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This is a survey article on the above subject. A differentiable mani
fold admits variety of riemannian structures but we don't know in general 
what is the most adapted metric to the given differentiable structure. On 
the other hand, in riemannian geometry we have many important rieman
nian invariants, e.g., curvatures, volume, diameter, eigenvalues of 
Laplacians etc., and we know what is the most standard riemannian mani 
folds (model spaces) in terms of riemannian invariants, e.g., spaces of 
constant curvature, symmetric spaces, Einstein spaces etc. 

We ask here the following problem: if riemannian manifolds are 
similar to the model spaces with respect to the riemannian invariants, are 
they also topologically similar? 

This is in fact a kind of perturbation problem, but perturbation in 
terms of riemannian invariants and manifolds may vary during the pertur
bations. A typical example is the Hadamard-Cartan theorem which states 
that a complete simply connected riemannian manifold of non-positive 
curvature is diffeomorphic to the euclidean space. This follows from the 
fact that geodesic behavior from a point of the manifolds is similar to that 
of euclidean space. Namely the exponential map gives a diffeomorphism 
(see e.g. [B-C], [C-E], [G-K-M], [N-K], [K 6], [B 5]). Also many results from 
the theory of surfaces of fixed signed Gaussian curvature and the theory 
of space forms of constant curvature motivated such a question. 

In 1951 H. E. Rauch proposed the above problem for sphere case and 
showed that if for sectional curvature K of a compact simply connected 
riemannian manifold min Kjmax K is sufficiently close to 1, then the mani
fold is homeomorphic to the sphere. This was further developed by 
Berger, Klingenberg, Toponogov, Tsukamoto, Cheeger, Gromoll, Shio
hama, Karcher, Ruh and other people and their works gave much influence 
on riemannian geometry. In Chapter 2 we treat the above problem. 

On the other hand we may ask more generally: classify all the topo
logical types of riemannian manifolds some of whose riemannian invariants 
satisfy some conditions. For instance classify manifolds of positive (or 
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more generally fixed signed) curvature. Usually such classification prob
lems are very difficult and we may ask whether there are only finitely many 
topological types of such riemannian manifolds. This was firstly attacked 
by J. Cheeger and A. Weinstein around 1967. We will be concerned this 
problem in Chapter 3. 

In Chapter 1 we collected some fundamental tools for the above prob
lems. The riemannian invariants with which we are mainly concerned here 
are sectional curvature, Ricci curvature, diameter and volume. Of course 
there are many other important invariants, e.g., eigenvalues of Laplacians 
and we may also consider the above problems in these cases (see e.g., 
[Cro], [L-T], [L-Z], [Pi]). Also tools and methods which are treated here 
are mainly concerned with geodesics. We could not here treat methods 
from Partial Differential Equations although they are playing important 
roles (see [Ya]). Since there are survey articles on non-compact manifolds 
and manifolds of negative curvature in this proceeding we don't touch 
upon these manifolds here. 

Now Gromov's recent works with many brilliant ideas from various 
branches of mathematics are giving decisive influence on the above problem 
(in fact on many problems beyond above). Since they are still expanding 
we could only touch some of them here (see papers by Gtomov [G 1-8] 
and [Bu-K], [B8,9]). 

Also the references given here are far from completeness. 
In this article lowe very much to the papers by Buser-Karcher, 

Cheeger, Gromov, Heintze-Karcher, ImHoff-Ruh, Weinstein and other 
people to whom I would like to express my sincere thanks. 

I also would like to thank M. Berger, W. Klingenberg, K. Shiohama 
and T. Yoshida for advices and suggestions. 

Chapter 1. Preliminary Comparison Results 

§ 1. Riemannian invariants 

In this section we introduce some fundamental riemannian invariants. 
From the existence of a riemannian structure g on a smooth manifold M 
we can introduce the following concepts and notions: 

10. Firstly we have the Levi-Civita connection 17 x adapted to the 
given metric. For a given curve c: [0, 1]~M and a vector field Yalong c 
we denote by l7a/at Y(:=I7Y) the covariant differential of Y in direction of 
tangents to c. We also denote by Pc: Tc(o)M~Tc(l)M parallel translation 
along c. Recall that 17 x is not a tensor field on M and we lift it to the 
tangent bundle 'rM : TM~M so that we can define the bundle map K: TTM 
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-+TM in the following way: for ~ E TvTM, U E TM choose a curve t-+Vt 
E TM tangent to ~ at t=O, which may be considered as a vector field 

along a curve Xt:="MVt. We define 

(1.1) (this is in fact well defined). 

Restricting K to the vertical subspace (TvTM)v: = dv"i/(O) = TvTr vTM, we 
M 

have 

Kldvr"irl(O) = the canonical identification tv: Tv TrMvM ~ TrMvM. 

Then d"M(V): K-l(O)~ T'MVM is an isomorphism and we have a splitting 

(1.2) 

(TvTM)h:=K-l(O) wilI be called the horizontal subspace. Especially 
horizontal vector field Sv:=(u, 0) on TM is calIed the geodesic spray. 

Now from 17 we have the curvature tensor 

(1.3) 

which is the most fundamental local invariant of (M, g) with its successive 
covariant derivatives. GeometricalIy folIowing sectional curvature intro
duced by Riemann generalizing Gauss curvature in the surface theory is 
important. Let Gz(TM) be the Grassmann bundle {acTmM; 2-planes. 
mE M}. Then the sectional curvature Kd of a is defined as 

(1.4) K.:=g(R(x, y)y, x)/lx!\yIZ (:=K(x, y)), 

where I . I denotes the riemannian norm, {x, y} is a basis of a and Kd is 
independent of the choice of {x, y}. Then K: Gz(TM)-+R is a smooth 
function which determines R (see e.g. [C-E] p.16). 

In the case when K is a constant 0 we have for the curvature tensor 
Ro(x, y)z=o{g(y, z)x-g(x, z)y}. These riemannian manifolds of constant 
curvature cover classical euclidean and non-euclidean geometries andJthe 
problem how Kd controls metrical and manifold structure has been one of 
the central problems in riemannian geometry. 

F or example assume that 0 <Kd< 11 and put R 0 : = R - R(d + o)/z. Then 
recalling that x-+RO(x, y)y is a symmetric linear map we have 

(1.5) 

Next putting IIRo II: = max {IRO(x, y)zl; 1x!.lyl, IZI= I} we have also 

(1.6) IIRo 11::;:2/3(11-0). 

Now Ricci curvature is defined as 
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r(x, y):=Trace (z-+R(x, z)y), and for x E U(M, g) 
(1.7) d 

r(x):=r(x, x)= L: K(x, Xi)' 
i=2 

where x = XI' •• " Xd are orthonormal with dim M = d. This notion was 
introduced by Ricci and became very important after it played the funda
mental role in Einstein's equation for gravitational field. Recently it turns 
out that Ricci curvature tells much more information about (M, g) than 
expected by Gromov, Yau and other people. 

2 ° • Secondly from the given riemannian structure we can consider 
the length Lc and energy Ec of a piecewise smooth (or more general HI - ) 

curve c: [O,l]-+M as Lc:=S:[c(t)[dt, Ec:=1/2 S:[c(tWdt respectively. 

Thus we can define the distance d(p, q) of two points p, q E M as the 
infimum of the length of curves joining p and q. With this distance M 
has the structure of a metric space (M, d) whose topology coincides with 
the manifold topology. (M, d) is complete if and only if every metric 
ball Br(p):={q EM; d(p, q)< r} is relatively compact by Hopf-Rinow 
theorem. In the following we consider only complete riemannian mani
folds. In this case M is compact if and only if its diameter dM : = 
SUPP.qEM d(p, q) is finite. The space Qp,qM:={c: [0, l]-+M, HI-curves 
with c(O)=p, c(l)=q} has a structure of complete Hilbert manifold such 
that tangent space TcQp,qM={HI-vector fields along c}. Then E is a dif
ferentiable function on Q p,qM and Morse theory may be developed for 
(Q p,qM, E) ([K 5], [K 6]). From g we have also canonical Lebesgue measure 
du="; det (gij)dx l • •• dxd and we may consider the volume UM' Riemannian 
invariants dM and UM play important roles in the following. 

3°. Riemannian metric defines a one form IX on TM by IXv(~):= 
g(u, drM~)' ~ E TvTM. Then dlX defines a symplectic form on TM (i.e., a 

d 
~ 

closed 2-form with dlX/\ ... /\dlX=FO everywhere). This corresponds to the 
canonical symplectic structure on T* M by an identification b: TM ~ T* M 
(b(x)y=g(x, y)) via the metric, which is nothing but the Legendre trans
formation with respect to the energy function E: TM -+R, E(u) = 
1/2 g(u, u). Thus we may consider the Hamiltonian vector field HE cor
responding to the Hamiltonian E. In our case HE coincides with the 
geodesic spray defined in 1 0. In fact we have isvdlX= -dE which follows 
from the fact that Ls/x=dE. 

4°. Now the notion of geodesic may be introduced in connection 
with 1 °,2°,3° respectively as follows: c: [0, l]-+M, c(O)=p, c(l)=q is a 
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geodesic if and only if 
(with respectto 1°) an auto-parallel curve i.e., 

(1.8) 

which is the TJI{-image of an integral curve of the spray S •. 
(with respect to 2°) a critical point of the energy integral E on Q p,qM, 

namely, the Euler-Lagrange equation of the fuctional E is nothing but 
(1.8). 

(with respect to 3°) T JI{-image of a solution curve of the Hamiltonian 
system HE' 

In the above geodesics are parametrized proportionally to arc length. 
Every geodesic is determined by the initial point p and the initial direction 
v E TpM, which will be denoted by c.(t). Especially geodesics para
metrized by arc length will be called normal. For a complete riemannian 
manifold every geodesic c. may be defined for all real numbers and any 
points p, q may be joined by a minimal (i.e., distance realizing) geodesic. 
We denote by Min (p, q) the set of all minimal and normal geodesics 
joining p to q. It is also important to consider the flow rpt of S.( = HE) on 
TM, which is called the geodesic flow. Clearly we have rpt(v)=c.(t) and 
TJI{rpt(V)=c.(t). 

Once the notion of geodesics is introduced we have the normal co
ordinates system. Namely for p E M we define the exponential map Expp: 
TpM----+Matp as Expp v:=c.(l), which is a diffeomorphism on BT(Op):= 
{v E TpM, Ivl<r} for some r>O. Now the normal coordinates system 
(Xl) atp is determined as Expp L: xl(q)el=q, when an orthonormal basis 
{e l } of TpM is given. Then we have the following expansion of the metric 
tensor g=(gij) aroundp with respect to the normal coordinate 

(1.9) 

(for the further expansion see e.g. [Sa 1]). Normal coordinates system gives 
most adapted local chart to the riemannian structure. 

Remark. From (1.9) we have the following interpretation of the 
curvatures. Let (J E G2(TM) be a plane section at p and CT a circle in (J of 
radius r centered at the origin. Then we have 

(1.10) K. =3/rr lim (2rrr-LExppeJJr8. 
T~O 

Next we have for a unit vector x E UpM 

(1.11) r(x)=31im (I-det gjExPi> tx))Jt 2• 
T~O 

5°. To see the behavior of geodesic, which satisfies second order 
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non-linear equation, it is useful to consider the infinitesimal deformation 
of geodesics, which satisfies the linearized equation. Namely let a.( -e~ 
s<e) be a family of geodesics with ao=c.. Then the vector field Yalong 
c. defined as Y(t): = a/asl.~oa.(t) satisfies the second order linear dif
ferential equation 

(1.12) 

Conversely a vector field Y along a geodesic satisfying (1.12) may be ob
tained from such a geodesic variation and will be called a Jacobi field. 
Note that Y is uniquely determined by YeO) and I7Y(O). With respect to 
r, c.: [0, 1]~Mis a critical point of Eon (Jp,qM(p=c.(O), q=c.(l». We 
can consider the Hessian D2E(c.), which is a symmetric bilinear form on 
TcPp,qM given by 

(1.13) D2E(c.)(X, Y)= s: {g(l7X, I7Y)-g(R(X, c.)c., Y)}dt. 

Then the null space of D2E(c.) is nothing but the space of Jacobi fields 
along c. vanishing at end points. From geodesic flow view point, we con
sider the differential d1>t: T.TM~T~ •• TM of the geodesic flow. Then in 
terms of the splitting of (1.2) we have 

(1.14) d1>.(A, B)=(Y(t), I7Y(t», 

where yet) is a Jacobi field with Y(O)=A and I7Y(O)=B. Namely Jacobi 
fields are characterized as geodesic flow invariant fields. Finally the 
relationship with the exponential map is given as follows: for v, W E TpM 
we have the linear field t~(O, tw)=tt.w E Tt.TpM. Then the Jacobi field 
Yalong c. with Y(O)=O and I7Y(O)=w is characterized by 

(1.15) Y(t)=dExpp (tv)(O, tw). 

Roughly speaking curvature controls the behavior of Jacobi fields, 
which are the infinitesimal deformation of geodesics, and also the behavior 
of geodesics. Then behavior of geodesics gives information on normal 
coordinate systems, namely on the structure of manifolds. 

6° • Here we remark that we may control the parallel translation by 
curvature. Let Co, C1 be curves with initial pointp and C.: [0, 1]~M (O~ 
s<l) a homotopy from Co to C1 with c.(O)=p. We put r(s):=c.(1). Let 
a be the parallel translation along Co U r U cll which may be considered as 
an element of SO(d). Then we have 

(1.16) Ilall(:=Maxla(U)- UI)<\\R\\.Area of the surface generated by C •• 
1U1=1 
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In fact for U E UpM, let X. be the parallel vector field along Cs U rl[S,I] with 
X,(O) = U. We put 

{
CsCt) for O<t< 1 

a(s t)-a (t)-
, -, - r((I-s)t+2s-1) for l<t<2" 

Then we get 

\a(U)- U \=\Xo(2)-Xj (2)\<I WmsXs(2)\ds<f: dt I Wa,ai"a,a.X.(t) \ ds 

=f2 dt f j \R(8a/8t, 8a/8s)X.(t) \ ds<IIRII f \8a/8t/\ 8a/8s\ dsdt ° ° [O,I]X[O,2] 

=IIRII f I 8a/8tl\aa/8s I dsdt. 
[O,I]X[O,I] 

Remark (1.17). The same result also does hold in case of a metric 
connection of riemannian vector bundle. 

7°. As mentioned before simply connected riemannian manifolds 
Md(o) of constant curvature 0 are the simplest riemannian manifolds. Take 
P E Md(o), v E UpM and an orthonormal basis {e j , ••• , ed} of TpMd(o). 
We put 

(1.18) {
sin .vTt /.va 

s.(t):= t 

sinh .vraT t / .vjal 

if 0>0 

if 0=0, 

if 0<0 

Then Jacobi field yet) along cv , Y J...cv with Y(O) = I: atet; VY(O) = I: hie, 
takes the form 

where EtCt) is the parallel translation of ei along Cv' 

Next typical examples of riemannian manifolds are symmetric spaces, 
on which sectional curvature K., is constant if (it is parallel along a curve 
Ct. In this case behaVior of geodesics is explicitly known (see [Hel], [Sa 4]). 
Especially· for rank one symmetric spaces, which are various projective 
spaces with their canonical riemannian structures, all geodesics are simple 
closed geodesics of the same length (so-called CL-manifolds [Be]). 

Also invariant metrics on homogeneous spaces give nice examples in 
riemannian geometry ([BB 1-3], [B 3], [Su 2-4], [Wa 1-3], [Z 1-2]). Here 
we only mention Berger's spheres ([eha 1], [S 5], [W 4]), which are one 
parameter normal homogeneous metrics of positive curvature on odd 
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dimensional spheres, and Wallach's examples, which are (not normal) 
homogeneous metrics of positive curvature on SU(3)/T(p, q), where 
T(p, q) are circles defined by 

{(
exp (2n-pO.f=T) 0 O)} 

o exp (2n-qO.f=T) 0 ; 0 E R 

o 0 exp (-2n-(p+q)o.f=T) 

with relatively prime p, q E z. It is known that SU(3)jT(p, q) are simply 
connected and H4(SU(3)jT(p, q): Z)~Zr> r:=!p2+ pq + r 2!. Huang 
computed explicitly min K. j max K. for some homogeneous metric on 
SU(3)jT(p, q) (see [Wal-A], [Hu], [Es]). 

