Comparison and Finiteness Theorems in Riemannian Geometry

Takashi Sakai

This is a survey article on the above subject. A differentiable manifold admits variety of riemannian structures but we don't know in general what is the most adapted metric to the given differentiable structure. On the other hand, in riemannian geometry we have many important riemannian invariants, e.g., curvatures, volume, diameter, eigenvalues of Laplacians etc., and we know what is the most standard riemannian mani folds (model spaces) in terms of riemannian invariants, e.g., spaces of constant curvature, symmetric spaces, Einstein spaces etc.

We ask here the following problem: if riemannian manifolds are similar to the model spaces with respect to the riemannian invariants, are they also topologically similar?

This is in fact a kind of perturbation problem, but perturbation in terms of riemannian invariants and manifolds may vary during the perturbations. A typical example is the Hadamard-Cartan theorem which states that a complete simply connected riemannian manifold of non-positive curvature is diffeomorphic to the euclidean space. This follows from the fact that geodesic behavior from a point of the manifolds is similar to that of euclidean space. Namely the exponential map gives a diffeomorphism (see e.g. [B-C], [C-E], [G-K-M], [N-K], [K 6], [B 5]). Also many results from the theory of surfaces of fixed signed Gaussian curvature and the theory of space forms of constant curvature motivated such a question.

In $1951 \mathrm{H} . \mathrm{E}$. Rauch proposed the above problem for sphere case and showed that if for sectional curvature K of a compact simply connected riemannian manifold $\min K / \max K$ is sufficiently close to 1 , then the manifold is homeomorphic to the sphere. This was further developed by Berger, Klingenberg, Toponogov, Tsukamoto, Cheeger, Gromoll, Shiohama, Karcher, Ruh and other people and their works gave much influence on riemannian geometry. In Chapter 2 we treat the above problem.

On the other hand we may ask more generally: classify all the topological types of riemannian manifolds some of whose riemannian invariants satisfy some conditions. For instance classify manifolds of positive (or
more generally fixed signed) curvature. Usually such classification problems are very difficult and we may ask whether there are only finitely many topological types of such riemannian manifolds. This was firstly attacked by J. Cheeger and A. Weinstein around 1967. We will be concerned this problem in Chapter 3.

In Chapter 1 we collected some fundamental tools for the above problems. The riemannian invariants with which we are mainly concerned here are sectional curvature, Ricci curvature, diameter and volume. Of course there are many other important invariants, e.g., eigenvalues of Laplacians and we may also consider the above problems in these cases (see e.g., [Cro], [L-T], [L-Z], [Pi]). Also tools and methods which are treated here are mainly concerned with geodesics. We could not here treat methods from Partial Differential Equations although they are playing important roles (see [Ya]). Since there are survey articles on non-compact manifolds and manifolds of negative curvature in this proceeding we don't touch upon these manifolds here.

Now Gromov's recent works with many brilliant ideas from various branches of mathematics are giving decisive influence on the above problem (in fact on many problems beyond above). Since they are still expanding we could only touch some of them here (see papers by Gromov [G 1-8] and $[\mathrm{Bu}-\mathrm{K}]$, $[\mathrm{B} \mathrm{8,9]})$.

Also the references given here are far from completeness.
In this article I owe very much to the papers by Buser-Karcher, Cheeger, Gromov, Heintze-Karcher, ImHoff-Ruh, Weinstein and other people to whom I would like to express my sincere thanks.

I also would like to thank M. Berger, W. Klingenberg, K. Shiohama and T. Yoshida for advices and suggestions.

Chapter 1. Preliminary Comparison Results

§ 1. Riemannian invariants

In this section we introduce some fundamental riemannian invariants. From the existence of a riemannian structure g on a smooth manifold M we can introduce the following concepts and notions:
$\mathbf{1}^{\circ}$. Firstly we have the Levi-Civita connection ∇_{X} adapted to the given metric. For a given curve $c:[0, l] \rightarrow M$ and a vector field Y along c we denote by $\nabla_{\partial / \partial t} Y(:=\nabla Y)$ the covariant differential of Y in direction of tangents to c. We also denote by $P_{c}: T_{c(0)} M \rightarrow T_{c(t)} M$ parallel translation along c. Recall that V_{X} is not a tensor field on M and we lift it to the tangent bundle $\tau_{M}: T M \rightarrow M$ so that we can define the bundle map $K: T T M$
$\rightarrow T M$ in the following way: for $\xi \in T_{v} T M, v \in T M$ choose a curve $t \rightarrow v_{t}$ $\in T M$ tangent to ξ at $t=0$, which may be considered as a vector field along a curve $x_{t}:=\tau_{M} v_{t}$. We define

$$
\begin{equation*}
K(\xi):=V_{\partial / \partial t \mid t=0} v_{t} \quad \text { (this is in fact well defined). } \tag{1.1}
\end{equation*}
$$

Restricting K to the vertical subspace $\left(T_{v} T M\right)^{v}:=d_{v} \tau_{M}^{-1}(0)=T_{v} T_{\tau_{M_{v}}} T M$, we have

$$
K_{\mid d_{v} \tau_{M}(0)}^{-1}=\text { the canonical identification } \iota_{v}: T_{v} T_{\tau_{M} v} M \cong T_{\tau_{M v} v} M .
$$

Then $d \tau_{M}(v): K^{-1}(0) \cong T_{\tau_{M^{v}}} M$ is an isomorphism and we have a splitting

$$
\begin{equation*}
T_{v} T M\left(=K^{-1}(0) \oplus d_{v} \tau_{M}^{-1}(0)\right) \cong T_{\tau_{M} v} M \oplus T_{\tau_{\boldsymbol{H}^{v}}} M \tag{1.2}
\end{equation*}
$$

$\left(T_{v} T M\right)^{h}:=K^{-1}(0)$ will be called the horizontal subspace. Especially horizontal vector field $S_{v}:=(v, 0)$ on $T M$ is called the geodesic spray.

Now from ∇ we have the curvature tensor

$$
\begin{equation*}
R(X, Y) Z:=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, \tag{1.3}
\end{equation*}
$$

which is the most fundamental local invariant of (M, g) with its successive covariant derivatives. Geometrically following sectional curvature introduced by Riemann generalizing Gauss curvature in the surface theory is important. Let $G_{2}(T M)$ be the Grassmann bundle $\left\{\sigma \subset T_{m} M\right.$; 2-planes, $m \in M\}$. Then the sectional curvature K_{σ} of σ is defined as

$$
\begin{equation*}
K_{\sigma}:=g(R(x, y) y, x) /|x \wedge y|^{2} \quad(:=K(x, y)) \tag{1.4}
\end{equation*}
$$

where $|\cdot|$ denotes the riemannian norm, $\{x, y\}$ is a basis of σ and K_{σ} is independent of the choice of $\{x, y\}$. Then $K: G_{2}(T M) \rightarrow \boldsymbol{R}$ is a smooth function which determines R (see e.g. [C-E] p.16).

In the case when K is a constant δ we have for the curvature tensor $R_{\delta}(x, y) z=\delta\{g(y, z) x-g(x, z) y\}$. These riemannian manifolds of constant curvature cover classical euclidean and non-euclidean geometries and the problem how K_{σ} controls metrical and manifold structure has been one of the central problems in riemannian geometry.

For example assume that $\delta \leq K_{\sigma} \leq \Delta$ and put $R^{\circ}:=R-R_{(\Delta+\delta) / 2}$. Then recalling that $x \rightarrow R^{\circ}(x, y) y$ is a symmetric linear map we have

$$
\begin{equation*}
\left|R^{\circ}(x, y) y\right| \leq(\Delta-\delta) / 2 \cdot|x \| y|^{2} . \tag{1.5}
\end{equation*}
$$

Next putting $\left\|R^{\circ}\right\|:=\max \left\{\left|R^{\circ}(x, y) z\right| ;|x|,|y|,|z|=1\right\}$ we have also

$$
\begin{equation*}
\left\|R^{\circ}\right\| \leq 2 / 3(\Delta-\delta) \tag{1.6}
\end{equation*}
$$

Now Ricci curvature is defined as

$$
r(x, y):=\operatorname{Trace}(z \rightarrow R(x, z) y), \quad \text { and for } x \in U(M, g)
$$

$$
\begin{equation*}
r(x):=r(x, x)=\sum_{i=2}^{d} K\left(x, x_{i}\right), \tag{1.7}
\end{equation*}
$$

where $x=x_{1}, \cdots, x_{d}$ are orthonormal with $\operatorname{dim} M=d$. This notion was introduced by Ricci and became very important after it played the fundamental role in Einstein's equation for gravitational field. Recently it turns out that Ricci curvature tells much more information about (M, g) than expected by Gromov, Yau and other people.
$\mathbf{2}^{\circ}$. Secondly from the given riemannian structure we can consider the length L_{c} and energy E_{c} of a piecewise smooth (or more general H^{1}-) curve $c:[0, l] \rightarrow M$ as $L_{c}:=\int_{0}^{l}|\dot{c}(t)| d t, E_{c}:=1 / 2 \int_{0}^{l}|\dot{c}(t)|^{2} d t$ respectively. Thus we can define the distance $d(p, q)$ of two points $p, q \in M$ as the infimum of the length of curves joining p and q. With this distance M has the structure of a metric space (M, d) whose topology coincides with the manifold topology. (M, d) is complete if and only if every metric ball $B_{r}(p):=\{q \in M ; d(p, q)<r\}$ is relatively compact by Hopf-Rinow theorem. In the following we consider only complete riemannian manifolds. In this case M is compact if and only if its diameter $d_{M}:=$ $\operatorname{Sup}_{p, q \in M} d(p, q)$ is finite. The space $\Omega_{p, q} M:=\left\{c:[0, l] \rightarrow M, H^{1}\right.$-curves with $c(0)=p, c(l)=q\}$ has a structure of complete Hilbert manifold such that tangent space $T_{c} \Omega_{p, q} M=\left\{H^{1}\right.$-vector fields along $\left.c\right\}$. Then E is a differentiable function on $\Omega_{p, q} M$ and Morse theory may be developed for $\left(\Omega_{p, q} M, E\right)([\mathrm{K} 5],[\mathrm{K} 6])$. From g we have also canonical Lebesgue measure $d v=\sqrt{\operatorname{det}\left(g_{i j}\right)} d x^{1} \cdots d x^{d}$ and we may consider the volume v_{M}. Riemannian invariants d_{M} and v_{M} play important roles in the following.
3°. Riemannian metric defines a one form α on $T M$ by $\alpha_{v}(\xi):=$ $g\left(v, d \tau_{M} \xi\right), \xi \in T_{v} T M$. Then $d \alpha$ defines a symplectic form on $T M$ (i.e., a closed 2-form with $\overbrace{d \alpha \wedge \cdots \wedge d \alpha} \neq 0$ everywhere). This corresponds to the canonical symplectic structure on $T^{*} M$ by an identification $b: T M \cong T^{*} M$ $(b(x) y=g(x, y))$ via the metric, which is nothing but the Legendre transformation with respect to the energy function $E: T M \rightarrow R, E(v)=$ $1 / 2 g(v, v)$. Thus we may consider the Hamiltonian vector field H_{E} corresponding to the Hamiltonian E. In our case H_{E} coincides with the geodesic spray defined in 1°. In fact we have $i_{S_{v}} d \alpha=-d E$ which follows from the fact that $L_{S_{v}} \alpha=d E$.
4°. Now the notion of geodesic may be introduced in connection with $1^{\circ}, 2^{\circ}, 3^{\circ}$ respectively as follows: $c:[0, l] \rightarrow M, c(0)=p, c(l)=q$ is a
geodesic if and only if
(with respect to 1°) an auto-parallel curve i.e.,

$$
\begin{equation*}
\nabla_{\partial / \partial t} \dot{t}(t)=0, \tag{1.8}
\end{equation*}
$$

which is the τ_{M}-image of an integral curve of the spray S_{v}.
(with respect to 2°) a critical point of the energy integral E on $\Omega_{p, q} M$, namely, the Euler-Lagrange equation of the fuctional E is nothing but (1.8).
(with respect to 3°) τ_{M}-image of a solution curve of the Hamiltonian system H_{E}.

In the above geodesics are parametrized proportionally to arc length. Every geodesic is determined by the initial point p and the initial direction $v \in T_{p} M$, which will be denoted by $c_{v}(t)$. Especially geodesics parametrized by arc length will be called normal. For a complete riemannian manifold every geodesic c_{v} may be defined for all real numbers and any points p, q may be joined by a minimal (i.e., distance realizing) geodesic. We denote by $\operatorname{Min}(p, q)$ the set of all minimal and normal geodesics joining p to q. It is also important to consider the flow ϕ_{t} of $S_{v}\left(=H_{E}\right)$ on $T M$, which is called the geodesic flow. Clearly we have $\phi_{t}(v)=\dot{c}_{v}(t)$ and $\tau_{M} \phi_{t}(v)=c_{v}(t)$.

Once the notion of geodesics is introduced we have the normal coordinates system. Namely for $p \in M$ we define the exponential map Exp_{p} : $T_{p} M \rightarrow M$ at p as $\operatorname{Exp}_{p} v:=c_{v}(1)$, which is a diffeomorphism on $B_{r}\left(o_{p}\right):=$ $\left\{v \in T_{p} M,|v|<r\right\}$ for some $r>0$. Now the normal coordinates system (x^{i}) at p is determined as $\operatorname{Exp}_{p} \sum x^{i}(q) e_{i}=q$, when an orthonormal basis $\left\{e_{i}\right\}$ of $T_{p} M$ is given. Then we have the following expansion of the metric tensor $g=\left(g_{i j}\right)$ around p with respect to the normal coordinate

$$
\begin{equation*}
g_{i j}(t x)=\delta_{i j}+1 / 3 \sum R_{k i h j}(p) x^{h} x^{h} t^{2}+O\left(t^{3}\right) \tag{1.9}
\end{equation*}
$$

(for the further expansion see e.g. [Sa 1]). Normal coordinates system gives most adapted local chart to the riemannian structure.

Remark. From (1.9) we have the following interpretation of the curvatures. Let $\sigma \in G_{2}(T M)$ be a plane section at p and c_{r} a circle in σ of radius r centered at the origin. Then we have

$$
\begin{equation*}
K_{\sigma}=3 / \pi \lim _{r \rightarrow 0}\left(2 \pi r-L_{\operatorname{Exp} p c_{r}}\right) / r^{3} . \tag{1.10}
\end{equation*}
$$

Next we have for a unit vector $x \in U_{p} M$

$$
\begin{equation*}
r(x)=3 \lim _{r \rightarrow 0}\left(1-\operatorname{det} g_{i j}\left(\operatorname{Exp}_{p} t x\right)\right) / t^{2} \tag{1.11}
\end{equation*}
$$

5°. To see the behavior of geodesic, which satisfies second order
non-linear equation, it is useful to consider the infinitesimal deformation of geodesics, which satisfies the linearized equation. Namely let $\alpha_{s}(-\varepsilon \leq$ $s \leq \varepsilon$) be a family of geodesics with $\alpha_{0}=c_{v}$. Then the vector field Y along c_{v} defined as $Y(t):=\partial / \partial s_{1 s=0} \alpha_{s}(t)$ satisfies the second order linear differential equation

$$
\begin{equation*}
\nabla \nabla Y+R\left(Y, \dot{c}_{v}\right) \dot{c}_{v}=0 \tag{1.12}
\end{equation*}
$$

Conversely a vector field Y along a geodesic satisfying (1.12) may be obtained from such a geodesic variation and will be called a Jacobi field. Note that Y is uniquely determined by $Y(0)$ and $\nabla Y(0)$. With respect to $2^{\circ}, c_{v}:[0, l] \rightarrow M$ is a critical point of E on $\Omega_{p, q} M\left(p=c_{v}(0), q=c_{v}(l)\right)$. We can consider the Hessian $D^{2} E\left(c_{v}\right)$, which is a symmetric bilinear form on $T_{c_{v}} \Omega_{p, q} M$ given by

$$
\begin{equation*}
D^{2} E\left(c_{v}\right)(X, Y)=\int_{0}^{l}\left\{g(\nabla X, \nabla Y)-g\left(R\left(X, c_{v}\right) c_{v}, Y\right)\right\} d t . \tag{1.13}
\end{equation*}
$$

