1 —r/(85,(r/4))),
namely
g({(d), u)>1—r/(8s,(r/4)).

On the other hand note that d(p, 7(¢))<<r (0<t<<d). From Rolle’s theo-
rem the distance function d,, has a point m,=7(t,), 0<t,<d with g(#(z,),
4,,(0))=0, where u, is the initial direction of the minimal geodesic from
7(¢) to p. Then we have from the hessian estimate (1.4.4) that

£, )= ddt-g(i(e), wr={" Hess (0, (1) di
<[ 1do, 16+ d(p, VA< 287 412)

Thus we get 2e(r4+4-16/r)>1—r/(8s,(r/4)), a contradiction.

3°. Here we remark that there exists D(«, d, r)>0 such that dil,, f~*
<D(a, d, r) (see remark after (1.2.20) for the definition of the dilatation).
In fact taking a basis {u, - - -, u,} it suffices to consider a linear map I:
T,M—R* defined by I(§):=(a,g(u;, &), - - -, a,g(uy, &) with a,=H(d(p,
m,)). We have the following properties: g(u;, )>1/v/2 +a, |g(u;, €,)|<
(1—(1/v 2 +@)?)” (i+)), and there exists c(r)>0 such that |a,|=
|W(d(p, m,))|<c(r) (recall that 3r/8<d(p, m;)<5r/8). Then we can show
that

Min {|/(§)]; |§]=1}
Zc(rW'd {1 2 +a)ld—(d— 1)1 —(1/v 2 + )"},

« is chosen so that the last quantity is positive.

Now we extend the above embedding to a tubular neighborhood of
f(M). Lety: TML—M be the normal bundle of M and Exp,: TM+—R”¥
the normal exponential mapping. Then Exp, is a diffeomorphism on
B(TM*Y):={ue TM*; |u|<d} for some §>>0. We estimate the value of
& for which Exp, z,x1y is @ local difftomorphism. For that purpose
suppose that n e R” is a critical value of Exp,. Namely there exist a curve
s—c,=f(m,) in f(M), normal vector field n, along ¢, such that n=c,+n,,
é,+1,=0. Then we have from g(n,, ¢,)=0,

g(ny, C))=—g(1y, C)=|6, .
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Since ¢,=(h(d(m,, m,))) we have

Co=(W"(d(m;, m)(d|ds,,_.,d(m;, m))+h (d(m;, me))d®[ds],_d(m;, my)).
Recall that

Id/dsrs=0d(m17 ms)]:[g(grad dmi? m0)1£|m0|’
|dz/ds2|s=od(mi, ms)lleeSS dmi(mm mo)[élmo |2\l”(d(mz’ my), 4).

(W2, d)y:=1/t+ 4t/2). There exists k(r)>0 such that [/ (¢4, 4)|, |F7(2)]
<k(r) (0<t<r). Then we have

|64 F<| 7| 60| < 211, || Fity P4/ N k(r), mamely
d(n, f(M))=|n,| =1/ Nk(r))-| & P/| i,
>1/2v Nk(r)) - (dil, (f )~ > D~*/(2y/ Nk(r)).

This gives an estimate for § such that Exp, s,y 1, is a local diffeomor-
phism. Gromov further asserts that we may have §=~const (r, 4, d)N+/ N.

Next suppose that we have another compact riemannian manifold M’
with | K} |< 4, dy < p, vy, >V, which carries an e-dense subset {m;}.z such
that

(.2) 1—ag d0mm) 4,
d(mi’ mj)

Then we get from the definition of f and f” that d(f(m,), f'(m}) <
k(r)av' Np and similarly d(f(m), f(M"))<k(r)v Np(a-+¢). Namely for
sufficiently small a, ¢, f(M)C By(f/(M")). From this Gromov asserts that
M is diffeomorphic to M’ (it seems to the author that we need some more
arguments for this). Anyway this implies finiteness of diffeomorphism
types of compact riemannian manifolds with | K, [<4, dy>p, vy >V. In
fact if there are infinitely many such M, which are not mutually diffeo-
morphic we have a sequence of points (d(m{?, m{»)) e R¥ @+ which are
obtained from e-dense subsets and lie in a bounded subset of RY¥+1/7
Thus we have two M, and M, for which (3.2) holds.