For more general homogeneous manifolds of positive curvature see 
{BB 1-3], [WaI1-3]). The geodesic behavior on homogeneous manifolds 
is not known completely ([Z 1-2]). 

More generally Cheeger constructed metrics of non-negative curvature 
using group actions ([C 4], [Gr-M], [Po]). 

§ 2. Jacobi fields comparison theorems 

Recall that Jacobi fields satisfy the second order linear differential 
equation. Extending classical Sturm-Liouville comparison theorem to 
riemannian case, Rauch ([R 1]) obtained comparison theorems on Jacobi 
:fields in terms of curvature of manifolds. Here we give generalized version 
by Warner, Heintze-Karcher etc. ([H-K], [War 2]). 

We consider Jacobi fields satisfying the boundary condition. 

10. Let Ne ~ Md be an immersed submanifold of dimension e 
with the induced riemannian structure, Ii: TN l..-+M the normal bundle. 
For a normal vector v E TpN we define the second fundamental form So as 

(2.1) 

where V is a local section of TN around p with Vp = v. S. is a symmetric 
bilinear form on TpN and we denote the corresponding linear transforma
tion by the same letter S.. Now a Jacobi field Yalong a geodesic Co will 
be called an N-Jacobi field if Y satisfies 

(2.2) 

(namely in terms of the splitting (1.2), initial condition (Y(O), P'Y(O)) 
belongs to a Lagrangian subspace 2: = {(A, B) E T.TM; A E TpN, B-S.A 
E TpNl..}). N-Jacobi fields may be characterized as the variation vector 
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fields of geodesics with initial direction in TN 1.. It is also useful to con
sider the splitting of TTN 1. with respect .to the normal connection P1.. 
For a section Z: N-+TN1. and x E TpNwe set f7;;Z:=(f7xZ)1. (orthogonal 
projection to TpN1.). We can define as before the bundle map KN: TTN1. 
-+TN1. by the condition KN(dZ.x)=P.tz. Then we see that for v E TpN1., 

KN1d,-1(O): dll-I(O)=TvTpN1.~TpN1. is the canonical identification, 

dll IKN 1 (O): Ki/(O) ~ TpN is an isomorphism 

and we have a splitting 

(2.3) (P=Ii(V)). 

We denote this splitting by (A, B)N, A E TpN, BE TpN1.. Especially we 
can define the riemannian structure on TN1. so that KN1d,-1(O)' dIiIKNIco) are 
linear isometries and dli-I(O)-.lKNl(O). 

Now we consider a linear field U(t):= (A, tB)N E TtvYN1. along t-+ 
tv. Then an N-Jacobi field yet) with Y(O)=A, PY(O)=SvA+B is given 
by 

(2.4) Y(t)=dExp, UCt), 

where Expv:=ExPITN. Thus we have drMdtpt(A, B+SvA)=dExp, (A, tB)N. 
Next for a geodesic cv , v E TN 1., a point cv(t) (t>0) is called a focal 

point of N along Cv if there exists a non-zero N-Jacobi field Y with yet) 
=0. For v E TN1. we define the focal distance of N in direction v as 
min {t>O; cit) is a focal point of N}. In case when N reduces to a point 
this will be called the conjugate distance. 

We consider the following situation: Let cv, v E UpN 1. be a perpen
dicular normal geodesic, k(t):=min {Ka; a:3 ('v(t)}, K(t):=max {Ka; a:3 

ev(t)}, AI, ... , Ae eigenvalues of Sv (principal curvatures). We also consider 
another immersed manifold Ne ~ Mil, Cjj , V E UpN, kef), K(t), AI> .•• , Ae 
will be defined similarly. Let to>O be smaller than the focal distance of 
N in v. We shall assume that 

dim N=dim N:=e 

(*)2: Max Ai<Min Ai, or (*)~: Ai ::;:Ai (i = 1, ... , e) for some fixed 
order of principal curvatures. 

Let YI> ... , Yr (resp. VI' ... , Vr ), 1 <r<d-I, a-I, be linearly inde
pendent N(resp. N)-Jacobi fields given by Yi(t)=dExpv Ult) (resp. Viet) 
=d Exp. [li(t)), which are perpendicular to Cv (resp. cjj). Putting 
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(2.6) 
f(t):=log (I Yj(t)/\ . .. /\ Yr(t) III Uj(t)!\ . .. /\ U.(t) I), 

J(t): = log (I Yj(t)/\ ... !\ Y.(t) III Uj(t)/\ ... !\ Ur(t)!), 

we want to comparef(t) andJ(t). Note that limt_of(t)=limt_ol(t) =0. 
For that purpose we estimate 

(2.7) g(t):={log I Yj(t)/\ • .. /\ Yr(t) I-log I Yj(t)!\ . .. /\ Yr(t)IY· 

Fix tj < to, to «focal distance of N in v). We give a condition guaran
teeing g(t j ) >0. 

Lemma (2.8). Assume (*)0, (* )j, (*)2 or (*)~ and that there is a linear 
isometric injection t h: TpM -+ TpM such that 

(i) ttlj=v, tt,TpN=TpN, 
(ii) tt,Vt,= VII where Vt,:=P;"l{Yi(t j)}R etc. 

We assume furthermore 
(iii) tt, maps eigenvectors of 2/ to that of Ai, 

when we assume (*)~. Then we have g(tj) >0. 

Proof Main idea is to use the index form. Namely on Xc.:={X(t); 
HI-vector fields along C.ICO,h] with X(O) E TpN and X(t)~c.(t)}, we define 

(2.9) IN(X, X):= J:' {g(l7X, I7X) - K(c.(t), X(t»IX(t)12}dt 

+ SiX(O), X(O». 

Then one of the fundamental properties of IN is as follows: for tj<to, we 
have IN(Xj X»IN(Y, Y), where Y is the uniquely determined N-Jacobi 
-field with Y(tl)=X(t j) and the equality holds if and only if Y =X (see e.g. 
1B-C]). For the proof we may firstly assume that Y;(t l ) are orthonormal 
by taking a linear combination of Yj(tl), .. " Y.(tl). Since Y; are N-Jacobi 
-fields, we have 

(log I Yj(t)/\ ... /\ YT(t) I):=t, = I: (log I Yi(tl) I)' = I: g(l7Yltl), Y;(t j» 

= I: IN(Yi, Y;). 

Let Wi(t): = pc. 0 tt, 0 P-;ijl(Y;(t» be an element of Xc. (by (i» with I W;(t) I 
=1 Y;(t) I, I17W;(t) 1= I17Y;(t) I· From the assumption (ii), taking appro
priate linear combination of Y;(tj)'s, we may assume that Yltl) = W;(t j). 
Then note that {Yltj)} are orthonormal and W;(O) = tt,Yi(O). Then we 
have from (iii) 

(log I YI(t)!\ ... /\ Yr(t)!):=t, = I: IN(Yi , Yi)<I: IN(W;, Wi) 

(2.10) = I: {J:' (g(l7Wi' I7Wi)-K(c., Wi) I W;12)dt+Sv(W;(0), Wi(O»} 
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<L: U:1 (g(fYt' I7Yt)-K(cfj, Yt)1 Ytl2)dt + Sfj(Yt(O), Yt(O))} 

= L: IN(Yt, Y t) = (log I Ylt,)!\ ... /\ Yr(t,) 1):=t1. q.e.d. 

Now the problem is that (i), (ii), and (iii) are not consistent in general. 
We consider the following cases: 

(I) (*)0: d>(1, e=O, l<r<(1-1, (*),: k(t»K(t) (O<t<to) 
(II) (*)0: d=(1, e=d-l, l<r<d-l, (*),: k(t»K(t) (O<t<to) 

(*)2: max At<min Ai. 
(III) (*)0: d=(1, r=d-I. (*),: k(t»K(t) (O<t<to). 

(*)2: At<At for some fixed order of principal curvatures. 
(IV) (*)0: d=(1 and M is a space form of constant curvature 0, r= 

d-I. 
(*),: r(cv(t))>(d-l)o (O<t<to). 
(*)2: e = 0, or e = d -1 and N is totally umbilical at p (i.e., Sfj = 

Aid) and tr Sv<eA. 
Then in these cases we may easily check that assumptions of (2.8) are 
satisfied for t, < to, fo• In the last case (IV) we make the assumption on 
Ricci curvature only but the last inequality in(2.1O) also holds in the same 
way. To see that L: Sv(WlO), Wt(O))<L: Sfj(Yt(O), Yt(O)) note that every 
N-Jacobi field Yet) in M takes the form Y(t)=(c.(t)+AS6(t))E(t) with a 
parallel vector field E(t). 

Remark (2.11). In each case Ut(t) (and Vt(t)) are given as follows: 
( I) Ui(t)=(O, tBt), Bi=I7Yt(O). 
(II) Ut(t)=(Ai, O)N' Ai= Yt(O). 
(III) Ut(t)=(At, tBt)N. Note that we may take Ut(t)=(Ai, 0) (i= 

1, ... , e), where At are eigenvectors of S., and Ult)=(O, tBj)N 
(j=e+l, ... , d-l), B j E TpNJ.. 

(IV) Ui(t) =(0, tBi) or Uit)=(At, O)N. 

Now under the assumptions of one of(I)-(IV) and t,<to, fo, we have 
g(t,) >0. From (2.11) we see that log I U,(t)/\ . .. /\ U.(t) I-log I V,(t)/\ 
... /\Vr(t)l=constant, and we getf(t)> J(t) for t<to, fo. But this im
plies that to is smaller than the focal distance of N in v. Thus we have 
the following ([H-K)): 

Theorem (2.12) (Heintze-Karcher). Assume one of (1)- (IV). Then 
we get 

(i) t~1 Y,(t)/\ . .. /\ Yr(t) III Y,(t)/\ . .. /\Yr(t) I is monotone increas
ing for O<t<to• 

(ii) IY,(t)/\ ... /\Yr(t)lliV,(t)/\ ... /\Vr(t)l> 
I Y,(t)/\ ... /\ Yr(t) II I U,(t)/\ ... /\ Ur(t)l· 

(iii) Focal distance of N in v<focal distance of N in v. 
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r. From the above we have many important consequences. First 
we give original Rauch comparison theorems ([R 1], [R 3], [C-ED. 

Theorem (2.13) (R.C.T.-I). Assume that dim M::2:dim M, k(t)?:.K(t) 
for t-:;;'to «conjugate distance in direction u). Let Yet), Y(t) be Jacobi 
fields along cv, Cv resp. such that YeO), YeO) are tangent to cv, Cv resp. Assume 
furthermore that g(u, Y(O)) = g(u, YeO)), g(u, P'Y(O)) = g(v, P'Y(O)) and 
WY(O) !=WY(O) !. Then we have! yet)!:::;:! Y (t)!for 0< t:::;: to' 

Proof We decompose Y(t)= YT(t)+ Y-l-(t), where YT(t) is the 
orthogonal projection of yet) to cv(t). Clearly we have g(Y(t), cv(t)) = 
g(Y(O), u)+g(P'Y(O), u)t and! YT(t)!=! YT(t)!. From (2.12-(I))! Y-l-(t)!< 
!Y-L(t)! holds, because of y-L(O) = y-L(O) =0, WY-L(O)!=WY-L(O)!. q.e.d. 

Next integrating the above we get 

Theorem (2.14) (R.C.T.-II). Suppose that dim M>dim M and 
( i) Ko > K. for all (J E Gz(TM), (j E G2(TM), 
(ii) Exp PIBr(op) is an embedding and EXPpIBr(op) is regular. 

Let I: TpM-+TpM be a linear isometric injection. Then for any curve 
c: [0, 1]-+Expp(Br(op)) we have Lc<Le, c=Expp 0 10 EXp;l(C). 

Proof Put aCt, s): = Expp (t/(EXp;;l c(s)/! EXp;;l c(s) I)), 0 -:;;, t < 

!EXp;;l C(S)!. Then Lc= s: !aa/as(1, s)!ds and t-+(aa/as)(t, s) is a Jacobi field 

Y, along a geodesic t-+a(t, s) with Ys(O) = O. Similarly define aCt, s): = 
Expp (t EXp;;lC(S)/!Exp;;l c(s)!) and Y,. Noting that WY,(O)!=WY,(O)! we 
get our result from (2.13). q.e.d. 

Similarly we have Berger's comparison theorems ([B 4], [C-ED. 

Theorem (2.15) (B.C.T.-I). Assume that dimM = dimM. For u E 

UpM let N:=Exp p {x E Br(op)cTpM, g(x, u)=O} be a hypersurface with a 
normal vector u and Sv=O. For v E UpM define N similarly. Suppose that 
for N(resp. N)-Jacobi field Y (resp. Y) 

( i ) k(t) > K(t) for 0< t:::;: to ( <focal distance of N in direction u). 
(ii) P'Y(O), P'Y (0) are tangent to cv, Cv resp. 
(iii) g(u, Y(O))=g(v, YeO)), g(u, P'Y(O))=g(v, P'Y(O)), ! Y(O)!=! YeO)!. 

Then we have! yet)!:::;:! yet)!. 

Theorem (2.16) (B.C.T.-II). Let cv(cv): [0, l]-+M(M) be a geodesic 
and E(l!) parallel vector field along cv(cv). Put e(t): =Exp (f(t)E(t)), e(t) 
:=Exp (f(t)E(t)), where f: [0, lJ-+R is a smooth function such thatf(t)< 

focal distance of Exp {w E TCv(t)M; w ~E(t)} in direction E(t). Suppose 
that Ko ?:.K. for all (J E G2(TM), (j E Gz(TM). Then we have Le<Le. 
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Remark (2.17). Let Mel be a riemannian manifold with K.<J and 
M eI(L1) space form of constant curvature J. Suppose that Expp: Br(op)-+ 
Br(P) is a diffeomorphism (r<1':/J J ). Take p e MeI(L1) and a linear iso
metry I: TpM -+ TpM. For q, r e Br(op) take a minimal geodesic r e 
Min (q, r). Assume that r c BT(P). Then we have d(q, r) > d(lj, r) 
with lj:=Expp I(Exp;l q) etc. from (2.14). If the equality holds f:= 
Expp I(Exp;l r) is a minimal geodesic and we have a totally geodesic 
triangle S:=Expp I(Exp;l S) of constant curvature J, where S=(p, lj, r) 
is a geodesic triangle in MeI(J). 

Next we consider the case when M or M is of constant curvature. 

Theorem (2.18) ([Ka], [Bu-KD. Let M be a riemannian manifold, yet) 
a Jacobi field along a normal geodesic Cv with Y(t)~cvCt). 

( i ) Suppose that K. < J for all q e G2(TM). Then as far as y it): = 
I Y(O)lcit)+1 YI'(O)sit) is positive we get 

g(Y, I7Y)YJ>g(Y, Y)y~ and I Y(t)l> Yit). 

(ii) Suppose that K.>o and that I7Y(O) and YeO) are linearly de
pendent. Let to(>O) be smaller than the focal distance in direction v of 
hypersurface N with normal v such that Sv=(1 YI'(O)/I YI(O))id if Y(O) *,0 
(conjugate distance in v when Y(O)=O). Then we have I Y(t)l<y.(t) (O::;;:t 
<to) and that t-+y.(t)JI Y(t) I is monotone increasing (O<t<to)' 

Proof If Y(O) =0 both cases follow from (2.12-I). We assume YeO) 
*,0. 

( i ) Take a hypersurface N with a normal v and with respect to 
which Y(t) is an N-Jacobi field. In M:=MeI(J) take a point p, ve UpM 
and a hypersurface Nwith a normal v such that S;;=A id, A=I YI'(O)/I YI(O). 
It suffices to show (log I Y(t,) I)'>(log yit,)), for t,<to' This follows from 
the arguments in the proof of (2.11) changing the role of M and M. Note 
that in our case S;;(W(O), W(O))=AI W(OW=AI Y(O) 12= I YI'(O) I Y{O) I > 
g(I7Y(O), Y(O))=SvCY(O), YeO)). 