Then the null space of $D^{2} E\left(c_{v}\right)$ is nothing but the space of Jacobi fields along c_{v} vanishing at end points. From geodesic flow view point, we consider the differential $d \phi_{t}: T_{v} T M \rightarrow T_{\phi_{t} v} T M$ of the geodesic flow. Then in terms of the splitting of (1.2) we have

$$
\begin{equation*}
d \phi_{t}(A, B)=(Y(t), \nabla Y(t)) \tag{1.14}
\end{equation*}
$$

where $Y(t)$ is a Jacobi field with $Y(0)=A$ and $\nabla Y(0)=B$. Namely Jacobi fields are characterized as geodesic flow invariant fields. Finally the relationship with the exponential map is given as follows: for $v, w \in T_{p} M$ we have the linear field $t \rightarrow(0, t w)=\iota_{t v} w \in T_{t v} T_{p} M$. Then the Jacobi field Y along c_{v} with $Y(0)=0$ and $\nabla Y(0)=w$ is characterized by

$$
\begin{equation*}
Y(t)=d \operatorname{Exp}_{p}(t v)(0, t w) \tag{1.15}
\end{equation*}
$$

Roughly speaking curvature controls the behavior of Jacobi fields, which are the infinitesimal deformation of geodesics, and also the behavior of geodesics. Then behavior of geodesics gives information on normal coordinate systems, namely on the structure of manifolds.
6°. Here we remark that we may control the parallel translation by curvature. Let c_{0}, c_{1} be curves with initial point p and $c_{s}:[0,1] \rightarrow M(0 \leq$ $s \leq 1$) a homotopy from c_{0} to c_{1} with $c_{s}(0)=p$. We put $\gamma(s):=c_{s}(1)$. Let a be the parallel translation along $c_{0} \cup \gamma \cup c_{1}^{-1}$ which may be considered as an element of $S O(d)$. Then we have

$$
\begin{equation*}
\|a\|(:=\underset{|U|=1}{\operatorname{Max}}|a(U)-U|) \leq\|R\| \cdot \text { Area of the surface generated by } c_{s} \tag{1.16}
\end{equation*}
$$

In fact for $U \in U_{p} M$, let X_{s} be the parallel vector field along $C_{s} \cup \gamma_{\mid[s, 1]}$ with $X_{s}(0)=U$. We put

$$
\alpha(s, t)=\alpha_{s}(t)=\left\{\begin{array}{l}
c_{s}(t) \quad \text { for } 0 \leq t \leq 1 \\
\gamma((1-s) t+2 s-1) \quad \text { for } 1 \leq t \leq 2
\end{array} .\right.
$$

Then we get

$$
\begin{aligned}
\mid a(U) & -U\left|=\left|X_{0}(2)-X_{1}(2)\right| \leq \int_{0}^{1}\right| \nabla_{\partial / \partial s} X_{s}(2)\left|d s \leq \int_{0}^{2} d t \int_{0}^{1}\right| \nabla_{\partial / \partial t} \nabla_{\partial / \partial s} X_{s}(t) \mid d s \\
& =\int_{0}^{2} d t \int_{0}^{1}\left|R(\partial \alpha / \partial t, \partial \alpha / \partial s) X_{s}(t)\right| d s \leq\|R\| \int_{[0,1] \times[0,2]}|\partial \alpha / \partial t \wedge \partial \alpha / \partial s| d s d t \\
& =\|R\| \int_{[0,1] \times[0,1]}|\partial \alpha / \partial t \wedge \partial \alpha / \partial s| d s d t
\end{aligned}
$$

Remark (1.17). The same result also does hold in case of a metric connection of riemannian vector bundle.
7°. As mentioned before simply connected riemannian manifolds $M^{d}(\delta)$ of constant curvature δ are the simplest riemannian manifolds. Take $p \in M^{d}(\delta), v \in U_{p} M$ and an orthonormal basis $\left\{e_{1}, \cdots, e_{d}\right\}$ of $T_{p} M^{d}(\delta)$. We put

$$
s_{\delta}(t):=\left\{\begin{array}{cl}
\sin \sqrt{\delta t} / \sqrt{\delta} & \text { if } \delta>0 \tag{1.18}\\
t & \text { if } \delta=0, \quad c_{\delta}(t):=s_{\delta}^{\prime}(t) . \\
\sinh \sqrt{|\delta|} t / \sqrt{|\bar{\delta}|} & \text { if } \delta<0
\end{array}\right.
$$

Then Jacobi field $Y(t)$ along $c_{v}, Y \perp \dot{c}_{v}$ with $Y(0)=\sum a_{i} e_{i}, \nabla Y(0)=\sum b_{i} e_{i}$ takes the form

$$
Y(t)=\sum\left(a_{i} c_{\delta}(t)+b_{i} s_{\delta}(t)\right) E_{i}(t)
$$

where $E_{i}(t)$ is the parallel translation of e_{i} along c_{v}.
Next typical examples of riemannian manifolds are symmetric spaces, on which sectional curvature $K_{\sigma_{t}}$ is constant if σ_{t} is parallel along a curve c_{t}. In this case behavior of geodesics is explicitly known (see [Hel], [Sa 4]). Especially for rank one symmetric spaces, which are various projective spaces with their canonical riemannian structures, all geodesics are simple closed geodesics of the same length (so-called C_{L}-manifolds [Be]).

Also invariant metrics on homogeneous spaces give nice examples in riemannian geometry ([BB 1-3], [B 3], [Su 2-4], [Wa 1-3], [Z 1-2]). Here we only mention Berger's spheres ([Cha 1], [S 5], [W 4]), which are one parameter normal homogeneous metrics of positive curvature on odd
dimensional spheres, and Wallach's examples, which are (not normal) homogeneous metrics of positive curvature on $S U(3) / T(p, q)$, where $T(p, q)$ are circles defined by

$$
\left\{\left(\begin{array}{ccc}
\exp (2 \pi p \theta \sqrt{-1}) & 0 & 0 \\
0 & \exp (2 \pi q \theta \sqrt{-1}) & 0 \\
0 & 0 & \exp (-2 \pi(p+q) \theta \sqrt{-1})
\end{array}\right) ; \theta \in \boldsymbol{R}\right\}
$$

with relatively prime $p, q \in Z$. It is known that $S U(3) / T(p, q)$ are simply connected and $H^{4}(S U(3) / T(p, q): Z) \simeq Z_{r}, r:=\left|p^{2}+p q+r^{2}\right|$. Huang computed explicitly $\min K_{\sigma} / \max K_{\sigma}$ for some homogeneous metric on $S U(3) / T(p, q)$ (see [Wal-A], [Hu], [Es]).

For more general homogeneous manifolds of positive curvature see [BB 1-3], [Wal 1-3]). The geodesic behavior on homogeneous manifolds is not known completely ([Z 1-2]).

More generally Cheeger constructed metrics of non-negative curvature using group actions ([C 4], [Gr-M], [Po]).

§ 2. Jacobi fields comparison theorems

Recall that Jacobi fields satisfy the second order linear differential equation. Extending classical Sturm-Liouville comparison theorem to riemannian case, Rauch ($\left[\begin{array}{ll}\mathrm{R} & 1] \text {) obtained comparison theorems on Jacobi }\end{array}\right.$ fields in terms of curvature of manifolds. Here we give generalized version by Warner, Heintze-Karcher etc. ([H-K], [War 2]).

We consider Jacobi fields satisfying the boundary condition.
$\mathbf{1}^{\circ}$. Let $N^{e} \longrightarrow M^{d}$ be an immersed submanifold of dimension e with the induced riemannian structure, $\nu: T N^{\perp} \rightarrow M$ the normal bundle. For a normal vector $v \in T_{p} N$ we define the second fundamental form S_{v} as

$$
\begin{equation*}
S_{v}(u, w):=g\left(\nabla_{u} V, w\right), \quad u, w \in T_{p} M \tag{2.1}
\end{equation*}
$$

where V is a local section of $T N$ around p with $V_{p}=v . \quad S_{v}$ is a symmetric bilinear form on $T_{p} N$ and we denote the corresponding linear transformation by the same letter S_{v}. Now a Jacobi field Y along a geodesic c_{v} will be called an N-Jacobi field if Y satisfies

$$
\begin{equation*}
Y(0) \in T_{p} N, \quad \nabla Y(0)-S_{v} Y(0) \in T_{p} N^{\perp} \tag{2.2}
\end{equation*}
$$

(namely in terms of the splitting (1.2), initial condition ($Y(0), \nabla Y(0)$) belongs to a Lagrangian subspace $\mathscr{L}:=\left\{(A, B) \in T_{v} T M ; A \in T_{p} N, B-S_{v} A\right.$ $\left.\in T_{p} N^{\perp}\right\}$). N-Jacobi fields may be characterized as the variation vector
fields of geodesics with initial direction in $T N^{\perp}$. It is also useful to consider the splitting of $T T N^{\perp}$ with respect to the normal connection ∇^{\perp}. For a section $Z: N \rightarrow T N^{\perp}$ and $x \in T_{p} N$ we set $\nabla_{x}^{\perp} Z:=\left(\nabla_{x} Z\right)^{\perp}$ (orthogonal projection to $T_{p} N^{\perp}$). We can define as before the bundle map $K_{N}: T T N^{\perp}$ $\rightarrow T N^{\perp}$ by the condition $K_{N}(d Z \cdot x)=\nabla \frac{\perp}{x} Z$. Then we see that for $v \in T_{p} N^{\perp}$,
$K_{N \mid d \nu-1(0)}: d \nu^{-1}(0)=T_{v} T_{p} N^{\perp} \cong T_{p} N^{\perp}$ is the canonical identification, $d \nu_{\mid K_{N}(0)}: K_{N}^{-1}(0) \cong T_{p} N$ is an isomorphism
and we have a splitting

$$
\begin{equation*}
T_{v} T N^{\perp}\left(=K_{N}^{-1}(0) \oplus d \nu^{-1}(0)\right) \cong T_{p} N \oplus T_{p} N^{\perp} \quad(p=\nu(v)) \tag{2.3}
\end{equation*}
$$

We denote this splitting by $(A, B)_{N}, A \in T_{p} N, B \in T_{p} N^{\perp}$. Especially we can define the riemannian structure on $T N^{\perp}$ so that $K_{N \mid d \nu-1(0)}, d \nu_{\mid K_{N}^{(0)}}{ }^{-1}$ are linear isometries and $d \nu^{-1}(0) \perp K_{N}^{-1}(0)$.

Now we consider a linear field $U(t):=(A, t B)_{N} \in T_{t v} T N^{\perp}$ along $t \rightarrow$ $t v$. Then an N-Jacobi field $Y(t)$ with $Y(0)=A, \nabla Y(0)=S_{v} A+B$ is given by

$$
\begin{equation*}
Y(t)=d \operatorname{Exp}_{\nu} U(t) \tag{2.4}
\end{equation*}
$$

where $\operatorname{Exp}_{\nu}:=\operatorname{Exp}_{\mid T N}$. Thus we have $d \tau_{M} d \phi_{t}\left(A, B+S_{v} A\right)=d \operatorname{Exp}_{\nu}(A, t B)_{N}$.
Next for a geodesic $c_{v}, v \in T N^{\perp}$, a point $c_{v}(t)(t>0)$ is called a focal point of N along c_{ν} if there exists a non-zero N-Jacobi field Y with $Y(t)$ $=0$. For $v \in T N^{\perp}$ we define the focal distance of N in direction v as $\min \left\{t>0 ; c_{v}(t)\right.$ is a focal point of $\left.N\right\}$. In case when N reduces to a point this will be called the conjugate distance.

We consider the following situation: Let $c_{v}, v \in U_{p} N^{\perp}$ be a perpendicular normal geodesic, $k(t):=\min \left\{K_{\sigma} ; \sigma \ni \dot{c}_{v}(t)\right\}, K(t):=\max \left\{K_{\sigma} ; \sigma \ni\right.$ $\left.\dot{c}_{v}(t)\right\}, \lambda_{1}, \cdots, \lambda_{e}$ eigenvalues of S_{v} (principal curvatures). We also consider another immersed manifold $\bar{N}^{e} \longrightarrow \bar{M}^{\bar{d}}, c_{\bar{v}}, \bar{v} \in U_{\bar{p}} \bar{N}, \bar{k}(t), \bar{K}(t), \bar{\lambda}_{1}, \cdots, \bar{\lambda}_{e}$ will be defined similarly. Let $t_{o}>0$ be smaller than the focal distance of N in v. We shall assume that
$(*)_{0}: \quad d=\operatorname{dim} M \geqq \bar{d}=\operatorname{dim} \bar{M} . \quad \operatorname{dim} N=\operatorname{dim} \bar{N}:=e$
$(*)_{1}: \quad k(t) \geq \bar{K}(t), \quad 0 \leq t \leq t_{0}$
$(*)_{2}: \quad \operatorname{Max} \lambda_{i} \leq \operatorname{Min} \bar{\lambda}_{i}$, or $(*)_{2}^{\prime}: \lambda_{i} \leq \bar{\lambda}_{i}(i=1, \cdots, e)$ for some fixed order of principal curvatures.

Let $Y_{1}, \cdots, Y_{r}\left(\operatorname{resp} . \bar{Y}_{1}, \cdots, \bar{Y}_{r}\right), 1 \leq r \leq d-1, \bar{d}-1$, be linearly independent $N($ resp. $\bar{N})$-Jacobi fields given by $Y_{i}(t)=d \operatorname{Exp}_{\nu} U_{i}(t)\left(\right.$ resp. $\bar{Y}_{i}(t)$ $=d \operatorname{Exp}_{\bar{v}} \bar{U}_{i}(t)$), which are perpendicular to c_{v} (resp. $c_{\bar{v}}$). Putting

$$
\begin{align*}
& f(t):=\log \left(\left|Y_{1}(t) \wedge \cdots \wedge Y_{r}(t)\right| /\left|U_{1}(t) \wedge \cdots \wedge U_{r}(t)\right|\right) \\
& \bar{f}(t):=\log \left(\left|\bar{Y}_{1}(t) \wedge \cdots \wedge \bar{Y}_{r}(t)\right| /\left|\bar{U}_{1}(t) \wedge \cdots \wedge \bar{U}_{r}(t)\right|\right), \tag{2.6}
\end{align*}
$$

we want to compare $f(t)$ and $\bar{f}(t)$. Note that $\lim _{t \rightarrow 0} f(t)=\lim _{t \rightarrow 0} \bar{f}(t)=0$. For that purpose we estimate

$$
\begin{equation*}
g(t):=\left\{\log \left|\bar{Y}_{1}(t) \wedge \cdots \wedge \bar{Y}_{r}(t)\right|-\log \left|Y_{1}(t) \wedge \cdots \wedge Y_{r}(t)\right|\right\}^{\prime} \tag{2.7}
\end{equation*}
$$

Fix $t_{1} \leq t_{o}, \bar{t}_{o}(<$ focal distance of \bar{N} in $\bar{v})$. We give a condition guaranteeing $g\left(t_{1}\right) \geq 0$.

Lemma (2.8). Assume $(*)_{0},(*)_{1},(*)_{2}$ or $(*)_{2}^{\prime}$ and that there is a linear isometric injection $t_{t_{1}}: T_{\bar{p}} \bar{M} \rightarrow T_{p} M$ such that
(i) $\iota_{t_{1}} \bar{v}=v, \iota_{t_{1}} T_{\bar{p}} \bar{N}=T_{p} N$,
(ii) $c_{t_{1}} \bar{V}_{t_{1}}=V_{t_{1}}$ where $V_{t_{1}}:=P_{c_{v}}^{-1}\left\{Y_{i}\left(t_{1}\right)\right\}_{R}$ etc.

We assume furthermore
(iii) $\iota_{t_{1}}$ maps eigenvectors of $\bar{\lambda}_{i}$ to that of λ_{i}, when we assume $(*)_{2}^{\prime}$. Then we have $g\left(t_{1}\right) \geq 0$.