5°, Now Gromov proposed much more general scheme. Namely
he considered the Hausdorff metric on the space of metric structures.
Firstly for metric spaces X, Y assume that there exists a bijection f: X—Y
such that dil £, dil f~*<{ 4 oo. We define the Lipschitz distance d,(X, Y)
between X, Y as d;(X, Y):=inf {|log dil g|, |log dilg~'|; g: X— 7, bijection}.
Secondly we set for subsets 4, B of a metric space Z

dy(4, B):=inf {R>0; AC By(B), and BC B;(4)},
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where B(A):={z e Z; d(z, A)<R} etc.- Then for metric spaces X, ¥, we
define the Hausdorff distance between them as

(3.3) dy(X, Y):=inf {dZ(f(X), g(Y)); Z, metric space, f: X—Z, g:
Y—Z, isometric injections}.

In the case when X, Y are compact d(X, Y)<+4- co and d,(X, Y)=0
holds if and only if X is isometric to Y. In particular d,, determines a
distance on the set of isometry classes of compact riemannian manifolds.
Gromov considered in [G 7] what is the limit of sequences of riemannian
structures w.r.t. Hausdorff distance. In general such a limit may not be a
differentiable manifold. Nevertheless using the above arguments he asserts
the following:

Gromov’s convergence theorem (3.4). Let M:={(M, g); dim M=d,
dy<p, | K, |<4, vy >V}, Then a sequence g, of riemannian structures in
I admits a limit g which is a weak riemannian structure.

By weak riemannian manifold we mean a differentiable manifold
which admits continuous metric, notion of geodesics, exponential mapping
and injectivity radius etc. In the above the fact that i, has a positive
lower bound is essential. Applying the above to pinching problem Berger
asserts the following:

Theorem (3.5). For even d e Z* there exists 6(d)<1/4 such that all
compact simply connected riemannian manifolds of dimension d with 6(d)<<

K, <1 are either homeomorphic to a sphere or diffeomorphic to one of
GROSS’s.

Remark. In [G 1] Gromov also asserts that the number of diffeo-
morphism types of compact riemannian manifolds with 4, <1, |K,|<4,
vy > A1, dim M=d, is less than ex, (d+ A), where

eX,+ =exp (exp (- - -(exp-))).

6

It will be also very nice if we get finiteness theorems assuming bounded
Ricci curvature instead of sectional curvature.

§4. Curvature, diameter and Betti numbers

As we have seen in (1.2.21), for a compact riemannian manifold M
with positive Ricei curvature its fundamental group n(M) is finite and
first Betti number b,(M) equals zero. In the case of non-negative Ricci
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curvature Milnor obtained the following (see also [Wo 2], [G 4,7] for
further informations):

Theorem (4.1) (Mi 2]). Let M be a compact riemannian manifold with
r()=>0. Then z(M) has a polynomial growth (Let m,(M) be generated by
(g1, - - -» g} and we put m(s):=4#{g e G; g=g¥*- - -g¥* with |g|:=|p,|+| p.|
+ -« +|p|<s}.  Then by definition w,(M) has polynomial growth if m(s)
< Const. s¢ for some ee Z*. This is independent of the choice of the
generators).

Proof. We consider elements g € n,(M) as deck transformations of
the universal covering z: M—M. Then g e z,(M) is an isometry of M
w.r.t. the complete induced metric. For a fixed 7 € M, there exists an ¢>
0 such that ||g||:=d(#, gm)>e for all ge n,(M)\{e} and consequently
{B.,(gr); g € m(M)} are mutually disjoint. Taking R>max, ,., d(g7,
) we see that if [g|<(s, B, ,(gm) is contained in B,,,. »,(1). Then we have
from (1.4.2) and (1.4.3)

bi(e/2+ Rs)=vol (B, 5. (1)) > vol (B.,(gr)) =>m(s)bi(e/2),
g:lglss
where 4 is an upper bound of K,. Namely we get m(s)< Const. (¢/24 Rs)?.
q.e.d.