(ii) Put I7Y(O)=AY(O) and take a hypersurface N with a normal 
vector v such that Sv=Aid. Then Y is an N-Jacobi field. Considering 
the same situation in M:=MeI(o) we have our result from (2. 12-1I). q.e.d. 

Corollary (2.19). For a riemannian manifold with the curvature restric
tion o<K.<J, let c. be a normal geodesic, yet) a Jacobifield along Cv with 
Y(O)=O, Y(t)~cv(t). Then we have 

so(s)Js.(t )::;;:1 Yes) III yet) I::;;:sis)/sit) 

Corollary (2.20) (R.C.T.-III). Suppose again that o<K.<J. Then 
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for u E TpM with lul<n-N'T andfor any v E TpM we have 
sAGuj)/lul<ldExpp (u). vi/I vl<sa(lul)/lul, u..lv. 

Remark. For a mapf: X-+Y between metric spaces define dilf:= 
sup {d(f(x1), f(x2»/ d(xl> x 2); XI> X 2 E X(XI =1= x 2)}, dil..!: = lim.~o dilfIE,(X)' 
Then the above means that 

di1u Expp<max {soGuj)/lul, I}, dilExPpu Exp;l<max {Iul/siluj), I}. 

3°. Now we apply (2.12) to the volume comparison. Let {u1, •• " 

Ua-I> ua:=v} be an orthonormal basis of TpM and ytCt)=dExpp (tv)(O, tut) 
(i=l, "', d-l) Jacobi fields along Cv' Then e:(v, t):=1 Yl(t)/\···/\ 
Ya_1(t)l!t a-1 (t>O) is independent of the choice of Ut and equals Idet 
dExpp(tv)l. Then we get 

Theorem (2.21) (Bishop [B-C]). 
(i) Suppose that r(cv(t»>(d-l)o for t<to «conjugate distance in 

v). Then t-+e:(v, t) (t/S6(t»d-l is monotone decreasing and we get e:(v, t) 
< (soCt)/t)a-l. Especially conjugate distance is smaller than or equal to 
~jJa. Thus for a complete M with r(v»(d-l)o(>O), M is compact and 
dM<n-jJT. 

(ii) Assume that K(t)<L1for t<n-/./lf. Then t-+e:(v, t)(t/sit»a-l 
is monotone increasing and we get e:(v, t»(slt)/t)a-l. 

Proof. First note that (saCt)/tY,-1=e:4(o)(v, t) for any p and v E 

UpM. Then (i) follows from g(t»O for (2.12-ii). (ii) follows similarly 
from (2.12-i). q.e.d. 

Next we generalize the above to submanifold case. 

Theorem (2.22) ([H-K]). (i) Let M, N=---+M, v E UpNJ... be as in 
Theorem (2.12). Suppose that k(t»o for t<to «focal distance of N in 
v). Then we get 

e 
Idet dExp. (tv)lt a- e-1 < IT (Clt)+AtSoCt»sa(t)d-e-l 

i=1 

where 7j:=(L; Ai)/e is the mean curvature in direction v. 
(ii) Let N=---+M be an immersed hypersurface, v E UpNJ... and 

suppose that r(cvCt»>(d-l)ofor t<to' Then we have 

I det dExp. (tv) 1«c.(t)+7jsa(t»a-l. 

Proof. In a space form M=Md(O), P E M, iJ E UllM, take a locally 
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immersed submanifold N with a normal v such that So has the same 
eigenvalues as Sv. Put Yt(t)=dExpv Ut(t), Yt(t)=dExp. Vt(t). From 
(2.ll-III) we may take Y;(t) = (c,(t) + AtSo(t))P;(t) (1 <i<e) and Yit)= 
so(t)P/t) (e+ 1 ~j~d-l), where {P;(O), PlO)} are orthonormal. Then 
from (2.12-ii) we get 

[det dExpv (tv)[=[ YI(t)/\··· /\ Yd_l(t)[/[ U/t)/\··· /\ Ud_l(t)[ 

~[YI(t)/\ . .. /\ Yd-l(t)l/[UI(t)/\ ... /\ Vd_l(t)[ 

(ii) follows similarly from (2.12-iii). q.e.d. 

4° (Toponogov's comparison theorem). In surface theory Gauss
Bonnet theorem plays very important roles. In higher dimensional case 
following Toponogov comparison theorem plays a similar role. Let (rl , 

r2, rg) be a geodesic triangle, which consists of normal geodesics rt with 
Lri+Lri+l~Lri+2. Put a j = 1::( -ii+I(Lri+l)' ii + 2(0)). (i+3==i) 

Theorem (2.23) (T.C.T-I). Suppose that Kq 20 for all a E G2(TM). 

For a geodesic triangle (rl> r2, rg), where rl , rg are minimal and Lr,~IT/-/a 
(no condition if O~O), there exists in M2(O) a geodesic triangle (1'1,1'2' fg) 
such that Lti=Lr, and al~al' ag~ag. 

Theorem (2.24) (T.C.T.-II). Suppose that Kq>o for all a E G2(TM). 
Let (rl , r2) be normal geodesics emanating from p such that r l is minimal 

and L r, <IT/-/7)-. Put a= 1:: (f1(0), i2(0)). Then for a pair of geodesics 
(1'1,1'2) in M2(O) emanating from J5 such that Lt,=Lr" 1::0\(0), flO))=a, we 
have 

These are global version of R.C.T. and B.C.T., and proof reduces to 
R.C.T., B.C.T. by dividing geodesic triangle into small or thin geodesic 
triangles and requires many steps (see [To], [B 4], [C-E], [K 6]). We need 
the case when the equality holds in T.C.T.-II. 

Remark (2.25). Under the situation of T.C.T-II assume that O<a< 
IT and d(rl(Lr,), rzCLr,)) = d(fl(Lt,) , f2(Lr,)). Let fg be the unique minimal 
geodesic from fl(Lr,) to f2(Lr,) and D be the domain of TpM2(O) obtained 
by lifting (fl' 1'2' fg) via Exp;'. We choose a linear isometry I: T'PM2(o)~ 
TpM with l(r;(O)) = i;(O) (i = 1, 2). Then Expp I(D) is an embedded sur
face of constant curvature 0 with totally geodesic interior. 



140 T. Sakai 

§ 3. Jnjectivity radius estimate 

In this section we want to estimate the size of domains uniformly from 
below, over which normal coordinates are valid. For a complete rieman
nian manifold M we define the injectivity radius at p e M as 

iiM):=Sup {r>O; EXPPIBr(Op) is a diffeomorphism}. 

Then p-+ip(M) is a continuous function on M. The injectivity radius iM 
is defined as min {iiM); p eM}. Now we assume that M is compact. 
Then iM is positive and known to be characterized by each ofthe following: 

( I) Sup {r>O; EXPPIBr(Op) is injective for every p eM}, 
(II) Sup {t>O; d(c.(O), c.(t»=t for all v e UM} 
(III) minimum of half the length of the shortest (simple) closed geo

desic and the shortest conjugate distance. 
For these fundamental facts see e.g. ([B-C], [C-E], [G-K-M], [K 6], 

[N]). Thus to estimate iM we need to estimate conjugate distance and the 
length of closed geodesics. There is a standard way to estimate the first 
one in terms of curvature (§2). Namely conjugate distance >1r/../tr if 
Ko<L1. On the other hand estimate of the second one is more difficult 
and Cheeger observed that there exists a positive constant cip, V, 0), 
where p, V are positive, with the following property: Closed geodesics c 
in compact riemannian manifold of dimension dwith Ko>o, dM<p, vM> V 
have length Lc>cip, V, 0). Cheeger proved this fact by showing that 
the existence of short closed geodesic implies small volome by T.C.T. 
([C-1.2]). Here we give a proof due to Heintze-Karcher by more direct 
volume estimate using (2.22). (see also [Ma]). 

Theorem (3.1) ([C2], [H-K]). In a compact riemannian manifold M 
withKo>o, every closed geodesic c has length Lc 

Lc> 21r(vM/wa)sa(min (dM, 1r/2../-aW-a, 

Especially, if o<K<L1, then we have 

iM>min {1r/../tr, 1r(vM/wa)s.(min (dM, 1r/2../lf»1-a}. 

(1r/2../lf = + 00 if 0<0). 

Proof Let c be a closed geodesic of M, which is a totally geodesic 
immersed submanifold of M. Then focal distance of c in any direction 
ve Tcl. is not greater than 1r/2../-a by (2.12-111). Thus the maximal 
domain over which Exp. is a diffeomorphism is contained in D: = {v e Tc 1..; 
Ivl<l:=min {dM, 1r/2../-a}}. Then we have by (2.22) 
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Vx<J D Idet dExp. (v)ldvD 

<J dVe JI dt J c~(t)sit)d-2/td-2dvsd_.t-2 
e 0 ·{xETc("e.l;lxl~t) 

= J. dVe J: wd_2ca(t)sa(t)d-2dt=Lesa(l)d-lwd_2/(d-l) 

=wdL esa(l)d-I/211:. 
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q.e.d. 

Remark. If 0 is positive then we have Lc>211:/JT· vX /VS O(6)' 

Problem. Is it possible to have a similar estimate if we only assume 
Ricci curvature restriction? 

In Chapter 2 we need more precise estimate assuming only (strong) 
curvature restriction. Firstly Klingenberg obtained 

Theorem (3.2) ([K I]). Let M be a compact simply connected even 
dimensional riemannian manifold with 0< K. < LI, where LI is a positive con
stant. Then we have ix>11:/J? 

For the proof assume that iM<11:/JIf. Then there exists a simple 
closed geodesic c with Lc = 2iM < 211:N? . Even dimensionality implies 
that there exists a parallel periodic vector field X(t) (X(t)-,-c(t)) along c. 
For the second variation we get 

D2E(c)(X, X)= J:c {g(PX, rX)-g(R(X, c)c, X)}dt<O, 

which means that closed curves c. defined by c.(t):=ExPe<t)sX(t) have 
length smaller than 2iM for s>O. Then Cs may be lifted to smooth closed 
curves Cs (cTc,(o)M) with c.(O)=OC,(O)' EXPe,<o,c.=c.. Since ('fJ: TM~M 
XM defined by ('fJ(V) = (!'MV, Exp,xv v) is regular on {v E TM; Ivl<11:NIf}, 
c. (s~O) converge to a smooth closed curve c in Tc(o)M, which covers c, a 
contradiction. 

Then it was conjectured that the same fact holds also for odd dimen
sional case. But Berger showed that on Berger's spheres with o<K.<I, 
Q < 1/9, there are closed geodesics of length less than 211:. 

When min K/max K is rather large we have 

Theorem (3.3) ([C-G], [K-S]). Let M be a compact simply connected 
riemannian manifold with (O<)o<Ka<LI, 40>LI. Then we have iM> 
11:/JfI. 

We only comment about the proof given in [K-S]. We need global 
considerations. Let AM:={c: Sl~M; HI-closed curves on M} be the. 
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space of closed curves which has a structure of complete separable Hilbert 
manifold. The energy integral E on AM is a differentiable function whose 
critical points are closed geodesics and point curves. Let CPt be a flow 
generated by - grad E. Now for the proof we may assume that L/ = 1. 
Suppose that there exists a closed geodesic Cj of length <2", (i.e. Eel <2",2). 
We take the space of homotopies from a fixed point curve Co to Cj: ;If: = 
{H: [0, l]-+AM; continuous curve with Ho=co and Hj=c1}. Then;lf is 
non empty because M is simply connected and ;If(J): = {H([O, 1]); HE ;If} 
is a cp-family, namely, .Yf'(J) is CPt-invariant, because Co, C1 are fixed under CPt. 
We define the critical value K of ;If(I) as K:=InfHE £ MaxSE[O,l] E(Hs). 
Then the essential part of the proof is to show that K=2",2. For this we 
need lifting argument as above to see K>2",2 and the following modified 
Lyusternik-Schnirellman lemma: Let K' be the set of critical points of E 
with E-value K and of index less than or equal to 1. Then for every open 
neighborhood W' of K' there exists an HE;If such that H([O, lDcA<
U W', where A<- :={c E AM; E(C)<K}. We need the assumption K.> 
1/4 to see that every closed geodesic of length greater than 2", has index 
>2 and this implies that K-:;;'2",2. 

Now once we have K=2",2 we have a closed geodesic C of index I and 
length 2", and a sequence of closed curves r n of length <2"" which con
verges to c in AM. Then we can see that c(1/2) is a conjugate point to 
c(O). Comparing the situation with the case of sphere of constant curva
ture 1, we have a parallel periodic vector field X (~c) along c. At this 
point we assume that dim M (:2:3) is odd. Then by the same argument 
as in (3.2) we have the second parallel periodic vector field Y (~c) along 
c. As before D2E(c)(X, X), D2E(c)(Y, y)<0 and this means that index 
of c, which is the number of negative eigenvalue of D2E(c), is greater than 
or equal to 2, a contradiction. 

Remark (3.4). P. Hartmann ([Har]) showed that the condition "L/> 
K. and r(v»(d+2)L//4" implies that every geodesic of length greater than 
2",/,viI has index d-l. Thus the same conclusion holds under the 
weaker curvature condition " ". 

Recalling the Berger's spheres we may ask for the compact simply 
connected riemannian manifolds M whether there exists 8(0»0 such that 
we have iM :2:c(o) whenever o<K.-:;;'l. But this doesn't hold in general. 
In fact Wallach's examples give a family of compact simply connected 
homogeneous spaces M of seven dimension whose elements satisfy o-:;;'K. 
-:;;, 1 for some positive constant 0, but such that inf iM =0 ([Hu], [EsD. 

On the other hand in 3-dimensional case we have 

Theorem (3.5) ([Bu-T], [S 6]). Let M be a compact simply connected 
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riemannian manifold of dimension 3. Assume that K.<I, and r(v»Rfor 
all v E UM, where R is a positive constant. Then for any b> 1 we have 

In this case we consider in stead of homotopy the Plateau problem 
for a short (simple) closed geodesic c and reduce the estimate of Lc to the 
estimate of the first eigenvalue of Laplacian of the area minimizing surface 
bounding c. 

Problem. For compact simply connected riemannian manifolds. 
what is inf{a; iM>7r for all M with a<K.<I}? (we only know that this 
is not greater than 1/4 and not smaller than 1/9) and what is inf{a; there 
exists e(a»O such that iM>e(a) for all Mwith a<K.<I}? 

Remark. We consider the space fin of smooth riemannian structures 
on a compact manifold M with C2-topology. Then the function g---+iM(g). 
the injectivity radius with respect tog, is continuous on fin ([EhD. But we 
don't know whether there exists a(e) such that iM>7r-e for any simply 
connected compact riemannian manifolds with 1 >K> 1/4-a(e). 

With respect to the volume estimate we can ask whether there exists 
a pointp E M such that iP(M) may be estimated from below. For instance 

Theorem (3.6) (Heintze-Gromov [Bu-K], [G 2]). Let Mil. be a compact 
riemannian d-manifold with -1 <K. <0. Then there exists a point p E M 
such that ip(M»4-(d+3). 

§ 4. Cut locus and distance function 

10. Next we define the notion of the cut locus. Let M be a compact 
riemannian manifold. For v E UpM, P E M the cut point of p along Cv is 
defined as the last point on Cv to which geodesic arc of Cv is minimal. 
Namely setting t(v):=Sup {t>O; d(cvCt),p)=t}«oo), Expp t(v)v is the 
cut point of p along Cv• We also call t(v)v E TpM the tangent cut point. 
The set of (tangent) cut points of p along all normal geodesics emanating 
fromp is called the (tangent) cut locus of p and denoted by Cp (Cp ). It 
is not difficult to see that v---+t(v) is a continuous function on UM and Cp 

is homeomorphic to Sd-i. Then ad-cell Yp:={tv E TpM; O~t<t(v), 
v E UpM} is a maximal domain over which Expp is a diffeomorphism, and 
its boundary Cp is mapped onto Cp via Expp. Thus M is obtained from 
Cp by attaching a d-cell and cut locus contains the essence of the topology 
of M. The structure of cut locus is interesting in connection with the 
singularity of the exponential mapping. See e.g., [Bu 1-3], [GI-S], [I], 
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[Ko], [My 2], [N-S 1,2], [Su 1], [Wa], [Wa 1,3], [W 2,3]. But still we don't 
know much about the structure of cut locus, e.g., we can ask 

Problem. What can we say about the structure of cut loci of compact 
simply connected homogeneous manifolds? Do they have the intersection 
with the conjugate loci? (for symmetric spaces see [er], [Nai], [Sa 2,3], 
[TaD· 

r. Next we return to the volume comparison theorem. Integrating 
the volume element comparison theorem (2.21) we get 

Theorem (4.1) (Bishop-Gromov). Let M be a complete riemannian 
manifold such that r(v»(d-1)ofor alive UM. Then we have for O<r< 
R, vBll (P)/vBr (p) <b~(R)/b~(r), where M(r) denotes the volume of r-ball in 
Md(o) which is independent of the choice of the center. 