Proof. Main idea is to use the index form. Namely on $\chi_{c_{v}}:=\{X(t)$; H^{1}-vector fields along $c_{v \mid\left[0, t_{1}\right]}$ with $X(0) \in T_{p} N$ and $\left.X(t) \perp \dot{c}_{v}(t)\right\}$, we define

$$
\begin{align*}
I_{N}(X, X):= & \int_{0}^{t_{1}}\left\{g(\nabla X, \nabla X)-K\left(\dot{c}_{v}(t), X(t)\right)|X(t)|^{2}\right\} d t \tag{2.9}\\
& +S_{v}(X(0), X(0))
\end{align*}
$$

Then one of the fundamental properties of I_{N} is as follows: for $t_{1} \leq t_{o}$, we have $I_{N}(X, X) \geq I_{N}(Y, Y)$, where Y is the uniquely determined N-Jacobi field with $Y\left(t_{1}\right)=X\left(t_{1}\right)$ and the equality holds if and only if $Y=X$ (see e.g. [B-C]). For the proof we may firstly assume that $\bar{Y}_{i}\left(t_{1}\right)$ are orthonormal by taking a linear combination of $\bar{Y}_{1}\left(t_{1}\right), \cdots, \bar{Y}_{r}\left(t_{1}\right)$. Since \bar{Y}_{i} are N-Jacobi fields, we have

$$
\begin{aligned}
& \left(\log \left|\bar{Y}_{1}(t) \wedge \cdots \wedge \bar{Y}_{r}(t)\right|\right)_{t=t_{1}}^{\prime}=\sum\left(\log \left|\bar{Y}_{i}\left(t_{1}\right)\right|\right)^{\prime}=\sum g\left(\nabla \bar{Y}_{i}\left(t_{1}\right), \bar{Y}_{i}\left(t_{1}\right)\right) \\
& \quad=\sum I_{N}\left(\bar{Y}_{i}, \bar{Y}_{i}\right)
\end{aligned}
$$

Let $W_{i}(t):=P_{c_{v}} \circ t_{t_{1}} \circ P_{c_{\bar{v}}}^{-1}\left(\bar{Y}_{i}(t)\right)$ be an element of $\chi_{c_{v}}$ (by (i)) with $\left|W_{i}(t)\right|$ $=\left|\bar{Y}_{i}(t)\right|,\left|\nabla W_{i}(t)\right|=\left|\nabla \bar{Y}_{i}(t)\right|$. From the assumption (ii), taking appropriate linear combination of $Y_{i}\left(t_{1}\right)$'s, we may assume that $Y_{i}\left(t_{1}\right)=W_{i}\left(t_{1}\right)$. Then note that $\left\{Y_{i}\left(t_{1}\right)\right\}$ are orthonormal and $W_{i}(0)=\iota_{t_{1}} \bar{Y}_{i}(0)$. Then we have from (iii)

$$
\begin{align*}
& \left(\log \left|Y_{1}(t) \wedge \cdots \wedge Y_{r}(t)\right|_{t=t_{1}}^{\prime}=\sum I_{N}\left(Y_{i}, Y_{i}\right) \leq \sum I_{N}\left(W_{i}, W_{i}\right)\right. \\
& \quad=\sum\left\{\int_{0}^{t_{1}}\left(g\left(\nabla W_{i}, \nabla W_{i}\right)-K\left(\dot{c}_{v}, W_{i}\right)\left|W_{i}\right|^{2}\right) d t+S_{v}\left(W_{i}(0), W_{i}(0)\right)\right\} \tag{2.10}
\end{align*}
$$

$$
\begin{aligned}
& \left.\leq \sum\left\{\int_{0}^{t_{1}}\left(g\left(\nabla \bar{Y}_{i}, \nabla \bar{Y}_{i}\right)-K\left(\dot{c}_{\overline{\bar{v}}}, \bar{Y}_{i}\right)\left|\bar{Y}_{i}\right|^{2}\right) d t+S_{\bar{v}} \bar{Y}_{i}(0), \bar{Y}_{i}(0)\right)\right\} \\
& =\sum I_{\bar{N}}\left(\bar{Y}_{i}, \bar{Y}_{i}\right)=\left(\log \left|\bar{Y}_{1}\left(t_{1}\right) \wedge \cdots \wedge \bar{Y}_{r}\left(t_{1}\right)\right|_{t=t_{1}}^{\prime} . \quad\right. \text { q.e.d. }
\end{aligned}
$$

Now the problem is that (i), (ii), and (iii) are not consistent in general. We consider the following cases:
(I) $(*)_{0}: d \geq \bar{d}, e=0,1 \leq r \leq \bar{d}-1,(*)_{1}: k(t) \geq \bar{K}(t)\left(0 \leq t \leq t_{o}\right)$
(II) (*) $: d=\bar{d}, e=d-1,1 \leq r \leq d-1,(*)_{1}: k(t) \geq \bar{K}(t)\left(0 \leq t \leq t_{o}\right)$
$(*)_{2}: \max \lambda_{i} \leq \min \bar{\lambda}_{i}$.
(III) $(*)_{0}: d=\bar{d}, r=d-1 . \quad(*)_{1}: k(t) \geq \bar{K}(t)\left(0 \leq t \leq t_{o}\right)$.
$(*)_{2}: \lambda_{i} \leq \bar{\lambda}_{i}$ for some fixed order of principal curvatures.
(IV) $(*)_{0}: d=\bar{d}$ and \bar{M} is a space form of constant curvature $\delta, r=$ $d-1$.
$(*)_{1}: r\left(\dot{c}_{v}(t)\right) \geq(d-1) \delta\left(0 \leq t \leq t_{o}\right)$.
$(*)_{2}: e=0$, or $e=d-1$ and \bar{N} is totally umbilical at p (i.e., $S_{\bar{v}}=$ $\lambda \mathrm{id})$ and $\operatorname{tr} S_{v} \leq e \lambda$.
Then in these cases we may easily check that assumptions of (2.8) are satisfied for $t_{1} \leq t_{0}, \bar{I}_{0}$. In the last case (IV) we make the assumption on Ricci curvature only but the last inequality in (2.10) also holds in the same way. To see that $\sum S_{v}\left(W_{i}(0), W_{i}(0)\right) \leq \sum S_{\bar{v}}\left(\bar{Y}_{i}(0), \bar{Y}_{i}(0)\right)$ note that every \bar{N}-Jacobi field $\bar{Y}(t)$ in \bar{M} takes the form $\bar{Y}(t)=\left(c_{o}(t)+\lambda s_{\delta}(t)\right) \bar{E}(t)$ with a parallel vector field $\bar{E}(t)$.

Remark (2.11). In each case $U_{i}(t)$ (and $\left.\bar{U}_{i}(t)\right)$ are given as follows:
(I) $U_{i}(t)=\left(0, t B_{i}\right), B_{i}=\nabla Y_{i}(0)$.
(II) $U_{i}(t)=\left(A_{i}, 0\right)_{N}, A_{i}=Y_{i}(0)$.
(III) $U_{i}(t)=\left(A_{i}, t B_{i}\right)_{N}$. Note that we may take $U_{i}(t)=\left(A_{i}, 0\right)(i=$ $1, \cdots, e$), where A_{i} are eigenvectors of S_{v}, and $U_{j}(t)=\left(0, t B_{j}\right)_{N}$ $(j=e+1, \cdots, d-1), B_{j} \in T_{p} N^{\perp}$.
(IV) $U_{i}(t)=\left(0, t B_{i}\right)$ or $U_{i}(t)=\left(A_{i}, 0\right)_{N}$.

Now under the assumptions of one of (I) \sim (IV) and $t_{1} \leq t_{o}, \bar{t}_{o}$, we have $g\left(t_{1}\right) \geq 0$. From (2.11) we see that $\log \left|U_{1}(t) \wedge \cdots \wedge U_{r}(t)\right|-\log \mid \bar{U}_{1}(t) \wedge$ $\cdots \wedge \bar{U}_{r}(t) \mid=$ constant, and we get $f(t) \geq \bar{f}(t)$ for $t \leq t_{0}, \bar{I}_{0}$. But this implies that t_{o} is smaller than the focal distance of \bar{N} in \bar{v}. Thus we have the following $([\mathrm{H}-\mathrm{K}])$:

Theorem (2.12) (Heintze-Karcher). Assume one of (I)~(IV). Then we get
(i) $t \rightarrow\left|\bar{Y}_{1}(t) \wedge \cdots \wedge \bar{Y}_{r}(t)\right|\left|\left|Y_{1}(t) \wedge \cdots \wedge Y_{r}(t)\right|\right.$ is monotone increasing for $0 \leq t \leq t_{o}$.
(ii) $\left|\bar{Y}_{1}(t) \wedge \cdots \wedge \bar{Y}_{r}(t)\right| /\left|\bar{U}_{1}(t) \wedge \cdots \wedge \bar{U}_{r}(t)\right| \geq$ $\left|Y_{1}(t) \wedge \cdots \wedge Y_{r}(t)\right| /\left|U_{1}(t) \wedge \cdots \wedge U_{r}(t)\right|$.
(iii) Focal distance of N in $v \leq$ focal distance of \bar{N} in \bar{v}.
$\mathbf{2}^{\circ}$. From the above we have many important consequences. First we give original Rauch comparison theorems ([R 1], [R 3], [C-E]).

Theorem (2.13) (R.C.T.-I). Assume that $\operatorname{dim} M \geq \operatorname{dim} \bar{M}, k(t) \geq \bar{K}(t)$ for $t \leq t_{0}(<$ conjugate distance in direction $v)$. Let $Y(t), \bar{Y}(t)$ be Jacobi fields along $c_{v}, c_{\bar{v}}$ resp. such that $Y(0), \bar{Y}(0)$ are tangent to $c_{v}, c_{\bar{v}}$ resp. Assume furthermore that $g(v, Y(0))=g(v, Y(0)), \quad g(v, \nabla Y(0))=g(\bar{v}, \nabla \bar{Y}(0))$ and $|\nabla Y(0)|=|\nabla \bar{Y}(0)|$. Then we have $|Y(t)| \leq|\bar{Y}(t)|$ for $0 \leq t \leq t_{o}$.

Proof. We decompose $Y(t)=Y^{\top}(t)+Y^{\perp}(t)$, where $Y^{\top}(t)$ is the orthogonal projection of $Y(t)$ to $\dot{c}_{v}(t)$. Clearly we have $g\left(Y(t), \dot{c}_{v}(t)\right)=$ $g(Y(0), v)+g(\nabla Y(0), v) t$ and $\left|Y^{\top}(t)\right|=\left|\bar{Y}^{\top}(t)\right| . \quad$ From (2.12-(I)) $\left|Y^{\perp}(t)\right| \leq$ $\left|\bar{Y}^{\perp}(t)\right|$ holds, because of $Y^{\perp}(0)=\bar{Y}^{\perp}(0)=0,\left|\nabla Y^{\perp}(0)\right|=\left|\nabla \bar{Y}^{\perp}(0)\right| . \quad$ q.e.d.

Next integrating the above we get
Theorem (2.14) (R.C.T.-II). Suppose that $\operatorname{dim} M \geq \operatorname{dim} \bar{M}$ and
(i) $K_{\sigma} \geq K_{\bar{\sigma}}$ for all $\sigma \in G_{2}(T M), \bar{\sigma} \in G_{2}(T \bar{M})$,
(ii) $\operatorname{Exp}_{\bar{p} \mid B_{r}\left(o_{\bar{p}}\right)}$ is an embedding and $\operatorname{Exp}_{p \mid B_{r}\left(o_{p}\right)}$ is regular.

Let I: $T_{\bar{p}} \bar{M} \rightarrow T_{p} M$ be a linear isometric injection. Then for any curve $\bar{c}:[0,1] \rightarrow \operatorname{Exp}_{\bar{p}}\left(B_{r}\left(o_{\bar{p}}\right)\right)$ we have $L_{c} \leq L_{\bar{c}}, c=\operatorname{Exp}_{p} \circ I \circ \operatorname{Exp}_{p}^{-1}(\bar{c})$.

Proof. Put $\alpha(t, s):=\operatorname{Exp}_{p}\left(t I\left(\operatorname{Exp}_{\bar{p}}^{-1} \bar{c}(s) /\left|\operatorname{Exp}_{\bar{p}}^{-1} \bar{c}(s)\right|\right)\right), \quad 0 \leq t \leq$ $\left|\operatorname{Exp}_{\bar{p}}^{-1} \bar{c}(s)\right|$. Then $L_{c}=\int_{0}^{1}|\partial \alpha / \partial s(1, s)| d s$ and $t \rightarrow(\partial \alpha / \partial s)(t, s)$ is a Jacobi field Y_{s} along a geodesic $t \rightarrow \alpha(t, s)$ with $Y_{s}(0)=0$. Similarly define $\bar{\alpha}(t, s):=$ $\operatorname{Exp}_{\bar{p}}\left(t \operatorname{Exp}_{\bar{p}}^{-1} \bar{c}(s) /\left|\operatorname{Exp}_{\bar{p}}^{-1} \bar{c}(s)\right|\right)$ and \bar{Y}_{s}. Noting that $\left|\nabla Y_{s}(0)\right|=\left|\nabla \bar{Y}_{s}(0)\right|$ we get our result from (2.13).
q.e.d.

Similarly we have Berger's comparison theorems ([B 4], [C-E]).
Theorem (2.15) (B.C.T.-I). Assume that $\operatorname{dim} M=\operatorname{dim} \bar{M}$. For $v \in$ $U_{p} M$ let $N:=\operatorname{Exp}_{p}\left\{x \in B_{r}\left(o_{p}\right) \subset T_{p} M, g(x, v)=0\right\}$ be a hypersurface with a normal vector v and $S_{v}=0$. For $\bar{v} \in U_{\bar{p}} \bar{M}$ define \bar{N} similarly. Suppose that for $N($ resp. $\bar{N})$-Jacobi field $Y($ resp. $\bar{Y})$
(i) $k(t) \geq \bar{K}(t)$ for $0 \leq t \leq t_{0}(<$ focal distance of N in direction $v)$.
(ii) $\nabla Y(0), \nabla \bar{Y}(0)$ are tangent to $c_{v}, c_{\bar{v}}$ resp.
(iii) $g(v, Y(0))=g(\bar{v}, \bar{Y}(0)), g(v, \nabla \bar{Y}(0))=g(\bar{v}, \nabla \bar{Y}(0)),|Y(0)|=|\bar{Y}(0)|$. Then we have $|Y(t)| \leq|\bar{Y}(t)|$.

Theorem (2.16) (B.C.T.-II). Let $c_{v}\left(c_{\bar{v}}\right):[0, l] \rightarrow M(\bar{M})$ be a geodesic and $E(\bar{E})$ parallel vector field along $c_{v}\left(c_{\bar{v}}\right) . \quad$ Put $e(t):=\operatorname{Exp}(f(t) E(t)), \bar{e}(t)$ $:=\operatorname{Exp}(f(t) \bar{E}(t))$, where $f:[0, l] \rightarrow \boldsymbol{R}$ is a smooth function such that $f(t)<$ focal distance of $\operatorname{Exp}\left\{w \in T_{c_{v}(t)} M ; w \perp E(t)\right\}$ in direction $E(t)$. Suppose that $K_{\sigma} \geq K_{\bar{\sigma}}$ for all $\sigma \in G_{2}(T M), \bar{\sigma} \in G_{2}(T \bar{M})$. Then we have $L_{e} \leq L_{\bar{e}}$.

Remark (2.17). Let M^{d} be a riemannian manifold with $K_{\sigma} \leq \Delta$ and $M^{d}(\Delta)$ space form of constant curvature Δ. Suppose that $\operatorname{Exp}_{p}: B_{r}\left(o_{p}\right) \rightarrow$ $B_{r}(p)$ is a diffeomorphism $(r \leq \pi / \sqrt{\Delta})$. Take $\bar{p} \in M^{d}(\Delta)$ and a linear isometry $I: T_{p} M \rightarrow T_{\bar{p}} \bar{M}$. For $q, r \in B_{r}\left(o_{p}\right)$ take a minimal geodesic $\gamma \in$ $\operatorname{Min}(q, r)$. Assume that $\gamma \subset B_{r}(p)$. Then we have $d(q, r) \geq d(\bar{q}, \bar{r})$ with $\bar{q}:=\operatorname{Exp}_{p} I\left(\operatorname{Exp}_{p}^{-1} q\right)$ etc. from (2.14). If the equality holds $\bar{\gamma}:=$ $\operatorname{Exp}_{p} I\left(\operatorname{Exp}_{p}^{-1} \gamma\right)$ is a minimal geodesic and we have a totally geodesic triangle $S:=\operatorname{Exp}_{p} I\left(\operatorname{Exp}_{p}^{-1} \bar{S}\right)$ of constant curvature Δ, where $\bar{S}=(\bar{p}, \bar{q}, \bar{r})$ is a geodesic triangle in $M^{a}(\Delta)$.