On the other hand for the estimate of the first Betti number we know
that for a compact manifold M with r(v)>0, b,(M)<d(=dim M) holds,
where the equality holds just for flat tori ([Bo]). Now Gromov ([G 7])
took the following approach: let M be a compact riemannian manifold
and 7: M— M the universal covering. Take /% € M and ¢>>0. We put for
gern (M), |gl:=d(m, gm). Now let A, - - -, h, be a maximal family of
elements of «,(M) with the following properties;

(i) |hh7!|>e if i),

(i) || A || <2d) +e.

Let I' be the normal subgroup of x,(M) generated by {#,}. We show that
I is of finite index in 7;,(M). To see this we consider the Galois covering
7’ M’'—M corresponding to I'. Namely the group of deck transforma-
tions of M’ is isomorphic to =, (M)/I". Now suppose that #z,(M)/['= co.
Let m’ € M’ correspond to 1. Then there exists #’ € M’ such that d(w’, n')
=d,, ¢ because M’ is not compact. On the other hand there exists #’ ¢

n(M)/I" such that d(w', ¥m’)<{d, because of d(m, n’'n')<d,. Then we
get e<d(m', W'm)<d(m', n')+dW, Wm')<2d,+e. Namely choosing /1 €

m,(M) such that /' =hl" we see that || h||<2d,, +e¢, || hh; || >e, which contra-
dicts the maximality.

Now considering the Hurewicz map ¢: =,(M)-—> H,(M, Z) the sub-
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group G of H,(M, Z) generated by ¢(h,), - - -, p(h,) is of finite index. This
shows that b,(M)<p. Then (i) means that B,,(gm) (i=1, ---,p) are
mutually disjoint and (ii) means that they are contained in B,,, ;. /.(m).
Thus we have as before

b(M)<p<vol (B2dy + 3e/2(m))/V01 (Bs/z(m))-

Now assuming that r(v)>—(d—1)r for all ve UM we get from
(1.4.1)

5d i du
bl(M)gJ (sh rt)i-1dt / J (sh rt)i-tdt,
0 0

which depends only on r, d, d,;,. Refining the above argument Gromov
got

Theorem (4.2) ([G 7]). There exists an integer-valued function (d, r, d)
such that for all compact riemannian manifolds M of dimension d with r(v)
>—(d—1)r we have b(M)<¢(d, r, dy). ¢=d when rd% is sufficiently
small.

Remark. Gallot (G 1,2], [B 9]) gave a proof of the above result by
analytic tools.

Now assuming that curvature is bounded below, Gromov obtained
the estimate of all Betti numbers.

Theorem (4.3) ([G 3]). There exists a constant C= C(d) such that for
all compact d-dimensional riemannian manifolds M with K,>— /* and d,,
<pweget 3%, b(M)LC .

From this we see that >, b,(M)< C if K,>0 and that connected sum
of sufficiently many copies of S? X .S¢-? (0<< p<d) can not admit rieman-
nian metric of non-negative sectional curvature. Note also that there are
infinitely many homotopy types of riemannian manifolds satisfying the
assumption of the theorem. If we can estimate the number of convex
open balls which cover M then we easily have such an estimate for > b,(M)
by Mayer-Vietoris sequence. Such an estimate follows from the injectivity
radius estimate which is impossible in this case because we assume nothing
about the volume. Gromov overcame the difficulties by many brilliant
ideas including isotopy lemma (1.4.11) (see [G 3]).

Gallot ([G 1,2], [B9]) also got such an estimate using analytic
methods refining Weitzenbdck’s formula, Sobolev’s inequality, etc. His
methods are also applied for the estimate of eigenvalues of Laplacian,
dimension of harmonic spinors, dimension of moduli of Einstein metrics
etc. It will be very interesting if we have similar estimate for > b, (M)
assuming bounded Ricci curvature instead of sectional curvature.
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