Proof Put 

_ {e:(v, t) 
e:(v, t):= 0 

{
(Slt)/t)d-l 

w(t):= o 

for t<t(v)( <7':/.JT) and 

for t>t(v) 

for t<7':/.JT 

for t>7':/.JT, 

where we set 7':/.JT = + 00, if 0<0. We may assume that r<7':/.JT, 
otherwise both sides of our inequality equal 1. Then from (2.21) we get 
for O<s~r, r<t<R 

e:(v, t)w(s) <e:(v, s)w(t), and by integration 

r e:(v, t)td-1dt / r w(t)td-1dt<f: e:(v, S)Sd-lds / f: W(S)Sd-lds. 

Now from the above we have 

f dv fR e:(v, t)td-ldt 
VBR(P) - vBr(p) = --"--"S_d-_'=(l)'-----"--'T _____ _ 

ba(R)-ba(r) md- l · r w(tW-'dt 

= l/md- 1 • f SH dv r e:(v, t)td-1dt / r w(t)td-ldt 

<l/md- l ·f dv fT e:(v, S)Sd-lds/fr W(S)Sd-lds 
Sd-l 0 0 

=vBr(p)/M(r), 

from which we have easily our result. q.e.d. 
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Corollary ( 4.2) (Bishop). Under the hypothesis of the theorem we get 

(i) vBr(p) > VM· s: st-1(s)ds / i:'" st-1(s)ds, if M is compact. 

(ii) VBr(p) <M(r). 
(iii) Suppose that 0 is positive. Then we have vM<VSrZ(J) and the 

equality holds if and only if M is isometric to SIl(O). 

Remark (4.3). Let M be a complete riemannian manifold with K.< 
LI. Then we have from (2.21) that vBr(p) >blr), if r<iM. 

3°. Now we consider convexity. A subset ScM is called strongly 
convex if S has the following property: for any x, YES we have the unique 
minimal geodesic r E Min (x, y) and r([0, LrDcS. Suppose that K.<LI 
for all (J E Gz(TM). Then it is known that for p E M, every open ball Br(P) 
is strongly convex if r< 1/2 min {ip(M), 1C/,y"f}. In particular there exists 
a positive continuous function p-+r(p) such that Br(P) is strongly convex 
if r<r(p) (J.H.C. Whitehead). Next assume that r< {iP(M), 1C/2,y'Lf}. 
We consider the distance function dp: Br(p)-+R+, defined by dp(m):= 
d(p, m). Then dp is smooth except for p and we get 

Proposition (4.4). (i) grad dp(m) = cv(dp(m», where Cv is the unique 
normal minimal geodesic from p to m. 

(ii) If x ~grad dp, then V:r; grad dp = V Y(dp(m» , where Y is the Jacobi 
field along Cv with Y(O)=O, Y(dp(m»=x. 

(iii) c"isir)lxI2<Hessdp(x, x) < IxIZ{1+LI/2.dp(m)Z}/dp(m) for x..l 
grad dp(m). grad dp(m) belongs to the null space of Hess dp. 

Proof Fox x E TmM, mE Br(P) put a(s, t):=Expp t(v+s/I.w), 0< 
t</:=dp(m), where WE TmM with dExpp lzvW=X. Then we have x·dp 

(=g(x, grad dp» = d/dsls=o S: I aa/at I dt= g(aa/as(O, I), aa/at(O, I», namely 

grad dp =aa/at(O, I) = cv(l). Next note that Va; grad dp =Valasl.=o aa/ 
at(s, !)flaa/at(s, l)1=Va/atl.=t (aa/as)(O, I) = VY(!), if x ~grad dp. Hence 
Hess dp(x, x) =g(V:r; grad dp, x) = g(Y(/), VY(/» if x ~grad dp. First ap
plying (2.18) we get Hessdp(x, x»c,,/sll)lxlz>c,,/sir)lxlz. On the other 
hand we getl Y(l)-WY(/) 1<1 Y(l) I LIt 2/2. In fact for O<s~1 and for any 
unit parallel vector field P, we get 

Ig(Y(s)-sVY(s), P(s»I'<lg(sVVY(s), P(s»1 =lsg(R(cv, Y(s»cv, P(s» I 
<LlI Y(s)ls<1 Y(/)lsls)/sl/) . .1s<1 Y(/)I.1s by (2.19). 

By integration we have 

Ig(Y(s)-sVY(s), P(s»I<1 Y(/)I.1sz/2, and consequently 
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The last assertion is clear from Vgraddp grad dp=O. 

In the same way we get 

Proposition (4.5). We put f: =d;/2 which is smooth on BrCp). 
(i) gradf(m) = -Exp;;;t p 
(ii) r· c4 /s4(r)lxI2<Hessf(x, x) <(I + Llr 2/2) Ix12. 

q.e.d. 

4°. Now we consider the global behavior of the distance function dp 

from a fixed point p E M for a compact riemannian manifold. dp is smooth 
except M\Cp U {p}by the same reason as above. More precisely 

Lemma (4.6). Let C1(p):={q E Cp; there exist at least two minimal 
geodesics joining p to q}. Then C1(p) is dense in Cp and dp is not differ
entiable at any point in C1(p). 

The proof is not so difficult and a nice excercise (see [Bi], [WolD. 
Nevertheless Gromov defined the notion of critical points of dp : 

Definition (4.7). p is by definition a critical point of dp , at which dp 

takes the unique minimum. Next for q=l= p it is called a critical point of 
dp if for any v E UqM there exists a minimal geodesic r E Min (p, q) such 
that g(v, t(diq» >0. 

From the definition if q( =1= p) is critical then q E C1(p). 

Lemma (4.8) (Berger). Let q satisfy d(q, p)=MaxxEM d(p, x). Then 
q is a critical point of dp-

Proof Take a curve c(s):=Expp(-sv) and r.EMin(p,c(s». Put 
a.:=<9::(c(s), t.(d(p, c(s». We may assume that K~ > -0 (0)0). By 
T.e.T. and d(p, q»d(p, c(s» we get 

cosh -IT d(p, c(s» <cosh -IT d(p, q)<cosh -IT s cosh -IT d(p, c(s» 

-cos a. sinh -IT s sinh -IT d(p, c(s», from which follows 

cos as cosh -ITs/2 sinh -IT d(p, c(s» <cosh -IT d(p, c(s» sinh -ITs/2. 

Letting s~O, we may assume t.(O) converge to WE UqM. Then r(t):= 
Expp tw is a desired minimal geodesic. q.e.d. 

On the other hand if mE M is not a critical point, there exists a t(m) 
E UmM such that g(t(m), t(d(p, m»<O (or equivalently> 0) for every r E 

Min (p, m). Moreover we easily see that we may choose 1':>a(m»1':/2 
such that <9::(t(m), t(d(p, m»»a{m) for every r E Min (p, m). 
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Lemma (4.9). Let m be not critical for dp. Then there exists a 
neighborhood U ofm and a smooth vector field ten), n E U such that S(t(n). 
j(d(p, n))»a(m) for all r E Min (p, n). 

In fact, take a convex open ball Br(m) and define ten), n E Br(m) as 
the parallel translation of t(m) along the unique r m,n E Min (m, n). from 
which we have a smooth vector field ton Blm). Then it is not difficult to 
see that there exists O<ro <r such that the assertion of the lemma holds 
for the above t and U=Br.(m). 

Now by T.C.T. we may see that dp is strictly monotone decreasing 
along trajectories of ten). In fact we may show using T.C.T. 

Lenima (4.10). Let 9t be the flow generated by t and V= Br,(m), 
0<r1 <rO ' Thenfor 10 >0, there exist 13>0 and e(t, 10 ), which is continuous 
and positive for t >0 with the following property: dp(n) - dP(9tn) >e(t, 10 ) for 
O<t<o and n E V with d(p, n»lo. 

Now we give Gromov's isotopy lemma. 

Lemma (4.11). Let B r.(p)cBT1(p) be concentric metric balls centered 
at p. Suppose that A: = Br,(p) \ Br,(p) contains no critical points of dp. 
Thenfor any open neighborhood U of BT1(p) there exists an isotopy of M 
sending Br,(P) into Br.(P) and fixing outside U. 

Proof. Take a finite open cover {Ui} of the compact set A such that 
{Ut , til are pairs given in (4.9) with Ut cU. Let {SOt} be the partition of 
unity subordinated to {Ui } and we define a vector field t on a neighborhood 
of A as t(y): = L: SOi(y)ti(y). Then tl..!. satisfies also the same property as ti 
and we may extend t to a smooth vector field on M by setting 0 outside U. 
Then this vector field provides a desired isotopy. In fact it is easy to see 
that there exists an R>O such that SOR(Br,(p))CBr.(p), where SOt denotes 
the flow generated by t. q.e.d. 

Corollary (4.12). Let M be a compact riemannian manifold. If dp has 
only two critical points, then M is homeomorphic to the sphere. 

In fact from (4.8) we see that there exists a unique point q E M with 
d(p, q)=Max d(p, m). Then from (4.11) M may be covered by two dif
ferentiably embedded disks. Then M is homeomorphic to the sphere 
(with respect to this I would like to thank T. Yoshida for showing me a 
simple proof, see also [RuD. 

§ 5. Center of mass techniques ([Ka], [Bu-K], [Gro-KD 

For a locally finite open cover {Ua} of M suppose that we have a 
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family of smooth maps ga: Ua--*N into a fixed manifold N. If N is a linear 
space then by a partition of unity {9a} which is subordinate to {Ua} we can 
glue {ga} to a smooth map g:=L: 9aga: M--*N. But in non-linear case 
this breaks down. Nevertheless if N is a riemannian manifold and each 
ga(Ua) is contained in a convex ball we can take the average of {ga(P)} by 
considering the "center" of {ga(P)}. More precisely we consider firstly 
the following situation: Let A be a normalized measure space with total 
volume 1 (e.g., finite set of points, compact riemannian manifolds etc.) 
and Br(n) , n E N, a strongly convex neighborhood in N. Then for a 
measurable map f: A--*Br(n) we want to define the center of mass Cf E 

Br(n) off We define as in the euclidean case, 

(5.1) 

Then we have from (4.5) 

Lemma (5.2). Suppose that Kq~L1 on B=Br(n) (r<tr/4,.,/1:f). Then 
P f is smooth on B and the following hold. 

(i) grad P/p) = - fA Exp:/f(a)da. 

(ii) (1 +2L1r 2)[x[2> Hess Pix, x»2r ci2r)/si2r). [xl. 

Then from (i) - grad P f points inward at the boundary of Band (ii) 
means that Pf is convex on B. Thus P f admits the unique minimum 
point Cf in B, which is called the center for mass of f Note that Cf is 
characterized by 

(5.3) 

C f has the following natural property: let rp: A--*A be a measure preserving 
transformation and 1J: N--*N an isometry. Then we get 

(5.4) 

Remark (5.5). Consider finite points {ni}cB with weights {9i} (9i20, 
L: 9i=1). We define p{ni,~d(p):=1/2 L: 9i(p)d2(p, ni). In this case the 
center of {ni' 9i} will be denoted by C{ni,~d. 

The notion of center of mass has many applications ([C 2], [Gro-K], 
[Bu-K], [Gro-K-R 1], [IH-R], [MO-R 1], [Ru 3], [Y 1] etc.). We just 
mention the average of differentiable maps. 

Let M be a complete riemannian manifold and {mihez+ a discrete 
r/3-dense subset such that d(mi' m j ) > r/3 (r<convexity radius) and 
Ui BrI3(mi)=M. Let Fi : Br(m;)--*N(i E Z+) be smooth maps into a 
riemannian manifold N such that for any mE M {Fi(m); d(m, mi)~r} is 



Comparison and Finiteness Theorems 149 

contained in a strongly convex neighborhood Bm of N. Now to glue 
together F/s to a smooth map F: M---+N we define weights {sbi' i E Z+} as 
follows: take a C=-function ""': R+---+[O, 1] with ""'[0,2]=1, "",[3, =]=0, 
"",'(t)<O and define sbi(m):="",(3d(m, mi)/r)/L,j "",(3d(p, mj)/r). Now for 
p E M we set F(m):= C{F,(m),¢,(m)). Also we define v: D(c MXN)---+ 
TN as v(m, n): = - L, sbi(m) EXp;l F;(m) E TnN (= grad P{m'.¢il (n), with 
P{mi,¢il(q): = 1/2 L, sb/m)d2(q, Flm»), where D is a sufficiently small 
neighborhood of graph F. Then we have by definition v(m, F(m» =0. 
We want to show that F is smooth. For that purpose set Dlv(m, n): TmM 
---+TnN Crespo D2v(m, n): TnN---+TnN) by 

Dlv(m, n)(rh(O»:=d/dtt~ov(m(t), n) 

(resp. D2v(m, n)(n(O»:=l7alat't~ov(m, net»~). 

Theorem (5.6). F is smooth and we get 
( i) D2v(m, F(m» is invertible 
(ii) Dlv(m, F(m»+D2v(m, F(m»dF(m) =0. 

Proof From (4.5) we have g(£1x v(m, F(m», x)=HessP{m,,¢il(x, x» 
2s c4/sl2s) ·lxl2 (s: radius of Bm), from which (i) is clear. Next we consider 
the horizontal and vertical components of d/dtt~ov(p, net»~ E Tv(m,n)TN: 
(d/dtt~ov(m, n(t»)h =d/dtt~oC-r Nv(m, net»~) = n(O) , 

(d/dtt~ov(m, n(t»)v=l7a/Ot't~ov(m, n(t»=D2v(m, n)n(O). 

Thus if v(m, n)=O, the horizontal components span the tangent space to 
the zero section and {d/dtt~ov(m, n(t»} is transversal to the zero section by 
(i). Now our assertion follows from the implicit function theorem. 

Remark. dF(m) has maximal rank if and only if D1v(m, F(m» has 
maximal rank. 

Next we give another application. Let M be a compact riemannian 
manifold, and TE: E---+M a riemannian vector bundle with a metric con
nection. 

Let Tp: P---+M be the principal bundle of orthonormal frames as
sociated to TE. Then P carries a riemannian structure so that Tp: P---+M 
is a riemannian submersion with totally geodesic fibers. 

Now let u: M---+P be a continuous cross section. We want to ap
proximate u by smooth cross sections. For any m E M we have a strongly 
convex open ball Br(m) (r< convexity radius). Firstly we define Vm: Br(m) 
---+ Pm: = TpI(m) as follows: for n E Blm) we define vm(n) as the parallel 
translation of u(n) along the unique minimal geodesic from n to m. Note 
that taking r sufficiently small {vm(n); n E BrCm)} is contained in a convex 
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neighborhood Cm in Pm' We need as before a weight function Y): MXM 
-+R+ with the following properties: put Y)n(m):=Y)(m, n). Then Y)n: M-+ 

R+ is a smooth function with supp Y)ncBs(n) and f M Y)n(m)dn = 1 (see 

(2.3.5». 
Now for m E M, we define a function Pm,~: Cm-+R+ as 

As in (5.2) P m,~ is a smooth function which has the unique minimum 
point u(S)(m) E Pm (the center of mass). Also as in (5.6) mE M-+u(S)(m) 
E P gives a smooth section of P. Letting s-+O, Y) converge to the Dirac 

measure and u(S) converge to u in the C'-topology. 
Note that because of (5.4) the above construction may be done equiva

riantly. 