Next we consider the case when M or \bar{M} is of constant curvature.
Theorem (2.18) ([Ka], [Bu-K]). Let M be a riemannian manifold, $Y(t)$ a Jacobi field along a normal geodesic c_{v} with $Y(t) \perp \dot{c}_{v}(t)$.
(i) Suppose that $K_{\sigma} \leq \Delta$ for all $\sigma \in G_{2}(T M)$. Then as far as $y_{\Delta}(t):=$ $|Y(0)| c_{\Delta}(t)+|Y|^{\prime}(0) s_{\Delta}(t)$ is positive we get

$$
g(Y, \nabla Y) y_{\Delta} \geq g(Y, Y) y_{\Delta}^{\prime} \quad \text { and } \quad|Y(t)| \geq y_{\Delta}(t) .
$$

(ii) Suppose that $K_{\sigma} \geq \delta$ and that $\nabla Y(0)$ and $Y(0)$ are linearly dependent. Let $t_{0}(>0)$ be smaller than the focal distance in direction v of hypersurface N with normal v such that $S_{v}=\left(|Y|^{\prime}(0) /|Y|(0)\right)$ id if $Y(0) \neq 0$ (conjugate distance in v when $Y(0)=0)$. Then we have $|Y(t)| \leq y_{\delta}(t)(0 \leq t$ $\left.\leq t_{o}\right)$ and that $t \rightarrow y_{\dot{\delta}}(t) /|Y(t)|$ is monotone increasing $\left(0 \leq t \leq t_{o}\right)$.

Proof. If $Y(0)=0$ both cases follow from (2.12-I). We assume $Y(0)$ $\neq 0$.
(i) Take a hypersurface N with a normal v and with respect to which $Y(t)$ is an N-Jacobi field. In $\bar{M}:=M^{d}(\Delta)$ take a point $\bar{p}, \bar{v} \in U_{\bar{p}} M$ and a hypersurface \bar{N} with a normal \bar{v} such that $S_{\bar{v}}=\lambda$ id, $\lambda=|Y|^{\prime}(0) /|Y|(0)$. It suffices to show $\left(\log \left|Y\left(t_{1}\right)\right|\right)^{\prime} \geq\left(\log y_{\Delta}\left(t_{1}\right)\right)^{\prime}$ for $t_{1} \leq t_{0}$. This follows from the arguments in the proof of (2.11) changing the role of M and \bar{M}. Note that in our case $S_{\bar{v}}(\bar{W}(0), \bar{W}(0))=\lambda|\bar{W}(0)|^{2}=\lambda|Y(0)|^{2}=|Y|^{\prime}(0)|Y(0)| \geq$ $g(\nabla Y(0), Y(0))=S_{v}(Y(0), Y(0))$.
(ii) Put $\nabla Y(0)=\lambda Y(0)$ and take a hypersurface N with a normal vector v such that $S_{v}=\lambda \mathrm{id}$. Then Y is an N-Jacobi field. Considering the same situation in $\bar{M}:=M^{d}(\delta)$ we have our result from (2.12-II). q.e.d.

Corollary (2.19). For a riemannian manifold with the curvature restriction $\delta \leq K_{\sigma} \leq \Delta$, let c_{v} be a normal geodesic, $Y(t)$ a Jacobi field along c_{v} with $Y(0)=0, Y(t) \perp \dot{c}_{v}(t)$. Then we have

$$
s_{\delta}(s) / s_{\delta}(t) \leq|Y(s)| /|Y(t)| \leq s_{\Delta}(s) / s_{\Delta}(t) \quad \text { for } o \leq s \leq t \leq \pi / \sqrt{ } \bar{\Delta}
$$

Corollary (2.20) (R.C.T.-III). Suppose again that $\delta \leq K_{\sigma} \leq \Delta$. Then
for $u \in T_{p} M$ with $|u|<\pi / \sqrt{\triangle}$ and for any $v \in T_{p} M$ we have

$$
s_{\Delta}(|u|) /|u| \leq\left|d \operatorname{Exp}_{p}(u) \cdot v\right| /|v| \leq s_{\delta}(|u|) /|u|, \quad u \perp v
$$

Remark. For a map $f: X \rightarrow Y$ between metric spaces define $\operatorname{dil} f:=$ $\sup \left\{d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) / d\left(x_{1}, x_{2}\right) ; x_{1}, x_{2} \in X\left(x_{1} \neq x_{2}\right)\right\}, \operatorname{dil}_{x} f:=\lim _{\varepsilon \rightarrow 0} \operatorname{dil} f_{\mid B_{\varepsilon}(x)}$. Then the above means that

$$
\operatorname{dil}_{u} \operatorname{Exp}_{p} \leq \max \left\{s_{\delta}(|u|) /|u|, 1\right\}, \operatorname{dil}_{\operatorname{Exp}_{p} u} \operatorname{Exp}_{p}^{-1} \leq \max \left\{|u| / s_{\Delta}(|u|), 1\right\}
$$

3°. Now we apply (2.12) to the volume comparison. Let $\left\{u_{1}, \cdots\right.$, $\left.u_{d-1}, u_{d}:=v\right\}$ be an orthonormal basis of $T_{p} M$ and $Y_{i}(t)=d \operatorname{Exp}_{p}(t v)\left(0, t u_{i}\right)$ $(i=1, \cdots, d-1)$ Jacobi fields along c_{v}. Then $\Theta_{p}^{M}(v, t):=\mid Y_{1}(t) \wedge \cdots \wedge$ $Y_{d-1}(t) \mid / t^{a-1}(t>0)$ is independent of the choice of u_{i} and equals |det $d \operatorname{Exp}_{p}(t v) \mid$. Then we get

Theorem (2.21) (Bishop [B-C]).
(i) Suppose that $r\left(\dot{c}_{v}(t)\right) \geq(d-1) \delta$ for $t \leq t_{o}(<$ conjugate distance in v). Then $t \rightarrow \Theta_{p}^{M}(v, t)\left(t / s_{\delta}(t)\right)^{d-1}$ is monotone decreasing and we get $\Theta_{p}^{M}(v, t)$ $\leq\left(s_{\delta}(t) / t\right)^{d-1}$. Especially conjugate distance is smaller than or equal to $\pi / \sqrt{\delta}$. Thus for a complete M with $r(v) \geq(d-1) \delta(>0), M$ is compact and $. d_{M} \leq \pi / \sqrt{\delta}$.
(ii) Assume that $K(t) \leq \Delta$ for $t \leq \pi / \sqrt{ } \bar{\Delta}$. Then $t \rightarrow \Theta_{p}^{M}(v, t)\left(t / s_{\Delta}(t)\right)^{d-1}$ is monotone increasing and we get $\Theta_{p}^{M}(v, t) \geq\left(s_{\Delta}(t) / t\right)^{d-1}$.

Proof. First note that $\left(s_{\delta}(t) / t\right)^{d-1}=\Theta_{p}^{M^{d}(\delta)}(v, t)$ for any p and $v \in$ $U_{p} M$. Then (i) follows from $g(t) \geq 0$ for (2.12-ii). (ii) follows similarly from (2.12-i).

Next we generalize the above to submanifold case.
Theorem (2.22) ([H-K]). (i) Let $M, N \longrightarrow M, v \in U_{p} N^{\perp}$ be as in Theorem (2.12). Suppose that $k(t) \geq \delta$ for $t \leq t_{o}$ ($<$ focal distance of N in v). Then we get

$$
\begin{aligned}
\left|\operatorname{det} d \operatorname{Exp}_{\nu}(t v)\right| t^{d-e-1} & \leq \prod_{i=1}^{e}\left(c_{\delta}(t)+\lambda_{i} s_{\delta}(t)\right) s_{\delta}(t)^{d-e-1} \\
& \leq\left(c_{\delta}(t)+\eta s_{\delta}(t)\right)^{e} \cdot S_{\delta}(t)^{d-e-1}
\end{aligned}
$$

where $\eta:=\left(\sum \lambda_{i}\right) / e$ is the mean curvature in direction v.
(ii) Let $N \hookrightarrow M$ be an immersed hypersurface, $v \in U_{p} N^{\perp}$ and .suppose that $r\left(\dot{c}_{v}(t)\right) \geq(d-1) \delta$ for $t \leq t_{o}$. Then we have

$$
\left|\operatorname{det} d \operatorname{Exp}_{\nu}(t v)\right| \leq\left(c_{\delta}(t)+\eta s_{\delta}(t)\right)^{d-1} .
$$

Proof. In a space form $\bar{M}=M^{d}(\delta), \bar{p} \in \bar{M}, \bar{v} \in U_{\bar{p}} \bar{M}$, take a locally
immersed submanifold \bar{N} with a normal \bar{v} such that $S_{\bar{v}}$ has the same eigenvalues as S_{v}. Put $Y_{i}(t)=d \operatorname{Exp}_{v} U_{i}(t), \bar{Y}_{i}(t)=d \operatorname{Exp}_{v} \bar{U}_{i}(t)$. From (2.11-III) we may take $\bar{Y}_{i}(t)=\left(c_{\delta}(t)+\lambda_{i} s_{\delta}(t)\right) \bar{E}_{i}(t)(1 \leq i \leq e)$ and $\bar{Y}_{j}(t)=$ $s_{\hat{o}}(t) \bar{E}_{j}(t)(e+1 \leq j \leq d-1)$, where $\left\{\bar{E}_{i}(0), \bar{E}_{j}(0)\right\}$ are orthonormal. Then from (2.12-ii) we get

$$
\begin{aligned}
\left|\operatorname{det} d \operatorname{Exp}_{\nu}(t v)\right| & =\left|Y_{1}(t) \wedge \cdots \wedge Y_{d-1}(t)\right| /\left|U_{1}(t) \wedge \cdots \wedge U_{d-1}(t)\right| \\
& \leq\left|\bar{Y}_{1}(t) \wedge \cdots \wedge \bar{Y}_{d-1}(t)\right|| | \bar{U}_{1}(t) \wedge \cdots \wedge \bar{U}_{d-1}(t) \mid \\
& \leq \prod_{i=1}^{e}\left(c_{\delta}(t)+\lambda_{i} s_{\delta}(t)\right) s_{\delta}(t)^{d-e-1} / t^{d-e-1}
\end{aligned}
$$

(ii) follows similarly from (2.12-iii).
q.e.d.
4° (Toponogov's comparison theorem). In surface theory GaussBonnet theorem plays very important roles. In higher dimensional case following Toponogov comparison theorem plays a similar role. Let $\left(\gamma_{1}\right.$, γ_{2}, γ_{3}) be a geodesic triangle, which consists of normal geodesics γ_{i} with $L_{r_{i}}+L_{r_{i+1}} \leq L_{r_{i+2}} . \quad$ Put $\alpha_{i}=\Varangle\left(-\dot{\gamma}_{i+1}\left(L_{r_{i+1}}\right), \dot{\gamma}_{i+2}(0)\right) . \quad(i+3 \equiv i)$

Theorem (2.23) (T.C.T-I). Suppose that $K_{\sigma} \geq \delta$ for all $\sigma \in G_{2}(T M)$. For a geodesic triangle $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$, where γ_{1}, γ_{3} are minimal and $L_{\gamma_{2}} \leq \pi / \sqrt{\delta}$ (no condition if $\delta \leq 0$), there exists in $M^{2}(\delta)$ a geodesic triangle ($\bar{\gamma}_{1}, \bar{\gamma}_{2}, \bar{\gamma}_{3}$) such that $L_{\bar{r}_{i}}=L_{r_{i}}$ and $\bar{\alpha}_{1} \leq \alpha_{1}, \bar{\alpha}_{3} \leq \alpha_{3}$.

Theorem (2.24) (T.C.T.-II). Suppose that $K_{\sigma} \geq \delta$ for all $\sigma \in G_{2}(T M)$. Let $\left(\gamma_{1}, \gamma_{2}\right)$ be normal geodesics emanating from p such that γ_{1} is minimal and $L_{r_{2}} \leq \pi / \sqrt{\delta} . \quad$ Put $\alpha=\Varangle\left(\dot{\gamma}_{1}(0), \dot{\gamma}_{2}(0)\right)$. Then for a pair of geodesics $\left(\bar{\gamma}_{1}, \bar{\gamma}_{2}\right)$ in $M^{2}(\delta)$ emanating from \bar{p} such that $L_{\bar{\gamma}_{i}}=L_{\gamma_{i}}, \Varangle\left(\dot{\bar{\gamma}}_{1}(0), \dot{\dot{\gamma}}_{2}(0)\right)=\alpha$, we have

$$
d\left(\gamma_{1}\left(L_{\gamma_{1}}\right), \gamma_{2}\left(L_{\gamma_{2}}\right)\right) \leq d\left(\bar{\gamma}_{1}\left(L_{\bar{r}_{1}}\right), \bar{\gamma}_{2}\left(L_{\bar{r}_{2}}\right)\right)
$$

These are global version of R.C.T. and B.C.T., and proof reduces to R.C.T., B.C.T. by dividing geodesic triangle into small or thin geodesic triangles and requires many steps (see [To], [B 4], [C-E], [K 6]). We need the case when the equality holds in T.C.T.-II.

Remark (2.25). Under the situation of T.C.T-II assume that $0<\alpha<$ π and $d\left(\gamma_{1}\left(L_{\gamma_{1}}\right), \gamma_{2}\left(L_{\gamma_{2}}\right)\right)=d\left(\bar{\gamma}_{1}\left(L_{\bar{\gamma}_{1}}\right), \bar{\gamma}_{2}\left(L_{\gamma_{2}}\right)\right)$. Let $\bar{\gamma}_{3}$ be the unique minimal geodesic from $\bar{\gamma}_{1}\left(L_{\bar{r}_{1}}\right)$ to $\bar{\gamma}_{2}\left(L_{\bar{r}_{2}}\right)$ and D be the domain of $T_{\bar{p}} M^{2}(\delta)$ obtained by lifting $\left(\bar{\gamma}_{1}, \bar{\gamma}_{2}, \bar{\gamma}_{3}\right)$ via $\operatorname{Exp}_{\bar{p}}^{-1}$. We choose a linear isometry $I: T_{\bar{p}} M^{2}(\delta) \rightarrow$ $T_{p} M$ with $\left.I \dot{\bar{\gamma}}_{i}(0)\right)=\dot{\gamma}_{i}(0)(i=1,2)$. Then $\operatorname{Exp}_{p} I(D)$ is an embedded surface of constant curvature δ with totally geodesic interior.

§ 3. Injectivity radius estimate

In this section we want to estimate the size of domains uniformly from below, over which normal coordinates are valid. For a complete riemannian manifold M we define the injectivity radius at $p \in M$ as

$$
i_{p}(M):=\operatorname{Sup}\left\{r>0 ; \operatorname{Exp}_{p \mid B_{r}\left(o_{p}\right)} \text { is a diffeomorphism }\right\}
$$

Then $p \rightarrow i_{p}(M)$ is a continuous function on M. The injectivity radius i_{M} is defined as $\min \left\{i_{p}(M) ; p \in M\right\}$. Now we assume that M is compact. Then i_{M} is positive and known to be characterized by each of the following:
(I) $\operatorname{Sup}\left\{r>0 ; \operatorname{Exp}_{p \mid B_{r}\left(o_{p}\right)}\right.$ is injective for every $\left.p \in M\right\}$,
(II) $\operatorname{Sup}\left\{t>0 ; d\left(c_{v}(0), c_{v}(t)\right)=t\right.$ for all $\left.v \in U M\right\}$
(III) minimum of half the length of the shortest (simple) closed geodesic and the shortest conjugate distance.

For these fundamental facts see e.g. ([B-C], [C-E], [G-K-M], [K 6], $[\mathrm{N}]$). Thus to estimate i_{M} we need to estimate conjugate distance and the length of closed geodesics. There is a standard way to estimate the first one in terms of curvature (§2). Namely conjugate distance $\geq \pi / \sqrt{\bar{\Delta}}$ if $K_{\sigma} \leq \Delta$. On the other hand estimate of the second one is more difficult and Cheeger observed that there exists a positive constant $c_{d}(\rho, V, \delta)$, where ρ, V are positive, with the following property: Closed geodesics c in compact riemannian manifold of dimension d with $K_{\sigma} \geq \delta, d_{M} \leq \rho, v_{M} \geq V$ have length $L_{c} \geq c_{d}(\rho, V, \delta)$. Cheeger proved this fact by showing that the existence of short closed geodesic implies small volome by T.C.T. ([C-1.2]). Here we give a proof due to Heintze-Karcher by more direct volume estimate using (2.22). (see also [Ma]).

Theorem (3.1) ([C2], [H-K]). In a compact riemannian manifold M with $K_{\sigma} \geq \delta$, every closed geodesic c has length L_{c}

$$
L_{c} \geq 2 \pi\left(v_{M} / \omega_{d}\right) s_{\delta}\left(\min \left(d_{M}, \pi / 2 \sqrt{\bar{\delta}}\right)\right)^{1-d}, \quad \omega_{d}:=v_{S^{d}(1)}
$$

Especially, if $\delta \leq K \leq \Delta$, then we have

$$
\begin{aligned}
& i_{M} \geq \min \left\{\pi / \sqrt{ } \bar{\Delta}, \pi\left(v_{M} / \omega_{d}\right) s_{\delta}\left(\min \left(d_{M}, \pi / 2 \sqrt{\delta}\right)\right)^{1-d}\right\} \\
& (\pi / 2 \sqrt{\delta}=+\infty \text { if } \delta \leq 0)
\end{aligned}
$$

Proof. Let c be a closed geodesic of M, which is a totally geodesic immersed submanifold of M. Then focal distance of c in any direction $v \in T c^{\perp}$ is not greater than $\pi / 2 \sqrt{\delta}$ by (2.12-III). Thus the maximal domain over which Exp_{ν} is a diffeomorphism is contained in $D:=\left\{v \in T c^{\perp}\right.$; $\left.|v|<l:=\min \left\{d_{M}, \pi / 2 \sqrt{\delta}\right\}\right\}$. Then we have by (2.22)

$$
\begin{align*}
v_{M} & \leq \int_{D}\left|\operatorname{det} d \operatorname{Exp}_{\nu}(v)\right| d v_{D} \\
& \leq \int_{c} d v_{c} \int_{0}^{l} d t \int_{\left.\left\{x \in T_{c(s)}\right) \perp ;|x|=t\right\}} c_{\delta}(t) s_{\delta}(t)^{d-2} / t^{d-2} d v_{S^{d-2}} t^{-2} \\
& =\int_{c} d v_{c} \int_{0}^{l} \omega_{d-2} c_{\delta}(t) s_{\delta}(t)^{d-2} d t=L_{c} s_{\delta}(l)^{d-1} \omega_{d-2} /(d-1) \\
& =\omega_{d} L_{c} s_{\delta}(l)^{d-1} / 2 \pi .
\end{align*}
$$

Remark. If δ is positive then we have $L_{c} \geq 2 \pi / \sqrt{\delta} \cdot v_{M} / v_{S^{d}(\hat{\delta})}$.
Problem. Is it possible to have a similar estimate if we only assume Ricci curvature restriction?

In Chapter 2 we need more precise estimate assuming only (strong) curvature restriction. Firstly Klingenberg obtained

Theorem (3.2) ([K 1]). Let M be a compact simply connected even dimensional riemannian manifold with $0<K_{\sigma} \leq \Delta$, where Δ is a positive constant. Then we have $i_{M} \geq \pi / \sqrt{\bar{\Delta}}$.

For the proof assume that $i_{M}<\pi / \sqrt{ } \bar{\Delta}$. Then there exists a simple closed geodesic c with $L_{c}=2 i_{M}<2 \pi / \sqrt{ } \bar{\Delta}$. Even dimensionality implies that there exists a parallel periodic vector field $X(t)(X(t) \perp \dot{c}(t))$ along c. For the second variation we get

$$
D^{2} E(c)(X, X)=\int_{0}^{L_{c}}\{g(\nabla X, \nabla X)-g(R(X, \dot{c}) \dot{c}, X)\} d t<0
$$

which means that closed curves c_{s} defined by $c_{s}(t):=\operatorname{Exp}_{c(t)} s X(t)$ have length smaller than $2 i_{M}$ for $s>0$. Then c_{s} may be lifted to smooth closed curves $\tilde{c}_{s}\left(\subset T_{c_{s}(0)} M\right)$ with $\tilde{c}_{s}(0)=o_{c_{s}(0)}, \operatorname{Exp}_{c_{s}(0)} \tilde{c}_{s}=c_{s}$. Since $\Phi: T M \rightarrow M$ $\times M$ defined by $\Phi(v)=\left(\tau_{M} v, \operatorname{Exp}_{\tau_{M^{v}}} v\right)$ is regular on $\{v \in T M ;|v|<\pi / \sqrt{\Delta}\}$, $\tilde{c}_{s}(s \rightarrow 0)$ converge to a smooth closed curve \tilde{c} in $T_{c(0)} M$, which covers c, a contradiction.

Then it was conjectured that the same fact holds also for odd dimensional case. But Berger showed that on Berger's spheres with $\delta \leq K_{\sigma} \leq 1$, $\delta<1 / 9$, there are closed geodesics of length less than 2π.

When $\min K / \max K$ is rather large we have
Theorem (3.3) ([C-G], [K-S]). Let M be a compact simply connected riemannian manifold with $(0<) \delta \leq K_{\delta} \leq \Delta, 4 \delta \geq \Delta$. Then we have $i_{M} \geq$ $\pi / \sqrt{\Delta}$.

We only comment about the proof given in [K-S]. We need global considerations. Let $\Lambda M:=\left\{c: S^{1} \rightarrow M ; H^{1}\right.$-closed curves on $\left.M\right\}$ be the
space of closed curves which has a structure of complete separable Hilbert manifold. The energy integral E on ΛM is a differentiable function whose critical points are closed geodesics and point curves. Let ϕ_{t} be a flow generated by $-\operatorname{grad} E$. Now for the proof we may assume that $\Delta=1$. Suppose that there exists a closed geodesic c_{1} of length $<2 \pi$ (i.e. $E_{c_{1}}<2 \pi^{2}$). We take the space of homotopies from a fixed point curve c_{o} to $c_{1}: \mathscr{H}:=$ $\left\{H:[0,1] \rightarrow \Lambda M\right.$; continuous curve with $H_{0}=c_{0}$ and $\left.H_{1}=c_{1}\right\}$. Then \mathscr{H} is non empty because M is simply connected and $\mathscr{H}(I):=\{H([0,1]) ; H \in \mathscr{H}\}$ is a ϕ-family, namely, $\mathscr{H}(I)$ is ϕ_{t}-invariant, because c_{0}, c_{1} are fixed under ϕ_{t}. We define the critical value κ of $\mathscr{H}(I)$ as $\kappa:=\operatorname{Inf}_{H \in \mathscr{H}} \operatorname{Max}_{s \in[0,1]} E\left(H_{s}\right)$. Then the essential part of the proof is to show that $\kappa=2 \pi^{2}$. For this we need lifting argument as above to see $\kappa \geq 2 \pi^{2}$ and the following modified Lyusternik-Schnirellman lemma: Let K^{\prime} be the set of critical points of E with E-value κ and of index less than or equal to 1 . Then for every open neighborhood W^{\prime} of K^{\prime} there exists an $H \in \mathscr{H}$ such that $H([0,1]) \subset \Lambda^{\varepsilon-}$ $\cup W^{\prime}$, where $\Lambda^{k-}:=\{c \in \Lambda M ; E(c)<\kappa\}$. We need the assumption $K_{\sigma} \geq$ $1 / 4$ to see that every closed geodesic of length greater than 2π has index ≥ 2 and this implies that $\kappa \leq 2 \pi^{2}$.

Now once we have $\kappa=2 \pi^{2}$ we have a closed geodesic c of index 1 and length 2π and a sequence of closed curves γ_{n} of length $<2 \pi$, which converges to c in ΛM. Then we can see that $c(1 / 2)$ is a conjugate point to $c(0)$. Comparing the situation with the case of sphere of constant curvature 1 , we have a parallel periodic vector field $X(\perp \dot{c})$ along c. At this point we assume that $\operatorname{dim} M(\geq 3)$ is odd. Then by the same argument as in (3.2) we have the second parallel periodic vector field $Y(\perp \dot{c})$ along c. As before $D^{2} E(c)(X, X), D^{2} E(c)(Y, Y)<0$ and this means that index of c, which is the number of negative eigenvalue of $D^{2} E(c)$, is greater than or equal to 2 , a contradiction.

Remark (3.4). P. Hartmann ([Har]) showed that the condition " $\Delta \geq$ K_{σ} and $r(v) \geq(d+2) \Delta / 4^{\prime \prime}$ implies that every geodesic of length greater than $2 \pi / \sqrt{\Delta}$ has index $d-1$. Thus the same conclusion holds under the weaker curvature condition " ".

Recalling the Berger's spheres we may ask for the compact simply connected riemannian manifolds M whether there exists $\varepsilon(\delta)>0$ such that we have $i_{M} \geq \varepsilon(\delta)$ whenever $\delta \leq K_{\sigma} \leq 1$. But this doesn't hold in general. In fact Wallach's examples give a family of compact simply connected homogeneous spaces M of seven dimension whose elements satisfy $\delta \leq K_{\sigma}$ ≤ 1 for some positive constant δ, but such that $\inf i_{M}=0$ ([Hu], [Es]).

On the other hand in 3-dimensional case we have
Theorem (3.5) ([Bu-T], [S 6]). Let M be a compact simply connected
riemannian manifold of dimension 3. Assume that $K_{\sigma} \leq 1$, and $r(v) \geq R$ for all $v \in U M$, where R is a positive constant. Then for any $b>1$ we have

$$
i_{M} \geq \min \left\{2 b(b-1) \pi^{2} /\left(b^{2} \pi^{2}+(b-1)^{2}\right), \pi\left[1+\left(e^{b / R}-1\right)^{4} / \pi^{2}\right]^{-1 / 2}\right\}
$$

In this case we consider in stead of homotopy the Plateau problem for a short (simple) closed geodesic c and reduce the estimate of L_{c} to the estimate of the first eigenvalue of Laplacian of the area minimizing surface bounding c.

Problem. For compact simply connected riemannian manifolds, what is $\inf \left\{\delta ; i_{M} \geq \pi\right.$ for all M with $\left.\delta \leq K_{\sigma} \leq 1\right\}$? (we only know that this is not greater than $1 / 4$ and not smaller than $1 / 9$) and what is $\inf \{\delta$; there exists $\varepsilon(\delta)>0$ such that $i_{M} \geq \varepsilon(\delta)$ for all M with $\left.\delta \leq K_{\sigma} \leq 1\right\}$?

Remark. We consider the space \mathfrak{M} of smooth riemannian structures on a compact manifold M with C^{2}-topology. Then the function $g \rightarrow i_{M}(g)$, the injectivity radius with respect to g, is continuous on \mathfrak{M} ([Eh]). But we don't know whether there exists $\delta(\varepsilon)$ such that $i_{M} \geq \pi-\varepsilon$ for any simply connected compact riemannian manifolds with $1 \geq K \geq 1 / 4-\delta(\varepsilon)$.

With respect to the volume estimate we can ask whether there exists a point $p \in M$ such that $i_{p}(M)$ may be estimated from below. For instance

Theorem (3.6) (Heintze-Gromov [Bu-K], [G 2]). Let M^{d} be a compact riemannian d-manifold with $-1 \leq K_{\sigma}<0$. Then there exists a point $p \in M$ such that $i_{p}(M) \geq 4^{-(d+3)}$.

§ 4. Cut locus and distance function

$\mathbf{1}^{\circ}$. Next we define the notion of the cut locus. Let M be a compact riemannian manifold. For $v \in U_{p} M, p \in M$ the cut point of p along c_{v} is defined as the last point on c_{v} to which geodesic arc of c_{v} is minimal. Namely setting $t(v):=\operatorname{Sup}\left\{t>0 ; d\left(c_{v}(t), p\right)=t\right\}(<\infty), \operatorname{Exp}_{p} t(v) v$ is the cut point of p along c_{v}. We also call $t(v) v \in T_{p} M$ the tangent cut point. The set of (tangent) cut points of p along all normal geodesics emanating from p is called the (tangent) cut locus of p and denoted by $C_{p}\left(\widetilde{C}_{p}\right)$. It is not difficult to see that $v \rightarrow t(v)$ is a continuous function on $U M$ and \widetilde{C}_{p} is homeomorphic to S^{d-1}. Then a d-cell $\mathscr{I}_{p}:=\left\{t v \in T_{p} M ; 0 \leq t<t(v)\right.$, $\left.v \in U_{p} M\right\}$ is a maximal domain over which Exp_{p} is a diffeomorphism, and its boundary \widetilde{C}_{p} is mapped onto C_{p} via Exp_{p}. Thus M is obtained from C_{p} by attaching a d-cell and cut locus contains the essence of the topology of M. The structure of cut locus is interesting in connection with the singularity of the exponential mapping. See e.g., $[\mathrm{Bu} 1-3]$, [Gl-S], [I],
[Ko], [My 2], [N-S 1,2], [Su 1], [Wa], [Wa 1,3], [W 2,3]. But still we don't know much about the structure of cut locus, e.g., we can ask

Problem. What can we say about the structure of cut loci of compact simply connected homogeneous manifolds? Do they have the intersection with the conjugate loci? (for symmetric spaces see [Cr], [Nai], [Sa 2,3], [Ta]).
$\mathbf{2}^{\circ}$. Next we return to the volume comparison theorem. Integrating the volume element comparison theorem (2.21) we get

Theorem (4.1) (Bishop-Gromov). Let M be a complete riemannian manifold such that $r(v) \geq(d-1) \delta$ for all $v \in U M$. Then we have for $0<r \leq$ $R, v_{B_{R}(p)} / v_{B_{r}(p)} \leq b_{\dot{\delta}}^{d}(R) / b_{\dot{\partial}}^{d}(r)$, where $b_{\delta}^{d}(r)$ denotes the volume of r-ball in $M^{d}(\delta)$ which is independent of the choice of the center.

Proof. Put

$$
\begin{aligned}
\bar{\Theta}_{p}^{M}(v, t) & :=\left\{\begin{array}{cc}
\Theta_{p}^{M}(v, t) & \text { for } t<t(v)(\leq \pi / \sqrt{\delta}) \quad \text { and } \\
0 & \text { for } t \geq t(v)
\end{array}\right. \\
\bar{w}(t) & :=\left\{\begin{array}{cc}
\left(s_{\bar{o}}(t) / t\right)^{d-1} & \text { for } t<\pi / \sqrt{\delta} \\
0 & \text { for } t \geq \pi / \sqrt{\delta}
\end{array}\right.
\end{aligned}
$$

where we set $\pi / \sqrt{\delta}=+\infty$, if $\delta \leq 0$. We may assume that $r<\pi / \sqrt{\delta}$, otherwise both sides of our inequality equal 1. Then from (2.21) we get for $0 \leq s \leq r, r \leq t \leq R$

$$
\begin{gathered}
\bar{\Theta}_{p}^{M}(v, t) \bar{w}(s) \leq \bar{\Theta}_{p}^{M}(v, s) \bar{w}(t), \quad \text { and by integration } \\
\int_{r}^{R} \bar{\Theta}_{p}^{M}(v, t) t^{d-1} d t / \int_{r}^{R} \bar{w}(t) t^{d-1} d t \leq \int_{0}^{r} \bar{\Theta}_{p}^{M}(v, s) s^{d-1} d s / \int_{0}^{r} \bar{w}(s) s^{d-1} d s .
\end{gathered}
$$

Now from the above we have

$$
\begin{aligned}
& \frac{v_{B_{R}(p)}-v_{B_{r}(p)}}{b_{\delta}(R)-b_{\delta}(r)}=\frac{\int_{S^{d-1}(1)} d v \int_{r}^{R} \bar{\Theta}_{p}^{M}(v, t) t^{d-1} d t}{\omega_{d-1} \cdot \int_{r}^{R} w(t) t^{d-1} d t} \\
& \quad=1 / \omega_{d-1} \cdot \int_{S^{d-1}} d v \int_{r}^{R} \bar{\Theta}_{p}^{M}(v, t) t^{d-1} d t / \int_{r}^{R} \bar{w}(t) t^{d-1} d t \\
& \quad \leq 1 / \omega_{d-1} \cdot \int_{S^{d-1}} d v \int_{0}^{r} \bar{\Theta}_{p}^{M}(v, s) s^{d-1} d s / \int_{0}^{r} \bar{w}(s) s^{d-1} d s \\
& \quad=v_{B_{r}(p)} / b_{\delta}^{d}(r),
\end{aligned}
$$

from which we have easily our result. q.e.d.

Corollary (4.2) (Bishop). Under the hypothesis of the theorem we get
(i) $v_{B_{r}(p)} \geq v_{M} \cdot \int_{0}^{t} s_{\delta}^{d-1}(s) d s / \int_{0}^{d_{M}} s_{\delta}^{d-1}(s) d s$, if M is compact.
(ii) $v_{B_{r}(p)} \leq b_{\dot{\delta}}^{d}(r)$.
(iii) Suppose that δ is positive. Then we have $v_{M} \leq v_{S^{d}(\delta)}$ and the equality holds if and only if M is isometric to $S^{d}(\delta)$.