Chapter 2. Comparison Theorems 

§ 1. 1/4-pinched manifolds 

Rauch proposed the following approach to global riemannian 
geometry ([R 1-3]): Recall that if M is a complete simply connected 
riemannian manifold of positive constant curvature 0 then M is isometric 
to the sphere Sd(O). Now if curvature Kq of M varies in the range [0, LI], 
where pinching number o/LI is close to 1, does M have similar topological 
property as sphere? Rauch gave an affirmative answer when 0/LI=3/4. 
Then pinching constant 0/ LI was improved by Berger, Klingenberg, 
Toponogov and Tsukamoto and their ideas provided many useful tools for 
riemannian geometry ([B 1-2], [K 1-3], [T 2], [Ts 1], [e-E], [G-K-M], [K 6]). 

Theorem (1.1) (sphere theorem). Let M be a complete simply con
nected riemannian manifold whose sectional curvature satisfies 

(O<)o~Ko~LI, with o/LI> 1/4. 

Then M is homeomorphic to the sphere. 

Proof We may assume that LI=1. M is compact and dM~rr/-Va 
by (1.1.21). Proof depends on the following two facts: 

( i) Injectivity radius estimate «(1.3.3», i.e., iM >rr. 
(ii) Toponogov comparison theorem (1.2.24». 
Now take two points p, q E M with d(p, q)=dM>rr. For any point 

mE M we show that either d(p, m)<rr or d(q, m)<rr holds. In fact 
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assume that d(p, m»",. Take a minimal geodesic rp,m e Min(p, m). 
From (1.4.8) there exists a rp,q e Min(p, q) with 1:(j'p,m(O), j'piO» < ",/2. 
Then T.C.T.-(II) implies that d(m, q)<",. Then for any normal goedesic 
c~ emanating fromp, there is the uniquely determined (0<) t(v)<", with 
d(p, c.(t(v»)=d(q, c~(t(v»). v e UpM-+c.(t(v» is continuous and injective 
by (1.3.3). Namely we have a homeomorphism rp from UpM(~S<1.-t) 
onto the equator E:={m; d(p, m)=d(q, m)}. Similarly we get a homeo
morphism +; UqM ~ E. Since we have two disks M+ (resp. M-) : = 
{m e M; d(p, m)<d(q, m)} (resp.:={m e M; d(p, m»d(p, m)}) withM= 
M + U M - and common boundary E, it is not difficult to get a homeo
morphism between Sd and M. q.e.d. 

Next we give Berger's rigidity theorem ([B 2], [Cha 2], [C-E], [K 6]). 

Theorem (1.2). Let M be a complete riemannian manifold whose sec
tional curvature Kq satisfies 

(O<)o<Kq<L/ with o/L/> 1/4. 

Then we have the following: 
(i) If dM=",/-/-a, then M is isometric to the sphere S<1.(O). 
(ii) If dy >",/2-/--r, then M is homeomorphic to the sphere. 
(iii) If dy =",/2-/-a and simply connected, then M is isometric to one 

of the simply connected rank one symmetric spaces of compact type (i.e. 
CROSS, sphere or various projective spaces with canonical metric). 

We only give outline of proof (for details see the above papers). We 
may assume L/=I, 0=1/4. First case will be treated more generally in 
(2.1). For (ii) we show firstly that Mis simply connected in this case. In 
fact otherwise let "': M-+M be the universal covering of M. Take p, q e 
M with d(p, q)=dM. For different points Pt, pz e ",-t(p) take a minimal 
geodesic rih,ll. e Min(pt> P2)' By (1.4.8) we have a minimal geodesic rp,q 
e Min(p, q) with IX:=1:(tp,q(O), d",·rpl,p.(0»<",/2, which may be lifted 

to a minimal geodesic rllloii from Pt to ij. Note that 2",>d(P2' ij»d(pt> if) 
>"'. By T.C.T.we get 

cos d(pt, if)/2>cos d(P2' iJ)/2> cos d(pj, iJ)/2. cos d(pt, P2)/2 

+cos IX sin d(pj' if)/2 sin d(pt> pz)/2, 

which implies that 

Since cos IX >0 we have a contradiction. Thus we have the injectivity radius 
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estimate iM>tr. If we show that for any mE M either d(p, m)<tr or 
d(q, m)<tr holds, then we can proceed exactly in the same way as (Ll). 
This may be proved by T.C.T with (1.2.25) and is rather complicated. We 
omit this (see (2.2) for more general case). For (iii) we have again iM>tr. 
Since dM equals tr we see that every normal geodesic is minimal just until 
the parameter value tr or equivalently tangential cut locus Cp is a sphere 
S~-l(Op) of radius tr centered at the origin for every p E M. Now main 
step of proof is to show that the cut locus Cp=Expp Cp is a totally geo
desic submanifold for any p E M. This follows from the following con
siderations: For any m, n E Cp and normal geodesic r from m to n of 
length Lr<2tr, we can show by T.C.T. with (1.2.25) that r is contained in 
Cp , every minimal geodesic from p to an interior point of r is orthogonal 
to r at parameter value tr and that (p, m, n) forms a totally geodesic 
triangle of constant curvature 1/4. In particular we see that all geodesics 
are closed geodesics of length 2tr (so-called C2~-manifold, see [Be]) and 
intersect Cr(ol perpendicularly at parameter value tr. Now fix p E M and 
take any normal geodesic c. emanating fromp. Put q:=cv(tr). Then for 
any unit vector WE TqCp, by considering a totally geodesic triangle (p, q, 
Expq sw) of constant curvature 1/4, w.e have a Jacobi field along c. which 
takes the form Y(t)=sin t/2.E(t), where E(t) is a parallel vector field 
along c. with E(tr)=w. Such Jacobi fields form a vector space fl/4 of 
dimension k (: = dim Cp ). On the other hand the null space of d Expp (trv) 
gives a subspace fl of Jacobi fields along c. of dimension d-k-1. Com
paring with Sd(l) we may show that every element Y of fl may be 
expressed as Y(t)=sin t.E(t) with parallel E. Note that for O<t<tr, 
c.(t)l-(CTC<tlM)=fl/4(t)EBfl(t) and this shows that the geodesic sym
metry sp at p is an isometry because dsp1cv(tlJ..: CvCt)J.. 3 Y(t)~Y( -t) E 

cv( - t)J... Thus M is locally symmetric· and simply connectivity implies 
that M is a symmetric space. Since M is of positive curvature M must be 
of rank one. 

Theorem (1.3) ([Ts 2], [Sug]). Let M be a complete simply connected 
riemannian manifold whose sectional curvature satisfies 

0/11> 1/4. 

( i ) Suppose that there exists a simple closed geodesic of length 
2tr/-Ia. Then M is isometric to a sphere of constant curvature o. 

(ii) Suppose that there exists a closed geodesic of length tr/-IT. 
Then M is isometric to one of CROSS. 

Next we consider what happens when M is not simply connected. 
In this case we have from (1.2-(ii)) that dM<tr/2-1T and we ask which 
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nonsimply connected manifolds carry the riemannian structure with maxi~ 
mal diameter lC/2.Ja. 

Theorem (1.4) ([S-S], [Sa 4]). Let M be a complete nonsimply connected 
riemannian manifold with (O<)o<Kq<J, o/J> 1/4. Then dM=lC/2.JT if 
and only if M is one of the following: 

( i ) M is of constant curvature 0 and its fundamental group lCl(M) has 
a fully reducible orthogonal representation (namely the universal covering M 
of M is the sphere Sd(O) and lC1(M) may be represented by elements of 
O(d+ 1). Then this representation should have a nontrivial invariant sub
space. Typical examples are real projective space and lens spaces etc. see 
[Wo 1]). 

(ii) M =P2n_l(C)/{id, t}, where P2n - 1(C) denotes the complex pro
jective space of complex dimension 2n-l, which carries the canonical rieman
nian structure with 0<Kq<40, and t denotes the involution of P2n + 1(C) 
which is defined in terms of homogeneous coordinates as 

For proof we takep, q e Mwith dM=d(p, q). We consider the an
tipodal set defined as Ap:={m e M; d(m,p)=dM}. Then using T.C.T. we 
see that Ap is a convex totally geodesic submanifold without boundary. 
We consider the universal covering lC: M--""M and put Ap:=lC-1(Ap), 
which is connected and of dimension> 1. Thus Ap is again compact 
totally geodesic submanifold of M and is invariant under deck transfor
mations. Moreover Ap is simply connected if dim Ap> 1. Then we have 
d:l.>lC/2.Ja by the injectivity radius estimate. We may see that d:l. p = 
lC/.JT or lC/2.Ja. For the first case we have in fact dfl=lC/.JT and M 
is isometric to a sphere and Ap is a great sphere in Sio) which is invariant 
under deck transformations. For second case we see that M is one of 
CROSS and (ii) follows. In the second case note that dfl is equal to dM. 

Problem. What can we say about riemannian manifolds with o<Kq 
<J, 0/ J < 1/4? (see (3.4.5». 

§ 2. Curvature and diameter 

Firstly we give Toponogov's maximal diameter theorem. 

Theorem (2.1) ([T 1]). Let M be a complete riemannian manifold with 
Kq>o(>O). Then M is compact and dM<lC/.JT. If dM=n:/.JT, then M 
is isometric to the sphere Sd(O) of constant curvature O. 

In fact dM<lC/.JTfollows from (1.2.21). Suppose that dM=n:JT and 
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take points p, q EM with d(p, q)=dM. Now by T.e.T. for any normal 
geodesic Cv emanating from p with ve UpM we have c.(dM)=q. Then 
EXPPIBdM(OP) is a diffeomorphism. Moreover we see from (1.2.25) that 
every Jacobi field Yalong c. with Y(O)=O may be written in the form yet) 
=so(t)E(t) with parallel E. Then BdM(P) is isometric to BrLM(P) in SrL(o). 
Then it is not difficult to see M is isometric to SrL(o). See also (4.1) for a 
generalization. 

Next we show the following which generalizes the sphere theorem. 

Theorem (2.2) ([Gr-S]). Let M be a complete riemannian manifold 
with K.>o(>O). Suppose that dM>",/2./--a. Then M is homeomorphic to 
the sphere. 

Remark. This was firstly treated by Berger who proved that under 
the assumption M is a homotopy sphere. Then Grove-Shiohama con
structed a homeomorphism between M and SrL. Here we shall give a sim
plified proof. 

Proof Take points p, q with d(p, q)=dM. Lemma (4.8) and T.e.T. 
imply that for given suchp there is uniquely determined q with d(p, q)= 

dM. Next for me M note that either d(p, m)<",/2./--r or d(q, m)<",/2./T 
hold by the same reason as in (1.1). Now for m=l=p, q we show that there 
exists a unit vector t(m) which satisfies the property 

(*) g(t(m), t(d(p, m»»O for all r e Min (p, m) (i.e. m is not critical 
for dp ). In fact take a minimal geodesic u e Min (m, q). Put a:= 1::(&(0), 
t(d(p, m») for any r e Min (p, m). First assume that d(p, m)<",/2./T. 
Then from T.e.T. we get 

cos./--a dM>cos ./--a d(m, p). cos ./--a d(m, q) 

+cos (",-a) sin./T d(m,p) sin./--a d(m, q), 

from which follows 

o>cos./T dM· (I-cos./T d(p, m» 

>cos (",-a) sin ./T d(p, m) sin./T d(m, q), 

namelya<",/2. In case when d(q, m)<",/2./T the same argument holds. 
Thus &(0) satisfies (*) and we may apply (1.4.12). 

Remark. In this case u e Min (m, q) is unique if m ~ Cq • Then in a 
small neighbourhood U of q we may define a vector field ten), n e U as ten) 
=&n,q{O) where Un,q e Min (n, q). Then t is transversal to aBT(q) for small 
r and we can construct a homeomorphism more directly. 
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Remark (2.3). Grove-Gromoll ([Gr-Gro]) announced the following 
result without detailed proof: If a complete riemannian manifold M 
satisfies 

Kq>o(>O), 

then M is homeomorphic to sa or isometric to one of a CROSS, (i) or (ii) 
of (1.4). 

Now we should mention about almost flat manifolds. Gromov 
([G 1]) gave a completely new approach to the problem among curvature, 
diameter and the manifold structure. He considered the situation when 
dk max [Kq [ is very small and studied the structure of 1CI(M) of M very 
deeply by geodesic loops. Since there is a very detailed report on the 
subject by Buser-Karcher ([B-K]) we only state an improved result by Ruh 
([R 3]). 

Theorem (2.4) (Gromov-Ruh). Let M be a compact riemannian mani
fold of dimension d. Then there exists a positive constant e(d) such that if 
Kq[dk<e(d) holdfor all (j E Gz(TM) we have the following: there exists a 

simply connected nilpotent Lie group N and an extension T of a lattice Lc 
N by a finite group H so that M is diffeomorphic to T\N. 

This generalizes the Bieberbach's theorem in flat case (compact flat 
riemannian manifolds are finitely covered by a torus). In this almost flat 
case we should construct the model space (i.e. nilmanifold) in the way of 
proof. We may assume that dM = 1. Take p E M. Then from the as
sumption EXPPIBP(Op) is non-singular for very large p. Put 

Tp:={a; geodesic loop atp with [t(a)[<p, [r(a) [<0.48}, 

where [t(a) [ is the length of a, rea) denotes the element of Oed) defined by 
the parallel translation along a and [r (a) [ denotes the distance from the 
identity. A producta*!3 is defined as a geodesic loop given by the end 
point in TpM of the lift of a U!3 via EXp;l. Then Tp may be considered 
as the set of elements in Bp(op) obtained by slightly deforming a lattice in 
TpM. Roughly speaking, essential part of proof is to show that for some 
p T p carries generators {rl , ••• , r a} such that every rET p may be uniquely 
expressed as r=n'*· .. *r~d (ki E Z) and [r i , r j ] E <rh ... , ri - I) for com
mutators. From Tp we get a nilpotent torsion free group T, which may 
be embedded in a nilpotent Lie group N as a uniform discrete subgroup. 

§ 3. Differentiable pinching problem 

Since we have exiotic spheres, many authors have attempted to show 
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that a complete simply connected a-pinched (a> 1/4) manifold M is in fact 
diffeomorphic to the standard sphere. Such differentiable sphere theorem 
was firstly proved by Calabi, Gromoll ([Gr]) and Shikata ([Sh 1,2]), where 
the pinching constant ad (--+ 1 as d--+ (0) depended on the dimension of 
manifold. In fact the number of exiotic spheres increases with dimension. 
But Sugimoto-Shiohama ([Sug-S]) and then Ruh ([R 1, 2]) succeeded to 
show that a can be chosen independently of dimension. The actual value 
of pinching number was improved successively and the equivariant case 
also has been treated ([Gro-K-R 1, 2], [IH-RD. Here we give 

Theorem (3.1) ([IH-RD. There exists a decreasing sequence ad (ad--+ 
0.68 as d--+oo) with the following property: Let M be a complete simply 
connected riemannian manifold of dimension d whose sectional curvature 
satisfies ad<Kq<I, and fl-: GXM--+M an isometric action of the Lie group 
G. Then there exists a diffeomorphism F: M--+Sd (standard sphere) and a 
homeomorphism <p: G--+O(d+ 1) such that <peg) ° F=Fo fl-gfor all g e G. 

As an immediate corollary we get 

Corollary (3.2). If M is a complete d-dimensional riemannian manifold 
with ad<Kq< 1 (ad as above), then M is diffeomorphic to a space of positive 
constant curvature and isometry group of M is isomorphic to a subgroup of 
the corresponding space form. 

Here we shall explain main ideas of [IH-R] and only show that exists 
such a pinching constant. 

When M is a hypersurface of positive curvature in R d +\ Gauss map 
gives a diffeomorphism between M and Sd. Ruh took the same approach 
for general case. We put E=!'MEBIM' where 1M is a trivial line bundle. 
E carries a fiber metric on which elements of G, with the trivial action on 
1M , act as isometries. Let e be the section defined by e(m):=(om, 1). 
Now we define the connection 17° on E as 

(3.3) 
I7J:Y: =17 xY -cg(X, Y)e, l7J:e:=cX, 

X,Ye,q[(M) and c:=v(1+a)/2. 