Remark (4.3). Let M be a complete riemannian manifold with $K_{\sigma} \leq$ Δ. Then we have from (2.21) that $v_{B_{r}(p)} \geq b_{\Delta}(r)$, if $r<i_{M}$.
3°. Now we consider convexity. A subset $S \subset M$ is called strongly convex if S has the following property: for any $x, y \in S$ we have the unique minimal geodesic $\gamma \in \operatorname{Min}(x, y)$ and $\gamma\left(\left[0, L_{\gamma}\right]\right) \subset S$. Suppose that $K_{\sigma} \leq \Delta$ for all $\sigma \in G_{2}(T M)$. Then it is known that for $p \in M$, every open ball $B_{r}(p)$ is strongly convex if $r<1 / 2 \min \left\{i_{p}(M), \pi / \sqrt{ } \bar{\Delta}\right\}$. In particular there exists a positive continuous function $p \rightarrow r(p)$ such that $B_{r}(p)$ is strongly convex if $r<r(p)$ (J.H.C. Whitehead). Next assume that $r<\left\{i_{p}(M), \pi / 2 \sqrt{\bar{\Delta}}\right\}$. We consider the distance function $d_{p}: B_{r}(p) \rightarrow \boldsymbol{R}^{+}$, defined by $d_{p}(m):=$ $d(p, m)$. Then d_{p} is smooth except for p and we get

Proposition (4.4). (i) $\operatorname{grad} d_{p}(m)=\dot{c}_{v}\left(d_{p}(m)\right)$, where c_{v} is the unique normal minimal geodesic from p to m.
(ii) If $x \perp \operatorname{grad} d_{p}$, then $\nabla_{x} \operatorname{grad} d_{p}=\nabla Y\left(d_{p}(m)\right)$, where Y is the Jacobi field along c_{v} with $Y(0)=0, Y\left(d_{p}(m)\right)=x$.
(iii) $\quad c_{\Delta} / s_{\Delta}(r)|x|^{2} \leq \operatorname{Hess} d_{p}(x, x) \leq|x|^{2}\left\{1+\Delta / 2 \cdot d_{p}(m)^{2}\right\} / d_{p}(m)$ for $x \perp$ $\operatorname{grad} d_{p}(m) . \quad \operatorname{grad} d_{p}(m)$ belongs to the null space of Hess d_{p}.

Proof. Fox $x \in T_{m} M, m \in B_{r}(p)$ put $\alpha(s, t):=\operatorname{Exp}_{p} t(v+s / l \cdot w), 0 \leq$ $t \leq l:=d_{p}(m)$, where $w \in T_{m} M$ with $d \operatorname{Exp}_{p} \iota_{l v} w=x$. Then we have $x \cdot d_{p}$ $\left(=g\left(x, \operatorname{grad} d_{p}\right)\right)=d / d s_{\mid s=0} \int_{0}^{l}|\partial \alpha / \partial t| d t=g(\partial \alpha / \partial s(0, l), \partial \alpha / \partial t(0, l))$, namely $\operatorname{grad} d_{p}=\partial \alpha / \partial t(0, l)=\dot{c}_{v}(l)$. Next note that $\nabla_{x} \operatorname{grad} d_{p}=\nabla_{\partial /\left.\partial s\right|_{s=0}} \partial \alpha /$ $\partial t(s, l) /|\partial \alpha / \partial t(s, l)|=\nabla_{\partial / \partial t t_{t}=l}(\partial \alpha / \partial s)(0, l)=\nabla Y(l)$, if $x \perp \operatorname{grad} d_{p}$. Hence Hess $d_{p}(x, x)=g\left(\nabla_{x} \operatorname{grad} d_{p}, x\right)=g(Y(l), \nabla Y(l))$ if $x \perp \operatorname{grad} d_{p}$. First applying (2.18) we get Hess $d_{p}(x, x) \geq c_{\Delta} / s_{\Delta}(l)|x|^{2} \geq\left. c_{\Delta}\left|s_{\Delta}(r)\right| x\right|^{2}$. On the other hand we get $|Y(l)-l \nabla Y(l)| \leq|Y(l)| \Delta t^{2} / 2$. In fact for $0 \leq s \leq 1$ and for any unit parallel vector field P, we get

$$
\begin{aligned}
& |g(Y(s)-s \nabla Y(s), P(s))|^{\prime} \leq|g(s \nabla \nabla Y(s), P(s))|=\left|s g\left(R\left(\dot{c}_{v}, Y(s)\right) \dot{c}_{v}, P(s)\right)\right| \\
& \quad \leq \Delta|Y(s)| s \leq|Y(l)| s_{\Delta}(s) / s_{\Delta}(l) \cdot \Delta s \leq|Y(l)| \Delta s \quad \text { by }(2.19) .
\end{aligned}
$$

By integration we have

$$
|g(Y(s)-s \nabla Y(s), P(s))| \leq|Y(l)| \Delta s^{2} / 2, \quad \text { and consequently }
$$

$$
-|x|^{2}+l \text { Hess } d_{p}(x, x) \leq|g(Y(l)-l \nabla Y(l), Y(l))| \leq|x|^{2} \Delta l^{2} / 2
$$

The last assertion is clear from $\nabla_{\operatorname{grad} d_{p}} \operatorname{grad} d_{p}=0$.
q.e.d.

In the same way we get
Proposition (4.5). We put $f:=d_{p}^{2} / 2$ which is smooth on $B_{r}(p)$.
(i) $\operatorname{grad} f(m)=-\operatorname{Exp}_{m}^{-1} p$
(ii) $r \cdot c_{\Delta} / s_{\Delta}(r)|x|^{2} \leq \operatorname{Hess} f(x, x) \leq\left(1+\Delta r^{2} / 2\right)|x|^{2}$.
4°. Now we consider the global behavior of the distance function d_{p} from a fixed point $p \in M$ for a compact riemannian manifold. d_{p} is smooth except $M \backslash C_{p} \cup\{p\}$ by the same reason as above. More precisely

Lemma (4.6). Let $C^{1}(p):=\left\{q \in C_{p}\right.$; there exist at least two minimal geodesics joining p to q \}. Then $C^{1}(p)$ is dense in C_{p} and d_{p} is not differentiable at any point in $C^{1}(p)$.

The proof is not so difficult and a nice excercise (see [Bi], [Wol]). Nevertheless Gromov defined the notion of critical points of d_{p} :

Definition (4.7). $\quad p$ is by definition a critical point of d_{p}, at which d_{p} takes the unique minimum. Next for $q \neq p$ it is called a critical point of d_{p} if for any $v \in U_{q} M$ there exists a minimal geodesic $\gamma \in \operatorname{Min}(p, q)$ such that $g\left(v, \dot{r}\left(d_{p}(q)\right) \geq 0\right.$.

From the definition if $q(\neq p)$ is critical then $q \in C^{1}(p)$.
Lemma (4.8) (Berger). Let q satisfy $d(q, p)=\operatorname{Max}_{x \in M} d(p, x)$. Then q is a critical point of d_{p}.

Proof. Take a curve $c(s):=\operatorname{Exp}_{p}(-s v)$ and $\gamma_{s} \in \operatorname{Min}(p, c(s))$. Put $\alpha_{s}:=\Varangle\left(\dot{c}(s), \dot{\gamma}_{s}\left(d(p, c(s))\right.\right.$. We may assume that $K_{\delta} \geq-\delta(\delta>0)$. By T.C.T. and $d(p, q) \geq d(p, c(s))$ we get
$\cosh \sqrt{\delta} d(p, c(s)) \leq \cosh \sqrt{\bar{\delta}} d(p, q) \leq \cosh \sqrt{\delta} s \cosh \sqrt{\delta} d(p, c(s))$
$-\cos \alpha_{s} \sinh \sqrt{\delta} s \sinh \sqrt{\delta} d(p, c(s))$, from which follows
$\cos \alpha_{s} \cosh \sqrt{\delta} s / 2 \sinh \sqrt{\delta} d(p, c(s)) \leq \cosh \sqrt{\delta} d(p, c(s)) \sinh \sqrt{\delta} s / 2$.
Letting $s \rightarrow 0$, we may assume $\dot{\gamma}_{s}(0)$ converge to $w \in U_{q} M$. Then $\gamma(t):=$ $\operatorname{Exp}_{p} t w$ is a desired minimal geodesic.

On the other hand if $m \in M$ is not a critical point, there exists a $t(m)$ $\in U_{m} M$ such that $g(t(m), \dot{\gamma}(d(p, m))<0$ (or equivalently >0) for every $\gamma \in$ $\operatorname{Min}(p, m)$. Moreover we easily see that we may choose $\pi \geq \alpha(m)>\pi / 2$ such that $\Varangle(t(m), \dot{\gamma}(d(p, m)))>\alpha(m)$ for every $\gamma \in \operatorname{Min}(p, m)$.

Lemma (4.9). Let m be not critical for d_{p}. Then there exists a neighborhood U of m and a smooth vector field $t(n), n \in U$ such that $\Varangle(t(n)$, $\dot{\gamma}(d(p, n)))>\alpha(m)$ for all $\gamma \in \operatorname{Min}(p, n)$.

In fact, take a convex open ball $B_{r}(m)$ and define $t(n), n \in B_{r}(m)$ as the parallel translation of $t(m)$ along the unique $\gamma_{m, n} \in \operatorname{Min}(m, n)$, from which we have a smooth vector field t on $B_{r}(m)$. Then it is not difficult to see that there exists $0<r_{o}<r$ such that the assertion of the lemma holds for the above t and $U=B_{r_{0}}(m)$.

Now by T.C.T. we may see that d_{p} is strictly monotone decreasing along trajectories of $t(n)$. In fact we may show using T.C.T.

Lemma (4.10). Let ϕ_{t} be the flow generated by t and $V=B_{r_{1}}(m)$, $0<r_{1}<r_{o}$. Then for $l_{o}>0$, there exist $\delta>0$ and $\varepsilon\left(t, l_{0}\right)$, which is continuous and positive for $t>0$ with the following property: $d_{p}(n)-d_{p}\left(\phi_{t} n\right) \geq \varepsilon\left(t, l_{o}\right)$ for $0 \leq t \leq \delta$ and $n \in \bar{V}$ with $d(p, n) \geq l_{0}$.

Now we give Gromov's isotopy lemma.
Lemma (4.11). Let $B_{r_{2}}(p) \subset B_{r_{1}}(p)$ be concentric metric balls centered at p. Suppose that $A:=\overline{B_{r_{1}}(p) \backslash B_{r_{2}}(p)}$ contains no critical points of d_{p}. Then for any open neighborhood U of $B_{r_{1}}(p)$ there exists an isotopy of M sending $B_{r_{1}}(p)$ into $B_{r_{2}}(p)$ and fixing outside U.

Proof. Take a finite open cover $\left\{U_{i}\right\}$ of the compact set A such that $\left\{U_{i}, t_{i}\right\}$ are pairs given in (4.9) with $\bar{U}_{i} \subset U$. Let $\left\{\varphi_{i}\right\}$ be the partition of unity subordinated to $\left\{U_{i}\right\}$ and we define a vector field t on a neighborhood of A as $t(y):=\sum \varphi_{i}(y) t_{i}(y)$. Then $t_{\mid A}$ satisfies also the same property as t_{i} and we may extend t to a smooth vector field on M by setting 0 outside U. Then this vector field provides a desired isotopy. In fact it is easy to see that there exists an $R>0$ such that $\varphi_{R}\left(B_{r_{1}}(p)\right) \subset B_{r_{2}}(p)$, where φ_{t} denotes the flow generated by t.
q.e.d.

Corollary (4.12). Let M be a compact riemannian manifold. If d_{p} has only two critical points, then M is homeomorphic to the sphere.

In fact from (4.8) we see that there exists a unique point $q \in M$ with $d(p, q)=\operatorname{Max} d(p, m)$. Then from (4.11) M may be covered by two differentiably embedded disks. Then M is homeomorphic to the sphere (with respect to this I would like to thank T. Yoshida for showing me a simple proof, see also $[R u]$).

§ 5. Center of mass techniques ($[\mathrm{Ka}],[\mathrm{Bu}-\mathrm{K}],[$ Gro-K])

For a locally finite open cover $\left\{U_{\alpha}\right\}$ of M suppose that we have a
family of smooth maps $g_{\alpha}: U_{\alpha} \rightarrow N$ into a fixed manifold N. If N is a linear space then by a partition of unity $\left\{\phi_{\alpha}\right\}$ which is subordinate to $\left\{U_{\alpha}\right\}$ we can glue $\left\{g_{\alpha}\right\}$ to a smooth map $g:=\sum \phi_{\alpha} g_{\alpha}: M \rightarrow N$. But in non-linear case this breaks down. Nevertheless if N is a riemannian manifold and each $g_{\alpha}\left(U_{\alpha}\right)$ is contained in a convex ball we can take the average of $\left\{g_{\alpha}(p)\right\}$ by considering the "center" of $\left\{g_{\alpha}(p)\right\}$. More precisely we consider firstly the following situation: Let A be a normalized measure space with total volume 1 (e.g., finite set of points, compact riemannian manifolds etc.) and $B_{r}(n), n \in N$, a strongly convex neighborhood in N. Then for a measurable map $f: A \rightarrow B_{r}(n)$ we want to define the center of mass $C_{f} \in$ $B_{r}(n)$ of f. We define as in the euclidean case,

$$
\begin{equation*}
P_{f}(p):=1 / 2 \int_{A} d^{2}(p, f(a)) d a, \quad p \in B_{r}(n) . \tag{5.1}
\end{equation*}
$$

Then we have from (4.5)
Lemma (5.2). Suppose that $K_{\sigma} \leq \Delta$ on $B=B_{r}(n)(r<\pi / 4 \sqrt{ } \bar{\Delta})$. Then P_{f} is smooth on B and the following hold.
(i) $\operatorname{grad} P_{f}(p)=-\int_{A} \operatorname{Exp}_{p}^{-1} f(a) d a$.
(ii) $\left(1+2 \Delta r^{2}\right)|x|^{2} \geq$ Hess $P_{f}(x, x) \geq 2 r c_{\Delta}(2 r) / s_{\Delta}(2 r) \cdot|x|$.

Then from (i) $-\operatorname{grad} P_{f}$ points inward at the boundary of B and (ii) means that P_{f} is convex on B. Thus P_{f} admits the unique minimum point C_{f} in B, which is called the center for mass of f. Note that C_{f} is characterized by

$$
\begin{equation*}
\operatorname{grad} P_{f}\left(C_{f}\right)=0 \tag{5.3}
\end{equation*}
$$

C_{f} has the following natural property: let $\varphi: A \rightarrow A$ be a measure preserving transformation and $\Phi: N \rightarrow N$ an isometry. Then we get

$$
\begin{equation*}
C_{\Phi \circ f \circ \varphi}=\Phi\left(C_{f}\right) \tag{5.4}
\end{equation*}
$$

Remark (5.5). Consider finite points $\left\{n_{i}\right\} \subset B$ with weights $\left\{\phi_{i}\right\}\left(\phi_{i} \geq 0\right.$, $\sum \phi_{i}=1$). We define $P_{\left\{n_{i}, \phi_{i}\right\}}(p):=1 / 2 \sum \phi_{i}(p) d^{2}\left(p, n_{i}\right)$. In this case the center of $\left\{n_{i}, \phi_{i}\right\}$ will be denoted by $C_{\left\{n_{i}, \phi_{i}\right\}}$.

The notion of center of mass has many applications ([C 2], [Gro-K], [Bu-K], [Gro-K-R 1], [IH-R], [MO-R 1], [Ru 3], [Y 1] etc.). We just mention the average of differentiable maps.