Then 17° is a G-invariant metric connection whose curvature tensor RO is 
given by 

(3.4) RO(X, Y)Z=R(X, Y)Z-c 2{g(Y, Z)X -g(X, Z)Y}, 

RO(X, Y)e=O. 

Then from (1.1.6) we have IIRo 11::;;2/3 (I-a), which is small from the as
sumption. Now starting from this 17° by the iteration method we shall 
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construct a G-invariant fiat connection D on E, from which we have a 
parallel field of orthonormal frames um: = (el, .. " ed+l)m for the fiber Em 
over m E M, since M is simply connected. Then we can define the map 

F: M-7Sd as F(m):=(g(e, el)(m), .. . ,g(e, ed+l)(m)) (:=g(e, u)). 

We expect that F is a diffeomorphism as Gauss map is. Since u is parallel 
we get 

which implies that 

where the above norm is defined as follows: First norm in (j)( d + 1) is given 
by IAI:=MaxI3l1=dAxl and then we define liD-17° II:=Max3lEUMID3I-V~ I, 
where we consider (D3I-V~) at p E M as an element of (j)(d+ 1). Thus if 
we have c>IID-Vo II, then F gives a covering map, which is in fact a 
diffeomorphism since M is simply connected. We also define a homo
morphism cp as follows: for m E M the frame Um may be identified with an 
isometry Rd+I -7Em. Then we put cp(g):=u-logouE O(d+l). Sinceg 
commutes with parallel translation we may easily see that cp is inde
pendent of the choice of m E M and that cp is a group homomorphism. 

Now we return to the construction of the fiat connection D by the 
iteration from vt to VI + I starting from 17 0 • For the computation we prefer 
to deal with connection form (Ii and curvature form Qt on the principal 
bundle of orthonormal frames associated to E instead of P and Rt. We 
compute with their pull backs by means of a cross section u=(ea)(i.e., 
(wt(x)n:=g(V3Iea, eb), (Qi(X, ym:= 1/2 g(R(x, y)ea, eb)). Now we need a 
technical lemma. 

Lemma (3.5). Suppose that 1/4<o<K.< 1. Then for any 7r>r 
> 7r/2.J7J we have a weight function 7J: M X M -7 R with the following proper
ties: 7J(gm, gn)=7J(m, n), g E G. Put 7Jm(n):=7J(n, m). (i) 7Jm: M-7R is a 
smooth function with supp 7Jm C U 11'( U m is a convex neighborhood around m). 

(ii) f M 7Jm(n)dm= 1. (iii) f )d7Jm Idm<const. d sind-I .J7J r. 

Now for any m E M we define a fiat connection wi,m on U m by parallel 
translating orthonormal frame ui(m) along the unique shortest geodesic 
from m. Then we define 

(3.6) wt + I (x) : = f M wi ,m(X)7Jm(1:M x)dm. 
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Then W i +1 defines in fact a connection. Now we compute the curvature 
form Qi+1. By (ii) of (3.5) and the fact that wi,m is flat we have 

Taking the following norm for @(d+I)-valued forms, 

Ilwll:=max Iw(x)I, IIQII:=max IQ(x, y)1 
xEUM x,yEUM 

we get by direct computations with Cauchy-Schwarz 

(3.7) 

where 

ai,m :=wi,m_wi and Ilai 11:=max {max {lai,m(x)l; x E UMlsuPp ~m}}. 
mEM 

Now the following is essential for the proof. 

Lemma (3.8). Let r be greater than the radius of the ball on which 
wi,m is defined. Then we have II ai 11<2(1-cos r)/(o sin r) ·11 Qi II. 

Proof For x E UnM, n E Um we estimate lai,m(x)l. Let n=ExPm tou 
(to=d(m, n» and dExPm (tov)w=x. We put a(s, t):=ExPmt(toU + sw/ 
Itov+swl), O:::;:t~ltov+swl, and rs:=a(s, Itov+swl). Then we have a 
triangle (m, n, rs). Let a(s)( E O(d+ 1» be the parallel translation w.r.t. 
Vi along the triangle. Then we have for the above section ui,m=(ea ) 

Thus we get 

([ a(s) I: = Max {I a(s)u- u I}). 
lul=l 

On the other hand we have la(s) I <Area (m, n, rs) IIRi ll<2Area (m, n, rs)' 
II Qi II «1.16». Then we get using (1.2.21) and (1.2.20) 

ff f to fts,w'/to 
Area (m, n, rs)= IdetdExPmldsdt< dt (soCt)/t)ds 

(Om,tov, tov+sw) 0 0 

<s(1- c,(to))/(o sin to)< s(1-cos r )/(0 sin r). q.e.d. 

Then we have 
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II Qi+lll < const. d sind-1.Jar. (I-cos r)/(o sin r) IIQil1 +4( l-~osr II Qi II)Z o sm r 

=: (a+bIIQiIDIIQill· 

Since dsind-1.Jar-+0 (d-+oo) if .Jar=F-7r/2, taking .Jar greater than 
but arbitrary close to 7r/2 and choosing 0 ~ 1 we have from II QO II <(1- 0)/3 
that a+b II QOII < 1 and consequently it is possible to get L: II Qi II <co sin r/ 
2(1-cos r) or equivalently L: lIaill<c. Then from Ilmi+1-mill::::::llai II we 
see that mi converges to a connection form m~ w.r.t. the CO-topology. 
Moreover we have Ilm~-moll::::::L:llaill<c. 

Note that from the construction /7 i and /7~ is G-invariant. /7~ is only 
continuous. But the parallel translation w.r.t. /7~ is independent of the 
path and /7~ is fiat in this sense. As final step 1m Hof-Ruh approximate 
/7~ by an invariant smooth connection D which may be chosen arbitrarily 
close to /7~. This may be done by means of the center of mass technique 
with above weight r; (see Chapter 1, § 5). 

Remark. See [Ru 4] for another kind of differentiable pinching 
problem. 

Grove-Shiohama [Gr-S] asked for the differentiable sphere theorem 
for general case. See also the work of T. Yamaguchi in this proceeding. 

Problem. Let M be a complete riemannian manifold with Kd > 
0(>0). Is M is diffeomorphic to a sphere if dM is close to 7rNa? 

§ 4. Ricci curvature pinching problem 

Let Md be a complete d-dimensional riemannian manifold whose 
Ricci curvature satisfies 

(4.1) r(v»(d-1)0 (0 is a positive constant). 

Then M is compact and in fact dM < 7r/.Ja «1.2.21 ». Especially consider
ing the universal covering M of M, which should be again compact, we 
know that 7r1(M) is a finite group. 

Firstly we give maximal diameter theorem. This was given in ([B 5D 
without proof. A proof is given by Cheng ([CheD using the comparison 
theorem for the first eigenvalue of Laplacian. Then more direct proof 
using (1.4.1) has been given by Shiohama ([S 4]) and Itokawa ([ItD, which 
will be presented here. 

Theorem (4.2). Suppose that a complete riemannian manifold satisfy 
(4.1). Then d,II=7r/-VB if and only if M is isometric to Sd(O). 
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Proof Take points p, q with d(p,q)=dy . Put R:=11:/.,iT, r= 
n/2.,iT. Then from dy =11:/.,i-a we have Br(P) n Br(q)~rp. On the other 
hand from (1.4.1) we get 

(4.3) 

From this vBr(P)?:. vM/2 and also vBr(q) > vy /2 by the same reason. Then 
we get Vy >VBr(p) + vBr(q) >vy which implies that equality holds in (4.3) 
and that Br(p) U Br(q)=M. Also it is not difficult to see aB.(p) =aBr(q). 
Looking at the proof of (1.4.1) when equality does hold we see that cut 
distance t(v)=R for all ve UpM and Expp Rv=q for all ve UpM. 
Namely every geodesic c. emanating from preaches q at the parameter 
value R. Next for any v eUpM take an orthonormal basis {v=e1, ••• , 

ed}and parallel fields Ei(t) along c. with Ei(O)=ei (i=2, ... , d). Then 
by the second variation formula for Y;(t) = sin ot EtCt) we have 

0< ~ d 2E(c)(Yi' Yt)= I: f: {g(VYi' f7Yi)-K(c., Yt)! ytndt 

= s: {(d-l)o cos2 ot-r(c.) sin2 ot}dt<0. 

From this we see that K.=.o for all q;) cv(t), O<t<R and Yt are Jacobi 
fields. Thus we have e:(v, t)=(sa(t)/t)d-l and consequently Vy=VBB(P) 
=ho(R) = VS4(8). Then M is isometric to Sd(O) by (1.4.2). q.e.d. 

Next Assuming r(v»(d-I) for a complete riemannian d-manifold 
M we may ask whether there exists V= V(d) (or p=p(d» such that v",> V 
(or dy>p) implies that Mis topologically similar to the sphere. For this 
problem Shiohama has obtained 

Theorem (4.4) ([S 4], see also the work of Itokawa [ItD. Let MrL be 
a complete riemannian manifold with rev»~ d-I and K. > _1e2• Then 
there exists an e(d, 1e»0 such that if VM>VSd(l) -bt(e(d, Ie» holds, M is 
homeomorphic to the sphere. In the above we denote by M(e(d, Ie» the 
volume of e-ball of S<I(1). 

In this case instead of injectivity radius estimate, estimate of radii of 
contractible metric balls, which is given by the infimum of minimal critical 
values of distance function, plays important roles. . In fact under the 
assumption of the theorem M may be covered by two contractible balls. 
See also [It] for further informations. 

Remark. As for the diameter pinching problem see the work of 
Kasue in this proceeding ([KasD. The following example due to Itokawa 
is also suggestive. 
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Example (4.5). Let M be the riemannian product M=Si(j+k
Ij(j-l)) X Sk(j+k-lj(k-l)). Then M is an Einstein manifold with 

I· r(v):=:oj+k-l =dim M. By Pythagoras' theorem we have 

(j+k--HX> ). 

On the other hand 

For three dimensional case we have now complete answer. 

Theorem (4.6) (Hamilton [Ha)). A compact riemannian manifold of 
dimension 3 with positive Ricci curvature admits a metric of positive constant 
curvature. 

Method of proof heavily depends on P.D.E. 

Remark. For noncompact case see Schoen-Yau ([Sc-Y)): A com
plete open 3-manifold of positive Ricci curvature is diffeomorphic to R3. 
see also Gromoll-Cheeger ([CG 1]). 

§ 5. General comparison theorems 

10. Next we consider comparison problem when the model space is 
a compact symmetric space. One of the crucial properties of geodesics in 
a compact simply connected symmetric space is the following. First we 
define 

Definition (5.1) (Cheeger [C 1-2)). For a compact riemannian mani
fold M andp E M, (M,p) has property CM if 

(*) for any m, n E M\Cp and e>O there exists a curve h, with L h , < 
d(m, n)+e whose interior is disjoint from Cpo 

(**) For every geodesic Cv (v E UpM) cut point of Cv is the first con
jugate point to p along Cv • 

Infact (*) implies (**). When (M,p) has property CM for every p, 
we say that M has property CM. 

Example (5.2). Suppose that M is simply connected and for every 
geodesic Cv emanating from p the first conjugate point c(t(v)) to p along 
Cv has order >2 (i.e., dim {Y; Jacobi field along Cv with Y(O) = Y(t(v))=O} 
::2:2). Then (M, p) satisfies CM. This follows from the fact that (d-l)
Hausdorff measure of Cp in this case equals 0 ([War 3], [C 1-2]). 
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Example (5.3). If M is a compact simply connected symmetric space, 
then M has property CM. (For (**) see [C-E], [Cr], [Sa 2]). For (*) 
Cheeger proved that (d-I)-Hausdorff measure of Cp equals zero using the 
fact that in this case any conjugate point is induced by a one parameter 
subgroup in the isotropy subgroup of the isometry group. 

Now the problem is as follows: If the metric structure of a compact 
manifold is similar to that of symmetric spaces, are they also topologically 
similar? For that purpose we should have a number which measures how 
close are curvature behaviour of two compact riemannian manifolds M, 
M of same dimension. Let I: TpM---+TpM be an isometry and define for 
veUpM I;: Tc.(t)M---+Tefj(tlM as I~:=PefjoloP;.l(lJ:=Iv). We define 
for a positive number d as 

Pd(M, M):= inf sup {!!R-(It)-IR!!; O<t<d, ve UM} 
I: TpM~TpJl,peM,peJl 

and p(M, M): = P2d.(M, M), where de is the supremum of the conjugate 
distances in all directions. 

We shall give some consequences when p(M, M) is sufficiently small. 
In the following let I: TpM---+TpM be the isometry which minimizes the 
quantity in the definition of p(M, M). Firstly from the theory of O.D.E. 

(5.4) Let {Xi}, {Xi} be normal coordinates in TpM, TpM based on 
orthonormal bases {ei} {e i : = let} respectively. Then for any e>O, there 
exists 0>0 such that p(M, M)<o implies !gij-l*giJ!<e, for -II: ~<2dc 
where gij, gij denote (pseudo)metric tensors induced from g, g via the 
exponential mappings at p, p respectively. 

Next for ve UpM we denote by to(v) the conjugate distance in direc
tion v. Considering the second variation d 2E(c.) we may show 

(5.5) Suppose that M satisfies to(v) < + 00 for all ve UM. Then for 
any e>O, there exist 0>0 and s(v) e [to(v), to(v)+e] for v e UM such that 
if p(M, M)<o then Cfj has no conjugate point on [0, to(v)-e] and c. and Cij 

have the same number of conjugate points on the interval [0, s(v)]. In 
particular we have dJl<dM+e. 

(5.6) Suppose that M has property CM and that some real charac
teristic number of M is non~zero and the corresponding Chern-Weil form B 
vanishes nowhere. Then there exist io>O and 0>0 such that if p(M, M) 
<0 we have iJl>io. 

In fact let f M !!B!! dm>c(>O). If p(M, M)<o for sufficiently small 
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o then we have S II [[B[[ dm>c/2 and ull2c/(2[[B[[max»c/(4[[B[[max)' Also 

noting that [K. [<2 max [K. [ we have our assertion from (5.5) and (1.3.1). 
Now we put ifJ: = Expp 0 10 EXp;l: M -* M, where EXp;l is some 

inverse of Expp. Although EXp;l may not be continuous, we have from 
(5.4) and the definition of property eM, 

(5.7) Let M have property eM. Then for any c>o there exists 0 
such that p(M, M)<o implies d(ifJ(m), ifJ(n)) <d(m, n)+c for all m, n E M. 

Then Cheeger obtained 

Theorem (5.8) ([C 2]). Suppose that M has property eM and satisfy 
the condition in (5.6). Then there exists 0 such that p(M, M)<a implies 
that for any field F with non-zero characteristic H*(M, F) is isomorphic to 
a subring of H*(M, F). 

Proof By Poincare duality it suffices to construct a continuous map 
cp: M-*M with deg cp*O. From (5.6) there exists io>O such that iM , ill 
>io if p(M, M)<o. Now we put fc,:={x; x=(1+c,)u, u E J p}, where 
f p is the interior set defined in Chapter 1, Section 4, 10. Then from 
R.C.T. there exists c,>O such that vol (Expp I(f,,-f _,,)) <vol (Bdp)). 
Taking 0 sufficiently small ifJ defined above satisfies (5.7) and ifJlExPP V-'ll.) 

is a regular smooth map. Then we may approximate ifJ by a continuous 
map cp: M -*M so that CPIL"/ and max d(ifJ(m), cp(m))< 4c. Then 
taking c sufficiently small (which is possible by taking cp small) we have 
cp Expp (fo-f _'1/,)cExpp I(f,.-f _,.), 

Now we assert that there exists a point p E cp(M) such that cp-l(p)C 
Expp (f -"/2)' Then we are done because on this connected set Expp (f -'112) 
cp is smooth and non-singular. It follows that all inverse images are 
counted with the same sign and this shows that deg cp*O. Now if there 
are no points p E cp(M) with the above property we have cp(Exp p (fo-

f -"/2))=cp(M) and consequently vol (cp(Expp (fo-f _"/2)))=vol cp(M) > 
vol (Bio(p)). On the other hand we get 

vol (cp(Expp (fo-f -"12))) <vol (Expp I(f,.-f _,,))<vol (Bdp)), 

a contradiction. q.e.d. 