Let M be a complete riemannian manifold and $\left\{m_{i}\right\}_{i \in Z^{+}}$a discrete $r / 3$-dense subset such that $d\left(m_{i}, m_{j}\right)>r / 3 \quad(r<$ convexity radius) and $\bigcup_{i} B_{r / 3}\left(m_{i}\right)=M$. Let $F_{i}: B_{r}\left(m_{i}\right) \rightarrow N\left(i \in \boldsymbol{Z}^{+}\right)$be smooth maps into a riemannian manifold N such that for any $m \in M\left\{F_{i}(m) ; d\left(m, m_{i}\right) \leq r\right\}$ is
contained in a strongly convex neighborhood B_{m} of N. Now to glue together F_{i} 's to a smooth map $F: M \rightarrow N$ we define weights $\left\{\phi_{i}, i \in Z^{+}\right\}$as follows: take a C^{∞}-function $\psi: \boldsymbol{R}^{+} \rightarrow[0,1]$ with $\psi[0,2]=1, \psi[3, \infty]=0$, $\psi^{\prime}(t) \leq 0$ and define $\phi_{i}(m):=\psi\left(3 d\left(m, m_{i}\right) / r\right) / \sum_{j} \psi\left(3 d\left(p, m_{j}\right) / r\right)$. Now for $p \in M$ we set $F(m):=C_{\left\{F_{i}(m), \phi_{i}(m)\right\}}$. Also we define $v: D(\subset M \times N) \rightarrow$ $T N$ as $v(m, n):=-\sum \phi_{i}(m) \operatorname{Exp}_{n}^{-1} F_{i}(m) \in T_{n} N\left(=\operatorname{grad} P_{\left\{m_{i}, \phi_{i}\right\}}(n)\right.$, with $P_{\left\{m_{i}, \phi_{i}\right\}}(q):=1 / 2 \sum \phi_{i}(m) d^{2}\left(q, F_{i}(m)\right)$), where D is a sufficiently small neighborhood of graph F. Then we have by definition $v(m, F(m))=0$. We want to show that F is smooth. For that purpose set $D_{1} v(m, n): T_{m} M$ $\rightarrow T_{n} N\left(\right.$ resp. $\left.D_{2} v(m, n): T_{n} N \rightarrow T_{n} N\right)$ by

$$
\begin{aligned}
& D_{1} v(m, n)(\dot{m}(0)):=d / d t_{t=0} v(m(t), n) \\
& \left(\operatorname{resp} . D_{2} v(m, n)(\dot{n}(0)):=V_{\partial /\left.\partial t\right|_{t}=0} v(m, n(t))\right) .
\end{aligned}
$$

Theorem (5.6). F is smooth and we get
(i) $D_{2} v(m, F(m))$ is invertible
(ii) $\quad D_{1} v(m, F(m))+D_{2} v(m, F(m)) d F(m)=0$.

Proof. From (4.5) we have $g\left(\nabla_{x} v(m, F(m)), x\right)=\operatorname{Hess} P_{\left\{m_{i}, \phi_{i}\right\}}(x, x) \geq$ $2 s c_{\Delta} / s_{\Delta}(2 s) \cdot|x|^{2}\left(s\right.$: radius of $\left.B_{m}\right)$, from which (i) is clear. Next we consider the horizontal and vertical components of $d / d t_{t=0} v(p, n(t)) \in T_{v(m, n)} T N$: $\left(d / d t_{t=0} v(m, n(t))\right)^{h}=d / d t_{t=0}\left(\tau_{N} v(m, n(t))\right)=\dot{n}(0)$,

$$
\left(d / d t_{t=0} v(m, n(t))\right)^{v}=\nabla_{\partial / \partial t \mid t=0} v(m, n(t))=D_{2} v(m, n) \dot{n}(0)
$$

Thus if $v(m, n)=0$, the horizontal components span the tangent space to the zero section and $\left\{d / d t_{t=0} v(m, n(t))\right\}$ is transversal to the zero section by (i). Now our assertion follows from the implicit function theorem.

Remark. $d F(m)$ has maximal rank if and only if $D_{1} v(m, F(m)$) has maximal rank.

Next we give another application. Let M be a compact riemannian manifold, and $\tau_{E}: E \rightarrow M$ a riemannian vector bundle with a metric connection.

Let $\tau_{P}: P \rightarrow M$ be the principal bundle of orthonormal frames associated to τ_{E}. Then P carries a riemannian structure so that $\tau_{P}: P \rightarrow M$ is a riemannian submersion with totally geodesic fibers.

Now let $u: M \rightarrow P$ be a continuous cross section. We want to approximate u by smooth cross sections. For any $m \in M$ we have a strongly convex open ball $B_{r}(m)\left(r<\right.$ convexity radius). Firstly we define $v_{m}: B_{r}(m)$ $\rightarrow P_{m}:=\tau_{P}^{-1}(m)$ as follows: for $n \in B_{r}(m)$ we define $v_{m}(n)$ as the parallel translation of $u(n)$ along the unique minimal geodesic from n to m. Note that taking r sufficiently small $\left\{v_{m}(n) ; n \in B_{r}(m)\right\}$ is contained in a convex
neighborhood C_{m} in P_{m}. We need as before a weight function $\eta: M \times M$ $\rightarrow \boldsymbol{R}^{+}$with the following properties: put $\eta^{n}(m):=\eta(m, n) . \quad$ Then $\eta^{n}: M \rightarrow$ \boldsymbol{R}^{+}is a smooth function with supp $\eta^{n} \subset B_{s}(n)$ and $\int_{M} \eta^{n}(m) d n=1$ (see (2.3.5)).

Now for $m \in M$, we define a function $P_{m, n}: C_{m} \rightarrow \boldsymbol{R}^{+}$as

$$
P_{m, \eta}(p):=1 / 2 \int_{M} d^{2}\left(p, v_{m}(n)\right) \eta^{n}(m) d n
$$

As in (5.2) $P_{m, \eta}$ is a smooth function which has the unique minimum point $u^{(s)}(m) \in P_{m}$ (the center of mass). Also as in (5.6) $m \in M \rightarrow u^{(s)}(m)$ $\in P$ gives a smooth section of P. Letting $s \rightarrow 0, \eta$ converge to the Dirac measure and $u^{(s)}$ converge to u in the C^{1}-topology.

Note that because of (5.4) the above construction may be done equivariantly.

Chapter 2. Comparison Theorems

§ 1. 1/4-pinched manifolds

Rauch proposed the following approach to global riemannian geometry ([R 1-3]): Recall that if M is a complete simply connected riemannian manifold of positive constant curvature δ then M is isometric to the sphere $S^{a}(\delta)$. Now if curvature K_{σ} of M varies in the range [$\left.\delta, \Delta\right]$, where pinching number δ / Δ is close to 1 , does M have similar topological property as sphere? Rauch gave an affirmative answer when $\delta / \Delta \approx 3 / 4$. Then pinching constant δ / Δ was improved by Berger, Klingenberg, Toponogov and Tsukamoto and their ideas provided many useful tools for riemannian geometry ([B 1-2], [K 1-3], [T 2], [Ts 1], [C-E], [G-K-M], [K 6]).

Theorem (1.1) (sphere theorem). Let M be a complete simply connected riemannian manifold whose sectional curvature satisfies

$$
(0<) \delta \leq K_{\delta} \leq \Delta, \quad \text { with } \quad \delta / \Delta>1 / 4
$$

Then M is homeomorphic to the sphere.
Proof. We may assume that $\Delta=1 . \quad M$ is compact and $d_{M} \leq \pi / \sqrt{\delta}$ by (1.1.21). Proof depends on the following two facts:
(i) Injectivity radius estimate ((1.3.3)), i.e., $i_{M} \geq \pi$.
(ii) Toponogov comparison theorem ((1.2.24)).

Now take two points $p, q \in M$ with $d(p, q)=d_{M} \geq \pi$. For any point $m \in M$ we show that either $d(p, m)<\pi$ or $d(q, m)<\pi$ holds. In fact
assume that $d(p, m) \geq \pi$. Take a minimal geodesic $\gamma_{p, m} \in \operatorname{Min}(p, m)$. From (1.4.8) there exists a $\gamma_{p, q} \in \operatorname{Min}(p, q)$ with $\Varangle\left(\dot{\gamma}_{p, m}(0), \dot{\gamma}_{p q}(0)\right) \leq \pi / 2$. Then T.C.T.-(II) implies that $d(m, q)<\pi$. Then for any normal goedesic c_{v} emanating from p, there is the uniquely determined $(0<) t(v)<\pi$ with $d\left(p, c_{v}(t(v))\right)=d\left(q, c_{v}(t(v))\right) . v \in U_{p} M \rightarrow c_{v}(t(v))$ is continuous and injective by (1.3.3). Namely we have a homeomorphism φ from $U_{p} M\left(\cong S^{d-1}\right)$ onto the equator $E:=\{m ; d(p, m)=d(q, m)\}$. Similarly we get a homeomorphism $\psi ; U_{q} M \cong E$. Since we have two disks $M^{+}\left(\right.$resp. $\left.M^{-}\right):=$ $\{m \in M ; d(p, m) \leq d(q, m)\}($ resp. $:=\{m \in M ; d(p, m) \geq d(p, m)\})$ with $M=$ $M^{+} \cup M^{-}$and common boundary E, it is not difficult to get a homeomorphism between S^{d} and M. q.e.d.

Next we give Berger's rigidity theorem ([B 2], [Cha 2], [C-E], [K 6]).
Theorem (1.2). Let M be a complete riemannian manifold whose sectional curvature K_{σ} satisfies

$$
(0<) \delta \leq K_{\sigma} \leq \Delta \quad \text { with } \quad \delta / \Delta \geq 1 / 4
$$

Then we have the following:
(i) If $d_{M}=\pi / \sqrt{\delta}$, then M is isometric to the sphere $S^{d}(\delta)$.
(ii) If $d_{M}>\pi / 2 \sqrt{\delta}$, then M is homeomorphic to the sphere.
(iii) If $d_{M}=\pi / 2 \sqrt{\delta}$ and simply connected, then M is isometric to one of the simply connected rank one symmetric spaces of compact type (i.e. CROSS, sphere or various projective spaces with canonical metric).

We only give outline of proof (for details see the above papers). We may assume $\Delta=1, \delta=1 / 4$. First case will be treated more generally in (2.1). For (ii) we show firstly that M is simply connected in this case. In fact otherwise let $\pi: \tilde{M} \rightarrow M$ be the universal covering of M. Take $p, q \in$ M with $d(p, q)=d_{M}$. For different points $\tilde{p}_{1}, \tilde{p}_{2} \in \pi^{-1}(p)$ take a minimal geodesic $\tilde{\gamma}_{\tilde{p}_{1}, \tilde{p}_{2}} \in \operatorname{Min}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)$. By (1.4.8) we have a minimal geodesic $\gamma_{p, q}$ $\in \operatorname{Min}(p, q)$ with $\alpha:=\Varangle\left(\dot{\gamma}_{p, q}(0), d \pi \cdot \dot{\tilde{\gamma}}_{p_{1}, p_{2}}(0)\right) \leq \pi / 2$, which may be lifted to a minimal geodesic $\tilde{\gamma}_{\tilde{p}_{1}, \tilde{q}}$ from \tilde{p}_{1} to \tilde{q}. Note that $2 \pi \geq d\left(\tilde{p}_{2}, \tilde{q}\right) \geq d\left(\tilde{p}_{1}, \tilde{q}\right)$ $>\pi$. By T.C.T.we get

$$
\begin{aligned}
\cos d\left(\tilde{p}_{1}, \tilde{q}\right) / 2 \geq & \cos d\left(\tilde{p}_{2}, \tilde{q}\right) / 2 \geq \cos d\left(\tilde{p}_{1}, \tilde{q}\right) / 2 \cdot \cos d\left(\tilde{p}_{1}, \tilde{p}_{2}\right) / 2 \\
& +\cos \alpha \sin d\left(\tilde{p}_{1}, \tilde{q}\right) / 2 \sin d\left(\tilde{p}_{1}, \tilde{p}_{2}\right) / 2,
\end{aligned}
$$

which implies that
$0>\cos d\left(\tilde{p}_{1}, \tilde{q}\right) / 2 \cdot\left(1-\cos d\left(\tilde{p}_{1}, \tilde{p}_{2}\right) / 2\right) \geq \cos \alpha \cdot \sin d\left(\tilde{p}_{1}, \tilde{q}\right) / 2 \cdot \sin d\left(\tilde{p}_{1}, \tilde{p}_{2}\right) / 2$.
Since $\cos \alpha \geq 0$ we have a contradiction. Thus we have the injectivity radius
estimate $i_{M} \geq \pi$. If we show that for any $m \in M$ either $d(p, m)<\pi$ or $d(q, m)<\pi$ holds, then we can proceed exactly in the same way as (1.1). This may be proved by T.C.T with (1.2.25) and is rather complicated. We omit this (see (2.2) for more general case). For (iii) we have again $i_{M} \geq \pi$. Since d_{M} equals π we see that every normal geodesic is minimal just until the parameter value π or equivalently tangential cut locus \widetilde{C}_{p} is a sphere $S_{\pi}^{d-1}\left(o_{p}\right)$ of radius π centered at the origin for every $p \in M$. Now main step of proof is to show that the cut locus $C_{p}=\operatorname{Exp}_{p} \widetilde{C}_{p}$ is a totally geodesic submanifold for any $p \in M$. This follows from the following considerations: For any $m, n \in C_{p}$ and normal geodesic γ from m to n of length $L_{r}<2 \pi$, we can show by T.C.T. with (1.2.25) that γ is contained in C_{p}, every minimal geodesic from p to an interior point of γ is orthogonal to γ at parameter value π and that (p, m, n) forms a totally geodesic triangle of constant curvature $1 / 4$. In particular we see that all geodesics are closed geodesics of length 2π (so-called $C_{2 \pi}$-manifold, see [Be]) and intersect $C_{\gamma(0)}$ perpendicularly at parameter value π. Now fix $p \in M$ and take any normal geodesic c_{v} emanating from p. Put $q:=c_{v}(\pi)$. Then for any unit vector $w \in T_{q} C_{p}$, by considering a totally geodesic triangle (p, q, $\operatorname{Exp}_{q} s w$) of constant curvature $1 / 4$, we have a Jacobi field along c_{v} which takes the form $Y(t)=\sin t / 2 \cdot E(t)$, where $E(t)$ is a parallel vector field along c_{v} with $E(\pi)=w$. Such Jacobi fields form a vector space $\mathscr{I}_{1 / 4}$ of dimension $k\left(:=\operatorname{dim} C_{p}\right)$. On the other hand the null space of $d \operatorname{Exp}_{p}(\pi v)$ gives a subspace \mathscr{I}_{1} of Jacobi fields along c_{v} of dimension $d-k-1$. Comparing with $S^{d}(1)$ we may show that every element Y of \mathscr{I}_{1} may be expressed as $Y(t)=\sin t \cdot E(t)$ with parallel E. Note that for $0<t<\pi$, $\dot{c}_{v}(t)^{\perp}\left(\subset T_{c(t)} M\right)=\mathscr{I}_{1 / 4}(t) \oplus \mathscr{I}_{1}(t)$ and this shows that the geodesic symmetry s_{p} at p is an isometry because $d s_{p \mid c_{v}(t) \perp}: \dot{c}_{v}(t)^{\perp} \ni Y(t) \rightarrow Y(-t) \in$ $c_{v}(-t)^{\perp}$. Thus M is locally symmetric and simply connectivity implies that M is a symmetric space. Since M is of positive curvature M must be of rank one.

Theorem (1.3) ([Ts 2], [Sug]). Let M be a complete simply connected riemannian manifold whose sectional curvature satisfies

$$
\delta \leq K \leq \Delta, \quad \delta / \Delta \geq 1 / 4
$$

(i) Suppose that there exists a simple closed geodesic of length $2 \pi / \sqrt{\delta}$. Then M is isometric to a sphere of constant curvature δ.
(ii) Suppose that there exists a closed geodesic of length $\pi / \sqrt{\delta}$. Then M is isometric to one of CROSS.

Next we consider what happens when M is not simply connected. In this case we have from (1.2-(ii)) that $d_{M} \leq \pi / 2 \sqrt{\delta}$ and we ask which
nonsimply connected manifolds carry the riemannian structure with maximal diameter $\pi / 2 \sqrt{\delta}$.