Cheeger furthermore refined the above argument especially for the 
estimate of i M and got 

Theorem (5.9) ([C 2]). Let M be a compact simply connected rieman
nian symmetric space or have the property in Example (5.2) for all p E M. 
Then there exists 0>0 such that p(M, M)<o implies that M is PL-homeo
morphic to M. 
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20 • With respect to the above problem Ruh took another view point. 
Firstly we take as a model space coinpact simply connected semi-simple 
Lie group G with Lie algebra g~ TeG. Then we have the Maurer-Cartan 
form w: TG-,,-g defined by w(x):=Li1x,x E TgG, which satisfies the Maurer
Cartan equation dW+[iil, w]=O, where [,] denotes the Lie bracket in g. 
Now Let P be a compact manifold, ro: TP-,,-g a parallelization of P, i.e., 
ro: TpP-"-g is a vector space isomorphism for every pEP. Then the curva
ture Q of ro is defined to be a g-valued 2-form given by Q=dro+[ro, ro]. 
ln our case since g carries an inner product defined from the Killing form, 
(J) induces a riemannian metric on P, by which we may define the norm 
IIQII:=max {IQ(xl> x 2)1; Xl' x 2 E TP, unit vectors}. Then Min-Oo and Ruh 
(MO-Rl] solved the equation dw+[w, w]=O on P under the assumption 
that II Q II is sufficiently small by the iteration method as in (3.1). But here 
we need more tools from P.D.E. Then for the universal covering P of P 
with the pull back w of w via covering projection, vanishing of curvature 
of w implies that w: 9 (:={vector fields X on P with w(X)=const.})-"-g is a 
Lie algebra isomorphism. From this we may get a diffeomorphism F: P 
~G with dF=w. 

Theorem (5.10) ([MO-RID Let g be a compact semi-simple Lie alge
bra, ro: TP-"-g a parallelization of a compact manifold P. Then there exists 
0>0 such that IIQII<o implies that P is diffeomorphic to a quotient r\G, 
where r is a finite subgroup of G. 

This was extended to the symmetric case as follows: Let M=G/K 
be a compact simply connected irreducible symmetric space and g = fEBm 
be a Cartan decomposition. Then the f-valued part of w is the Levi-Civita 
connection form of M and the m-valued part is the canonical soldering 
form given by the identification TM ~ G X Km. 

Now let M be a compact riemannian manifold and rr: P-,,-M the 
bundle of frames of M. We assume that rr: P-,,-M has a reduction to the 
structure group K represented in m via adjoint action. On P we have an 
m-valued form () defined as (}(x):=u-lodrr(x), XE TuP, u: m~T.(u)M. 
Let r; be a connection form on P, which is a metric connection since the 
structure group K of P is compact (We don't assume that r; is a Levi-Civita 
connection). Combining () and r; to define a g~valued I-form ro=T)+(} 
with curvature Q=dro+[ro, ro], we get 

Theorem (5.11) ([MO-RD. Let M=G/K, M, P, ro be as above. Then 
there exists a positive constant 0> 0 such that II Q II < 0 implies that M is dif
feomorphic to a quotient r\M, where r is afinite subgroup ofG. 

Furthermore Ruh proposed to study "almost Lie group": A compact 
riemannian manifold with a metric connection D is called an e-almost Lie 
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group if (1IDTII+IIRll)d~<e, where Rand T denote the curvature and 
torsin of D respectively. Then is almost Lie group diffeomorphic to r\G 
with r an extension of a lattice of a Lie group G? ([R 3]) 

Chapter 3. Finiteness Theorem 

In the preceding chapter we compared riemannian manifold M with a 
model space 'M and asked whether M is topologically similar to M if Mis 
similar to M in riemannian sense. More generally we may ask the problem 
to classify all the topological types of riemannian manifolds which satisfy 
some conditions given in terms of riemannian invariants, e.g., classify 
manifolds of positive (non-negative) or negative (non-positive) curvature. 
But usually these classification problems are very difficult and we treat 
here the problem whether there are only finitely many topological types of 
riemannian manifolds if their riemannian structures are restricted. 

§ 1. Weinstein's homotopy type finiteness theorem 

Weinstein ([W 1]) and Cheeger ([C 1,3]) attacked the above problem 
for the first time. 

Theorem (1.1). When dE Z+, .1, p, V E R+ are given, there are only 
finitely many homotopy types of compact d-dimensional riemannian mani
folds M with IKql<.1, dM<p and VM> V. 

Proof. The idea is to estimate the number of convex open balls 
which cover M. For that purpose we introduce the notion of e-dense 
subset of M; {ml> m2, •• " mN}cM will be called e-dense if Uf=l B.(mt) 
=M. Now from the injectivity radius estimate (1.3.1) there exists el>O 
such that iM >el if M satisfies the assumption of the theorem. Thus we 
see that for the convexity radius estimate cM>e:=min (eJ2, n:/2.J1I) holds. 
To obtain an e-dense subset we consider a maximal family of open balls 
B./z(mt ), i = 1, .. " N, which are mutually disjoint in M. Then maximality 
implies that UB.(mt)=M, i.e., {mt}!:::j" is an e-dense subset. Now by the 
volume comparison theorems (1.4.2), (1.4.3), we have 

(1.2) 

N 

Nb~(e/2)(: =NvB• /2 (Md(J)))< L: vB.1.(mi)<vM 
i=l 

<br:lp)(: = VBp (Md(-4)))' 

Thus we have an open covering %,={Bt:=B.(mtm:::~ by strongly convex 
open subsets. We shall consider the simplicial complex K defined by the 
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nerve of 'FI; we associate mi the point Si: = (0, .. " 1, ... ,0) E RN and we 
define (Sio' .. " SiJ is a k-simplex if and only if Bto n ... n Btk=f=ifJ. We 
choose a continuous partition of unity {CPi} on M so that cp;(m»O on Bi , 

CPi(m) =0 outside Bt and 2: CPi(m) = 1. 
Now we define a mapf: M~IKI by f(m):=(CP1(m), "', CPN(m», and 

show thatfis in fact a homotopy equivalence. To see this we take the 
barycentric subdivision K' of K. Then any simplex q of K' may be ex
pressed by «Sil"" ,StJ, (Stl_1' .. " St.), .. " (Sto' .. " SiJ), where 
(Sto' .. " SiJ etc. also denotes the barycenter of the simplex of K. We 
define a map g: IKI~M inductively so that for above q g(q)CBtl n .. . 
n Btk : firstly to vertices (Sti' . • " St.) of K' we assign any point in Btj n .. . 
n Btk. Next assuming that we have defined a map g on the I-skelton of 
K' we define g on any (1+ I)-simplex ,,=«Stl+1' .. " StJ, .. " (Sto' .. " 
StJ) as follows. Taking a point p in Bto n ... n Btk, we map segments 
joining the barycenter (Sto' .. " StJ and the points of a .. to the minimal 
geodesics joining p to the corresponding points of g(a .. ). Then gof is 
homotopic to the identity because m and g 0 f(m) are contained in a convex 
ball and it is not so difficult to see that fog is also homotopic to the 
identity (see e.g. ([dR])) for details). Thus M has a homotopy type of a 
simplicial complex with at most b':lp)/b~(e/2) vertices. q.e.d. 

Corollary (1.3). Let d be an even positive integer and 0 < () < 1. Then 
there are finitely many homotopy types of compact simply connected rieman
nian manifolds of dimension d with () < K. < 1. 

In fact we have in this case dM <1C/.JT «1.2.21» and iM >1C (1.3.2». 
On the other hand at least seven dimensional case there are infinitely 
many homotopy types of compact simply connected riemannian manifolds 
with (}<K.<I, where () is some positive constant ([HuD. 

§ 2. Cheeger's finiteness theorem 

Cheeger ([e 3D has proved the following which improves the previous 
result (Ll). 

Theorem (2.1). For given dE Z+ ,,1, p, V E R+, there are only finitely 
many homeomorphism classes of compact d-dimensional riemannian mani
folds such that IK.I<,1, dM<p, vM> V. 

Let M be a compact riemannian manifold satisfying the assumption 
of theorem. There exists r=caC,1, p, V»O such that cM>c for such M. 
Considering as before a maximal mutually disjoint open balls {Br'2(pim~f 
(r:=c/8) we have an open covering {BrCPtm~f of M with N < 
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b'!.lp)jb~(rj2). Thus considering the exponential mappings and homo
theties in the tangent spaces we have the family of embeddings 

(k = 1, .. " N) with the following properties: 

(2.2) rpk(lJS(O)) are strongly convex and Uf~l rpk(Bl/2(0)) = M. 

(2.4) There exists a ~(L1, r) such that the Cl-norm of the coordinates 
transformations satisfy II (rpk 1 0 rp;)IIi,(O) lie< <~(L1, r). 

In fact for (2.4) put (yu) = rp,/ 0 rpi(Xa), gab = g(8j8xa, 8j8xb) and guv = 
g(8j8yU, 8j8yV). Let 2(x) be the maximum eigenvalue of (gab(X)), ,u(y) the 
minimum eigenvalue of (guvCY)). Then we have 2(x) > ,u(y)' L: 18yaj8xil2. 
On the other hand from R.C.T. (1.2.20) we get }.(x)<s_i2r)j(2r) and 
,u(y»2jrr, and consequently 18yaj8xil<rrj2.s_i2r)j(2r). 

r. Now for the proof of theorem we need a tool to show that two 
manifolds are homeomorphic. We consider the following situation: let 
M be a compact (topological) manifold, rpl: lJ2(0)( eRd )---* M (I = 1, ... , N) 
(topological) embeddings. Put B;: =rpzClJl-J/2N(0)), j=O, .. " Nand 

(2.5) 
{

KI:=BiU ... UBi, 

HI:=B}U ... UBi-I, (KI-l-::JHI) 

LI:=rp/l(HI n BD, 

fl:=rp/l(KI_l n BL)eBl(O), (L1efl)· 

We assume that Ui"~l int B;'=M. Now the main tool is 

Lemma (2.6). For any e>O there exists el > 0 with the following 
property: let 1Jf'j: Bd (=rp/lJ/O))---*M(j=l, "', N) be embeddings into a 
riemannian manifold M such that 

(2.7) 1Jf'1(B;+2nBj+2)e1Jf'/Bd), 

(2.8) do(rpj 1 01Jf'j 1 o1Jf'lrpj,t)<el on rpjl(B;+2nBj+2) forallj, 

where we denote by do the uniform CO-topology, i.e., do(rp, t); = SUPX,y d(rp(x), 
"",(y)) and t denotes the inclusion map. Then we have an immersion 1JI': M 
---*M such that do(1JI'jIBj, 1JI'IBj)<e. 

We don't give a proof of (2.6), but only mention that it follows by 
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the successive applications of the isotopy extension theorem ([E-K]): let 
Cl> C2 be closed sets in Ret such that C1cint C2 cB1(0). For any e>O 
there exists 0> 0 such that if the inclusion t: Cc~1jl(0) and a (topological) 
immersion h: C2---+111(0) satisfy do(h, e)<o, then there exists a homeomor
phism h: 1l1(0)---+1l1(0) with h'IC,=h IC, and do(h, id)<e. To apply this to 
(2.7) we need closed sets q, q (1=1, "', N) with L!cqcint qcJ!c 
BI(O). 

3 0 • Assuming (2.7) we proceed as follows. By Ascoli-Arzela theo
rem the set ~I of embeddings f: lllO)---+1l4(0) whose C1 -norm <~(LI, r) is 
totally bounded with respect to the uniform CO-topology. Namely for any 
0>0 there exists a o-dense subset {ft, ... ,In (a)} of ~I' From (2.4) rp;lo 
rplllh(O) E ~I' Now there exists ol=ol(LI, r) such that 

d(rp;lo rptCaBI-Sk/6N(0», rp;1 0 rpt(aB1_(Sk-1l/6N(0»»01, 

because rp;1 0 rp! E ~I' For a fixed 1(1<I<N) we choose It" .. ·,ltz-, E ~I 
so that do(ltJ, rpi1 0 rpj)<01/4 (j=I, "', I-I) and define 

q: = {ltllll- (S!-1)/6N(0» u ... Ultz_,(1l1-(S!-I)/6AO»} n lll_ (S!-1)/6N(0) 

q: ={It,(1l1-(3!-2)/6N(0» U ... Ult zjlll-(3!-2)/6AO»} n 1l1-(3!-2)/6AO). 

Then we may check that q, q satisfy the above mentioned property. 
Now we prove the theorem by contradiction. Suppose that there are 

infinitely many compact riemannian manifolds Mt (i=I,2, ... ) satisfying 
the assumption of the theorem which are not mutually homeomorphic. 
We may further assume that all Mi have the atlases consisting of the same 
number of local charts {(rp)i), lls(O», j= 1, .. " N} with (2.2), (2.3) and (2.4) 
and that rp)i)(BI(O» n rpii)(B1(0»=/=rp if and only if rp}k)(B1(0» n rpik)(B1(0»=/=rp 
for all pairs (i, k). Now from Ascoli's theorem there exists (i, k) (i=/=k) 
such that 

d(",(k)-1 ",(k) ",(i)-1 ",(i) )< /e(LI ) C 11' I-I N o '/'j 0 ,/,1111,(0), '/'j 0 '/'!IB,(o) e" ,V lor a l, - , •• " • 

Put 'lJl'j:=rp)i) 0 rp}k)-1: Bt(cMk)---+Mi. Then we have by taking e<I/N, 
'lJl't(Bj_ 2 nBJ_2)c'lJl'j(Bt) and 

(2.9) 
dO(rp}k)-1 0 'lJl't 0 'IJI'! 0 rp}k), t) 

=dO(rp}i)-l o rpii)(rpik)-1 0 rp}k), rp}k)-l o rpik )(rpik )-1 0 rp}k)) <e. 

Thus applying (2.6) to (M=Mk, M=Mi, Wj ) we have an immersion 'h: 
Mk---+Mi and also an immersion ti: Mt---+Mk reversing i and k. Taking 
e sufficiently small tk 0 tt(m) and m (resp. ti 0 tk(n) and n) are in a small 
convex neighborhood and we see that tk 0 ti and ti 0 tk are homotopic 
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to the identity. Then since ..rk is a covering map and a homotopy equiva
lence, ..rk is in fact a homeomorphism. This contradiction completes the 
proof of (2.1). Then from the results of differential topology we get 

Corollary (2.10). If d=l=4 then there are only finitely many diffeo
morphism classes of riemannian manifolds which satisfy the assumption of 
the theorem. 

Remark (2.11). In general dimension, under the additional assump
tion max 1117 R II::;:: it Cheeger directly proved that there are only finitely 
many diffeomorphism classes. For this we need in (2.8) of lemma (2.6) 
the estimate of uniform CI-topology to apply Thom's isotopy extension 
theorem. We need the estimate on I117RII to get (2.4) in terms of C2-norm, 
which suffices to get the estimate (2.9) w.r.t. the CI-topology. Now 
recently T. Yamaguchi obtained a more explicit result, namely the estimate 
of the number of diffeomorphism classes of riemannian manifolds satis
fying the above conditions, by using center of mass technique ([Y 1], [Y 2]). 

Very recently S. Peters ([PD gave a direct proof of corollary (2.10) 
for all dimensions. Consider two compact d-dimensional riemannian 
manifolds M, M with iM , iiii>io and IKMI, IKiii l::;::A2. Suppose that M 
(M) is covered by N convex balls {BR/2(Xi)}1':,f ({BR/zCxi)}l:f) such that 
BR/lxi) (BR/4(XJ)'S are mutually disjoint, where we have put R:= io/1O. 
Then we have normal coordinates ¢i:=ExPXi 0 ui : BR(O) (c TXiM)-+BR(xi) 
(\Di: = EXPXi 0 iii: BR(O)-+BR(Xi», where Ui : R d -+ TXiM etc. is an ortho
normal basis at Xi' For BR/2(Xi) n BR/zCxj)=I=¢ we get embeddings ¢jl 0 ¢i: 
BR(O)-+B3R(O). We denote by Pij the parallel translation along the shortest 
geodesic from Xi to Xj' Then Peters gave instead of (2.6) 

Proposition (2.12). Let M, M be as above and co~io' 62 - n , CI < Aio/70. 
Then 

(2.13) 

(2.14) 

imply that M and M are diffeomorphic. 

for all i,j 

Then Corollary (2.10) follows from (2.12) as in 30 of the proof of (2.1). 
For infinitely many mutually non-diffeomorphic riemannian manifolds 
{Mk} satisfying the assumptions of (2.1), (2.14) holds for some two of 
them because the set {(ujk)-I 0 PW 0 U~k)} is contained in the compact group 
O(n), which admits a finite covering by balls of radius Ci/2' For the proof 
of (2.12) we glue up local maps Fi:=\Di¢il : BR(xi)-+BR(Xi) to a smooth 
map F: M -+ M by center of mass technique, which turns out to be regular 
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by R.C.T. and an estimate of the area of geodesic triangles in terms of 
curvature. 

§ 3. Gromov's approach ([G 7]) 

Now Gromov ([G 7]) considered to embed a compact d-dimensional 
riemannian manifold M with !K.!:::;::Lf, dM:::;::p and uM> V into euclidean 
space RN of dimension N, where N may be estimated in terms of Lf, p, V 
and d. Take O<r<cM:=min {n/2vLT, iM/2}. We choose an e-dense 
subset N={mi}i:f with e<min {r/8, slr)/2. (1-(1/.f2 +a)2)1/2, 1/(2(rLf+ 
l6/r)). (1-r/(8sir/4))}, where a will be determined later. From this e we 
may estimate N<b":...ip)/b~(e/2) (see (Ll)). 

Taking a Coo cut function h: R-.R+ such that h(t)= 1 if t:::;::O, h(t)=O 
if t2.r, and h'(t)<O(O<t<r), we define a smooth mappingf: M-.RN as 

(3.1) 

Note that there exists k(r»O such that !h'(t)!, !h"(t)!<k(r). 

1 0 • Firstly we see that f is immersive at any point p E M. Take an 
orthonormal basis {e i } of TpM and choose mi" .. " mid E N such that 
d(mi"Expp r/2.e j )<e U=l, .. ·,d). Note that 3r/8<d(p,mi,)<5r/8. 
We take u j E UpM (j=l, "', N) such that mij=Expp f}U}, tj:=d(p, m j). 
Then from R.CT. (1.2.20) we have 

sir) !r/2.e j -fj uj !<d(mil' Expp r/2.e j)<e<sir)/2.(1-(1/.f2 +a)2)l/2, 
r 

from which we easily see that gee}, u j » 1/.f2 +a. This implies that {u j } 

are linearly independent. Now remark that rank df(p) 2. rank (d. h( d (mil' .) 
(p)), .. " d· h(d(mid' . ) (p))) = rank (h'(d(m;" p))u1, •• " h' (d(mid' p))ud ) 

=d, because grad dmij= -uj «1.4.4)). 

r. Secondly we show that f is injective. Suppose that f(m)=f(n) 
for m, n E M (m=l=n). We have then d(mi' m)=d(mi' n) for all m i E Nn 
Br(m)=Nn BrCn). Note that d:=d(m, n)<2e( <r/4). Let r be the mini
mal geodesic from m to nand z:=r (r/2+d/2). Then Z E Br/2(n)\Br/2(m) 
and B,(z)cBr(n)\Br1lm). Now there exists a point pENn B,(z). Let A 
be the minimal geodesic from n to p and put u: = 1(0) E U nM and d': = 
d(p, n). We estimate g(u, ted)). From R.C.T. (1.2.20) we get 

! (r/2-d/2)f(d)-d'u! 

=!EXp;;-l Z_EXp;;-l p!:::;::d'/sid'). d(p, z)<d'/sid')·e 
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from which follows 

r/2·g(t(d), u»(r/2-d/2)g(t(d), u) 

namely 

=g«r/2-d/2)t(d)-d'u, u)+d'>d'(l-e/sid')) 

>(r/2-d/2-e)(I-e/sir/2-d/2-e))> r/4(l-r/(8sir/4))), 

g(t(d), u» l-r/(8sir/4)). 
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On the other hand note that d(p, r(t))<r (O<t<d). From Rolle's theo
rem the distance function dm has a point mo=r(tl), O<tl<d with g(t(tl), 
ut.(O))=O, where Ut is the initial direction of the minimal geodesic from 
T(t) to p. Then we have from the hessian estimate (1.4.4) that 

g(t(d), u)=f'" d/dt·gU(t), U)dt=f'" Hess dit(t), t(t)) dt 
h tl 

<f. {(l/d(p, r(t))+d(p, r(t))t1/2}dt<2e(8/r+rL1/2). 

Thus we get 2e(rt1+ 16/r» l-r/(8sir/4)), a contradiction. 

3°. Here we remark that there exists D(a, d, r»O such that dilmf- I 

<D(a, d, r) (see remark after (1.2.20) for the definition of the dilatation). 
In fact taking a basis {UI> .. " ud } it suffices to consider a linear map 1: 
TpM-+Rd defined by l(~):=(alg(ul' ~), "', adg(ud, m with at=h'(d(p, 
mi )). We have the following properties: g(u j , ej » 1/.f2 +a, \g(ui , ej )\< 
(l-(l/-v'l +a)2)1/2 (i=f=j), and there exists c(r»O such that \at \= 
\h'(d(p, mt))\<c(r) (recall that 3r/8<d(p, m j )<5r/8). Then we can show 
that 

Min {\l(~)\; \~\= I} 

>c(r)/.vd . {(I/-v'l +a)/d-(d-l)(I-(I/-v'l +a)2)1/2}. 

a is chosen so that the last quantity is positive. 
Now we extend the above embedding to a tubular neighborhood of 

f(M). Let I.i: TM.1-+ M be the normal bundle of M and Expv: TM.1-+ RN 
the normal exponential mapping. Then Expv is a diffeomorphism on 
Ba(TM.1):={u E TM.1; \u\<o} for some 0>0. We estimate the value of 
o for which EXPvIBa(TM.1) is a local diffeomorphism. For that purpose 
suppose that n E RN is a critical value of Expv' Namely there exist a curve 
s-+cs=f(ms) inf(M), normal vector field ns along c. such that n=co+no, 
co+lio=O. Then we have from gens> cs)=O, 

gena, co) = -g(lio, co)=\CO\2. 
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Since c.=(h(d(mi' m.») we have 

Co = (h"(d(mi' mo»(d/dsl.~od(mi' m.)Y+h'(d(mi, mo»d2/ds~.~od(m;, mo). 

Recall that 

Id/dsl.~od(m;, m.)I=lg(grad dmi' mo)I<lmol, 

Id2/ds218~od(mi' m.)I=IHess dm.(mo, mo)I<lmoI2t(d(mi, mo), L1). 

(t(t, L1): = l/t+ l1t/2). There exists k(r) >0 such that 1 h'(t)t(t, 11) I, Ih"(t) 1 
<k(r) (O<t<r). Then we have 

ICoI2<lnollcol<2Inollmol2.v' N k(r), namely 

d(n,J(M»=lnol> 1/(2-v' Nk(r» ·lcoI2/lmoI2 

> 1/(2-v' Nk(r».(dilco(f-l»-2 >D-2/(2-v' Nk(r». 

This gives an estimate for 0 such that EXP.IBa(TM.ll is a local diffeomor
phism. Gromov further asserts that we may have o~const (r, 11, d)N -v' N. 

Next suppose that we have another compact riemannian manifold M' 
with IK;I<l1, dM,<p, vM'> V, which carries an e-dense subset {ma::f such 
that 

(3.2) l-a< d(mi,m~) <l+a. 
- d(m;,m j ) -

Then we get from the definition of f and f' that d(f(m/t,), f'(mm < 
k(r)a-v' N p and similarly d(f(m), f'(M'»<k(r)-v' N p(a+e). Namely for 
sufficiently small a, e, f(M) cBlf'(M'». From this Gromov asserts that 
M is diffeomorphic to M' (it seems to the author that we need some more 
arguments for this). Anyway this implies finiteness of diffeomorphism 
types of compact riemannian manifolds with IK.I<l1, dM>p, vM> V. In 
fact if there are infinitely many such Mk which are not mutually diffeo
morphic we have a sequence of points (d(mikl, m)kl» E RN(N+ll/2, which are 
obtained from e-dense subsets and lie in a bounded subset of RN(N+ll/2. 
Thus we have two Mk and M k , for which (3.2) holds. 

5°. Now Gromov proposed much more general scheme. Namely 
he considered the Hausdorff metric on the space of metric structures. 
Firstly for metric spaces X,Y assume that there exists a bijection f: X~Y 
such that dil!, dilf-l< + 00. We define the Lipschitz distance diX, Y) 
between X, Yas diX, Y):=inf {I log dilgl, Ilogdilg-11;g: X~Y, bijection}. 
Secondly we set for subsets A, B of a metric space Z 

dH(A, B):=inf {R>O; AcBR(B), and BcBR(A)}. 
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where BR(A):={z E Z; d(z, A)<R} etc. Then for metric spaces X, Y, we 
define the Hausdorff distance between them as 

(3.3) dH(X, Y):= inf {d~(f(X), g(Y)); Z, metric space, f: X-+Z, g: 
Y -+Z, isometric injections}. 

In the case when X, Yare compact dH(X, Y)< + 00 and dH(X, Y)=O 
holds if and only if X is isometric to Y. In particular dH determines a 
distance on the set of isometry classes of compact riemannian manifolds. 
Gromov considered in [G 7] what is the limit of sequences of riemannian 
structures w.r.t. Hausdorff distance. In general such a limit may not be a 
differentiable manifold. Nevertheless using the above arguments he asserts 
the following: 

Gromov's convergence theorem (3.4). Let an: = {(M, g); dim M = d, 
dy<p, IK.I<Lf, uy > V}. Then a sequence gk of riemannian structures in 
an admits a limit g which is a weak riemannian structure. 

By weak riemannian manifold we mean a differentiable manifold 
which admits continuous metric, notion of geodesics, exponential mapping 
and injectivity radius etc. In the above the fact that igk has a positive 
lower bound is essential. Applying the above to pinching problem Berger 
asserts the following: 

Theorem (3.5). For even dE Z+ there exists o(d)< 1/4 such that all 
compact simply connected riemannian manifolds of dimension d with o(d)< 
K. < 1 are either homeomorphic to a sphere or diffeomorphic to one of 
GROSS's. 

Remark. In [G 1] Gromov also asserts that the number of diffeo
morphism types of compact riemannian manifolds with d y < 1, I K.I < A, 
vy>A-t, dimM=d, is less than exs (d+A), where 

exs· =e~p (exp ( ... (exp/. ))). 

It will be also very nice if we get finiteness theorems assuming bounded 
Ricci curvature instead of sectional curvature. 

§ 4. Curvature, diameter and Betti numbers 

As we have seen in (1.2.21), for a compact riemannian manifold M 
with positive Ricci curvature its fundamental group niM) is finite and 
first Betti number bl(M) equals zero. In the case of non-negative Ricci 
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curvature Milnor obtained the following (see also [WO 2], [G 4,7] for 
further informations): 

Theorem (4.1) ([Mi 2]). Let M be a compact riemannian manifold with 
r(v»O. Then it"1(M) has a polynomial growth (Let it"1(M) be generated by 
{gl> "', gk} and we put m(s):=#{g E G; g=gf:" ·gf: with Igl:=lpll+IPzl 
+ ... +IP11<s}. Then by definition it"iM) has polynomial growth if m(s) 
<Const. s· for some e E Z+. This is independent of the choice of the 
generators). 

Proof We consider elements g E it"iM) as deck transformations of 
the universal covering it": M~M. Then g E it"1(M) is an isometry of M 
w.r.t. the complete induced metric. For a :fixed m E M, there exists an e> 
o such that Ilgll:=d(m, gm»e for all g E it"1(M)\{e} and consequently 
{B./z(gm); g E it"1(M)} are mutually disjoint. Taking R>max1';;;';;k d(g;m, 
m) we see that if Igl<s, B,/2(gm) is contained in B./2+R.(m). Then we have 
from (lA.2) and (104.3) 

bg(e/2+Rs»vol (B'/2+R,(m»> :E vol (B'/2(gm»>m(s)b~(e/2), 
g;lgl;:;;' 

where Ll is an upper bound of K •. Namely we get m(s)<Const. (e/2+RsY'. 
q.e.d. 

On the other hand for the estimate of the first Betti number we know 
that for a compact manifold Mwith r(v»O, b1(M)<d(=dimM) holds, 
where the equality holds just for flat tori ([Bol). Now Gromov ([G 7]) 
took the following approach: let M be a compact riemannian manifold 
and it": M~M the universal covering. Take mE M and e>O. We put for 
gEit"I(M),lIgll:=d(m,gm). Now let hI> •.. ,hp be a maximal family of 
elements of it"1(M) with the following properties; 

(i) IIhihj111>e if i=/=j, 
(ii) IIhi ll<2dM +e. 

Let T be the normal subgroup of it"1(M) generated by {hi}' We show that 
T is of finite index in it"1(M). To see this we consider the Galois covering 
it"': M'~M corresponding to T. Namely the group of deck transforma
tions of M' is isomorphic to it"1(M)/T. Now suppose that # it"l (M)/T = 00. 

Let m' E M' correspond to m. Then there exists n' E M' such that d(m', n') 
=dM+e because M' is not compact. On the other hand there exists h' E 

it"1(M)/T such that den', h'm')<dM because of d(m, it"'n')<dM. Then we 
get e<d(m', h'm')<d(m', n') + d(n', h'm')<2dM+e. Namely choosing hE 
it"1(M) such that h' =hT we see that IIhll<2dM+e, Ilhhi11l>e, which contra
dicts the maximality. 

Now considering the Hurewicz map f{J: it"1(M)~Hl(M, Z) the sub-
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group G ,of H1(M, Z) generated by ({J(h1), ... , ((J(hp ) is of finite index. This 
shows that b1(M)<p. Then (i) means that B./z(gtm) (i=l, .• • ,p) are 
mutually disjoint and (ii) means that they are contained in BZdM+3I/Z(m). 
Thus we have as before 

b1(M) <p<vol (BzdM+3./z(m))/vol (B./z(m)). 

Now assuming that rev»~ -(d-l)r for all ve UM we get from 
(1.4.1) 

b1(M)<S:dM (sh rtY-1dt / S:M (sh rt)d-1dt, 

which depends only on r, d, dM. Refining the above argument Gromov 
got 

Theorem (4.2) ([G 7]). There exists an integer-valuedfunction ({J(d, r, dM) 
such that for all compact riemannian manifolds M of dimension d with rev) 
> -(d-l)r we have b1(M) < ({J(d, r, dM). ({J=d when rd'M is sufficiently 
small. 

Remark. Gallot ([G 1,2], [B 9]) gave a proof of the above result by 
analytic tools. 

Now assuming that curvature is bounded below, Gromov obtained 
the estimate of all Betti numbers. 

Theorem (4.3) ([G 3]). There exists a constant C=C(d) such that for 
all compact d-dimensional riemannian manifolds M with Ka > - AZ and dM 
<p we get ~toblM)<Cl+Ap. 

From this we see that ~ bt(M)<C if Ka>O and that connected sum 
of sufficiently many copies of SP X Sd-P (O<p<d) can not admit rieman
nian metric of non-negative sectional curvature. Note also that there are 
infinitely many homotopy types of riemannian manifolds satisfying the 
assumption of the theorem. If we can estimate the number of convex 
open balls which cover M then we easily have such an estimate for ~blM) 
by Mayer-Vietoris sequence. Such an estimate follows from the injectivity 
radius estimate which is impossible in this case because we assume nothing 
about the volume. Gromov overcame the difficulties by many brilliant 
ideas including isotopy lemma (1.4.11) (see [G 3]). 

Gallot ([G 1,2], [B 9]) also got such an estimate using analytic 
methods refining WeitzenbOck's formula, Sobolev's inequality, etc. His 
methods are also applied for the estimate of eigenvalues of Laplacian, 
dimension of harmonic spinors, dimension of moduli of Einstein metrics 
etc. It will be very interesting if we have similar estimate for ~ bt(M) 
assuming bounded Ricci curvature instead of sectional curvature. 
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