Theorem (1.4) ([S-S], [Sa 4]). Let M be a complete nonsimply connected riemannian manifold with $(0<) \delta \leq K_{\sigma} \leq \Delta, \delta / \Delta \geq 1 / 4$. Then $d_{M}=\pi / 2 \sqrt{\delta}$ if and only if M is one of the following:
(i) M is of constant curvature δ and its fundamental group $\pi_{1}(M)$ has a fully reducible orthogonal representation (namely the universal covering \tilde{M} of M is the sphere $S^{d}(\delta)$ and $\pi_{1}(M)$ may be represented by elements of $O(d+1)$. Then this representation should have a nontrivial invariant subspace. Typical examples are real projective space and lens spaces etc. see [Wo 1]).
(ii) $\quad M=P_{2 n-1}(C) /\{\mathrm{id}, \psi\}$, where $P_{2 n-1}(C)$ denotes the complex projective space of complex dimension $2 n-1$, which carries the canonical riemannian structure with $\delta \leq K_{\sigma} \leq 4 \delta$, and ψ denotes the involution of $P_{2 n+1}(C)$ which is defined in terms of homogeneous coordinates as

$$
\psi\left(z_{1} ; z_{2} ; \cdots ; z_{2 n-1} ; z_{2 n}\right):=\left(\bar{z}_{n+1} ; \cdots ; \bar{z}_{2 n} ;-\bar{z}_{1} ; \cdots ;-\bar{z}_{n}\right) .
$$

For proof we take $p, q \in M$ with $d_{M}=d(p, q)$. We consider the antipodal set defined as $A_{p}:=\left\{m \in M ; d(m, p)=d_{M}\right\}$. Then using T.C.T. we see that A_{p} is a convex totally geodesic submanifold without boundary. We consider the universal covering $\pi: \tilde{M} \rightarrow M$ and put $\tilde{A}_{p}:=\pi^{-1}\left(A_{p}\right)$, which is connected and of dimension ≥ 1. Thus \tilde{A}_{p} is again compact totally geodesic submanifold of \tilde{M} and is invariant under deck transformations. Moreover \tilde{A}_{p} is simply connected if $\operatorname{dim} A_{p}>1$. Then we have $d_{\tilde{A}} \geq \pi / 2 \sqrt{\delta}$ by the injectivity radius estimate. We may see that $d_{\tilde{A}_{p}}=$ $\pi / \sqrt{\delta}$ or $\pi / 2 \sqrt{\delta}$. For the first case we have in fact $d_{\tilde{M}}=\pi / \sqrt{\delta}$ and \tilde{M} is isometric to a sphere and \tilde{A}_{p} is a great sphere in $S_{d}(\delta)$ which is invariant under deck transformations. For second case we see that \tilde{M} is one of CROSS and (ii) follows. In the second case note that $d_{\tilde{I I}}$ is equal to d_{M}.

Problem. What can we say about riemannian manifolds with $\delta \leq K_{\sigma}$ $\leq \Delta, \delta / \Delta<1 / 4$? (see (3.4.5)).

§ 2. Curvature and diameter

Firstly we give Toponogov's maximal diameter theorem.
Theorem (2.1) ([T 1]). Let M be a complete riemannian manifold with $K_{\sigma} \geq \delta(>0)$. Then M is compact and $d_{M} \leq \pi / \sqrt{\delta}$. If $d_{M}=\pi / \sqrt{\delta}$, then M is isometric to the sphere $S^{d}(\delta)$ of constant curvature δ.

In fact $d_{M} \leq \pi / \sqrt{\delta}$ follows from (1.2.21). Suppose that $d_{M}=\pi \sqrt{\delta}$ and
take points $p, q \in M$ with $d(p, q)=d_{M}$. Now by T.C.T. for any normal geodesic c_{v} emanating from p with $v \in U_{p} M$ we have $c_{v}\left(d_{M}\right)=q$. Then $\operatorname{Exp}_{p_{\mid B_{d_{M}}\left(o_{p}\right)}}$ is a diffeomorphism. Moreover we see from (1.2.25) that every Jacobi field Y along c_{v} with $Y(0)=0$ may be written in the form $Y(t)$ $=S_{\delta}(t) E(t)$ with parallel E. Then $B_{d_{M}}(p)$ is isometric to $B_{d_{M}}(\bar{p})$ in $S^{d}(\delta)$. Then it is not difficult to see M is isometric to $S^{a}(\delta)$. See also (4.1) for a generalization.

Next we show the following which generalizes the sphere theorem.
Theorem (2.2) ([Gr-S]). Let M be a complete riemannian manifold with $K_{\sigma} \geq \delta(>0)$. Suppose that $d_{M}>\pi / 2 \sqrt{ } \bar{\delta}$. Then M is homeomorphic to the sphere.

Remark. This was firstly treated by Berger who proved that under the assumption M is a homotopy sphere. Then Grove-Shiohama constructed a homeomorphism between M and S^{d}. Here we shall give a simplified proof.

Proof. Take points p, q with $d(p, q)=d_{M}$. Lemma (4.8) and T.C.T. imply that for given such p there is uniquely determined q with $d(p, q)=$ d_{M}. Next for $m \in M$ note that either $d(p, m) \leq \pi / 2 \sqrt{\delta}$ or $d(q, m) \leq \pi / 2 \sqrt{\delta}$ hold by the same reason as in (1.1). Now for $m \neq p, q$ we show that there exists a unit vector $t(m)$ which satisfies the property
(*) $g(t(m), \dot{\gamma}(d(p, m)))>0$ for all $\gamma \in \operatorname{Min}(p, m)$ (i.e. m is not critical for d_{p}). In fact take a minimal geodesic $\sigma \in \operatorname{Min}(m, q)$. Put $\alpha:=\Varangle(\dot{\sigma}(0)$, $\dot{\gamma}(d(p, m))$) for any $\gamma \in \operatorname{Min}(p, m)$. First assume that $d(p, m) \leq \pi / 2 \sqrt{\delta}$. Then from T.C.T. we get

$$
\begin{aligned}
\cos \sqrt{\delta} d_{M} \geq & \cos \sqrt{\delta} d(m, p) \cdot \cos \sqrt{\delta} d(m, q) \\
& +\cos (\pi-\alpha) \sin \sqrt{\delta} d(m, p) \sin \sqrt{\delta} d(m, q)
\end{aligned}
$$

from which follows

$$
\begin{aligned}
& 0>\cos \sqrt{\delta} d_{M} \cdot(1-\cos \sqrt{\delta} d(p, m)) \\
& \geq \cos (\pi-\alpha) \sin \sqrt{\delta} d(p, m) \sin \sqrt{\delta} d(m, q)
\end{aligned}
$$

namely $\alpha<\pi / 2$. In case when $d(q, m) \leq \pi / 2 \sqrt{\delta}$ the same argument holds. Thus $\dot{\sigma}(0)$ satisfies ($*$) and we may apply (1.4.12).

Remark. In this case $\sigma \in \operatorname{Min}(m, q)$ is unique if $m \notin C_{q}$. Then in a small neighbourhood U of q we may define a vector field $t(n), n \in U$ as $t(n)$ $=\dot{\sigma}_{n, q}(0)$ where $\sigma_{n, q} \in \operatorname{Min}(n, q)$. Then t is transversal to $\partial B_{r}(q)$ for small r and we can construct a homeomorphism more directly.

Remark (2.3). Grove-Gromoll ([Gr-Gro]) announced the following result without detailed proof: If a complete riemannian manifold M satisfies

$$
K_{\sigma} \geq \delta(>0), \quad d_{M} \geq \pi / 2 \sqrt{\bar{\delta}},
$$

then M is homeomorphic to S^{d} or isometric to one of a CROSS, (i) or (ii) of (1.4).

Now we should mention about almost flat manifolds. Gromov ([G 1]) gave a completely new approach to the problem among curvature, diameter and the manifold structure. He considered the situation when $d_{M}^{2} \max \left|K_{\sigma}\right|$ is very small and studied the structure of $\pi_{1}(M)$ of M very deeply by geodesic loops. Since there is a very detailed report on the subject by Buser-Karcher ([B-K]) we only state an improved result by Ruh ([R 3]).

Theorem (2.4) (Gromov-Ruh). Let M be a compact riemannian manifold of dimension d. Then there exists a positive constant $\varepsilon(d)$ such that if $K_{\sigma} \mid d_{M I}^{2}<\varepsilon(d)$ hold for all $\sigma \in G_{2}(T M)$ we have the following: there exists a simply connected nilpotent Lie group N and an extension Γ of a lattice $L \subset$ N by a finite group H so that M is diffeomorphic to $\Gamma \backslash N$.

This generalizes the Bieberbach's theorem in flat case (compact flat riemannian manifolds are finitely covered by a torus). In this almost flat case we should construct the model space (i.e. nilmanifold) in the way of proof. We may assume that $d_{M n}=1$. Take $p \in M$. Then from the assumption $\operatorname{Exp}_{p \mid B_{\rho}\left(\rho_{p}\right)}$ is non-singular for very large ρ. Put

$$
\Gamma_{\rho}:=\{\alpha ; \text { geodesic loop at } p \text { with }|t(\alpha)|<\rho,|r(\alpha)|<0.48\},
$$

where $|t(\alpha)|$ is the length of $\alpha, r(\alpha)$ denotes the element of $O(d)$ defined by the parallel translation along α and $|r(\alpha)|$ denotes the distance from the identity. A product $\alpha * \beta$ is defined as a geodesic loop given by the end point in $T_{p} M$ of the lift of $\alpha \cup \beta$ via $\operatorname{Exp}_{p}^{-1}$. Then Γ_{ρ} may be considered as the set of elements in $B_{\rho}\left(o_{p}\right)$ obtained by slightly deforming a lattice in $T_{p} M$. Roughly speaking, essential part of proof is to show that for some $\rho \Gamma_{\rho}$ carries generators $\left\{\gamma_{1}, \cdots, \gamma_{d}\right\}$ such that every $\gamma \in \Gamma_{\rho}$ may be uniquely expressed as $\gamma=\gamma_{1}^{k_{1}} * \cdots * \gamma_{d}^{k_{a}}\left(k_{i} \in Z\right)$ and $\left[\gamma_{i}, \gamma_{j}\right] \in\left\langle\gamma_{1}, \cdots, \gamma_{i-1}\right\rangle$ for commutators. From Γ_{ρ} we get a nilpotent torsion free group Γ, which may be embedded in a nilpotent Lie group N as a uniform discrete subgroup.

§ 3. Differentiable pinching problem

Since we have exiotic spheres, many authors have attempted to show
that a complete simply connected δ-pinched ($\delta>1 / 4$) manifold M is in fact diffeomorphic to the standard sphere. Such differentiable sphere theorem was firstly proved by Calabi, Gromoll ([Gr]) and Shikata ([Sh 1, 2]), where the pinching constant $\delta_{d}(\rightarrow 1$ as $d \rightarrow \infty)$ depended on the dimension of manifold. In fact the number of exiotic spheres increases with dimension. But Sugimoto-Shiohama ([Sug-S]) and then Ruh ([R 1, 2]) succeeded to show that δ can be chosen independently of dimension. The actual value of pinching number was improved successively and the equivariant case also has been treated ([Gro-K-R 1, 2], [IH-R]). Here we give

Theorem (3.1) ([IH-R]). There exists a decreasing sequence $\delta_{d}\left(\delta_{d} \rightarrow\right.$ 0.68 as $d \rightarrow \infty$) with the following property: Let M be a complete simply connected riemannian manifold of dimension d whose sectional curvature satisfies $\delta_{d} \leq K_{\sigma} \leq 1$, and $\mu: G \times M \rightarrow M$ an isometric action of the Lie group G. Then there exists a diffeomorphism $F: M \rightarrow S^{d}$ (standard sphere) and a homeomorphism $\varphi: G \rightarrow O(d+1)$ such that $\varphi(g) \circ F=F \circ \mu_{g}$ for all $g \in G$.

As an immediate corollary we get
Corollary (3.2). If M is a complete d-dimensional riemannian manifold with $\delta_{d} \leq K_{\sigma} \leq 1$ (δ_{d} as above), then M is diffeomorphic to a space of positive constant curvature and isometry group of M is isomorphic to a subgroup of the corresponding space form.

Here we shall explain main ideas of [IH-R] and only show that exists such a pinching constant.

When M is a hypersurface of positive curvature in \boldsymbol{R}^{d+1}, Gauss map gives a diffeomorphism between M and S^{d}. Ruh took the same approach for general case. We put $E=\tau_{M} \oplus 1_{M}$, where 1_{M} is a trivial line bundle. E carries a fiber metric on which elements of G, with the trivial action on 1_{M}, act as isometries. Let e be the section defined by $e(m):=\left(o_{m}, 1\right)$. Now we define the connection ∇° on E as

$$
\begin{align*}
& \nabla_{X}^{\circ} Y:=\nabla_{X} Y-c g(X, Y) e, \quad \nabla_{X}^{\circ} e:=c X, \tag{3.3}\\
& X, Y \in \mathscr{X}(M) \quad \text { and } \quad c:=\sqrt{(1+\delta) / 2} .
\end{align*}
$$

Then ∇° is a G-invariant metric connection whose curvature tensor R° is given by

$$
\begin{align*}
& R^{\circ}(X, Y) Z=R(X, Y) Z-c^{2}\{g(Y, Z) X-g(X, Z) Y\} \tag{3.4}\\
& R^{\circ}(X, Y) e=0
\end{align*}
$$

Then from (1.1.6) we have $\left\|R^{\circ}\right\| \leq 2 / 3(1-\delta)$, which is small from the assumption. Now starting from this ∇° by the iteration method we shall
construct a G-invariant flat connection D on E, from which we have a parallel field of orthonormal frames $u_{m}:=\left(e_{1}, \cdots, e_{d+1}\right)_{m}$ for the fiber E_{m} over $m \in M$, since M is simply connected. Then we can define the map

$$
F: M \rightarrow S^{d} \quad \text { as } \quad F(m):=\left(g\left(e, e_{1}\right)(m), \cdots, g\left(e, e_{d+1}\right)(m)\right) \quad(:=g(e, u))
$$

We expect that F is a diffeomorphism as Gauss map is. Since u is parallel we get

$$
d F_{m}(x)=g\left(D_{x} e, u\right)=c g(x, u)+g\left(\left(D_{x}-\nabla_{x}^{\circ}\right) e, u\right)
$$

which implies that

$$
\left|d F_{m}(x)\right| \geq|x|\left(c-\left\|D-\nabla^{\circ}\right\|\right)
$$

where the above norm is defined as follows: First norm in $\mathcal{O}(d+1)$ is given by $|A|:=\operatorname{Max}_{|x|=1}|A x|$ and then we define $\left\|D-V^{\circ}\right\|:=\operatorname{Max}_{x \in U M}\left|D_{x}-V_{x}^{\circ}\right|$, where we consider $\left(D_{x}-\nabla_{x}^{\circ}\right)$ at $p \in M$ as an element of $\mathcal{O}(d+1)$. Thus if we have $c>\left\|D-D^{\circ}\right\|$, then F gives a covering map, which is in fact a diffeomorphism since M is simply connected. We also define a homomorphism φ as follows: for $m \in M$ the frame u_{m} may be identified with an isometry $\boldsymbol{R}^{d+1} \rightarrow E_{m}$. Then we put $\varphi(g):=u^{-1} \circ g \circ u \in O(d+1)$. Since g commutes with parallel translation we may easily see that φ is independent of the choice of $m \in M$ and that φ is a group homomorphism.

Now we return to the construction of the flat connection D by the iteration from ∇^{i} to ∇^{i+1} starting from ∇°. For the computation we prefer to deal with connection form ω^{i} and curvature form Ω^{i} on the principal bundle of orthonormal frames associated to E instead of ∇^{i} and R^{i}. We compute with their pull backs by means of a cross section $u=\left(e_{a}\right)$ (i.e., $\left.\left(\omega^{i}(x)\right)_{b}^{a}:=g\left(\nabla_{x} e_{a}, e_{b}\right),\left(\Omega^{i}(x, y)\right)_{b}^{a}:=1 / 2 g\left(R(x, y) e_{a}, e_{b}\right)\right)$. Now we need a technical lemma.

Lemma (3.5). Suppose that $1 / 4<\delta \leq K_{\sigma} \leq 1$. Then for any $\pi>r$ $>\pi / 2 \sqrt{\delta}$ we have a weight function $\eta: M \times M \rightarrow \boldsymbol{R}$ with the following properties: $\eta(g m, g n)=\eta(m, n), g \in G$. Put $\eta^{m}(n):=\eta(n, m)$. (i) $\eta^{m}: M \rightarrow R$ is a smooth function with $\operatorname{supp} \eta^{m} \subset U_{m}\left(U_{m}\right.$ is a convex neighborhood around $\left.m\right)$.
(ii) $\int_{M} \eta^{m}(n) d m=1$.
(iii) $\int_{M}\left|d \eta^{m}\right| d m \leq$ const. $d \sin ^{d-1} \sqrt{\delta} r$.

Now for any $m \in M$ we define a flat connection $\omega^{i, m}$ on U_{m} by parallel translating orthonormal frame $u^{i}(m)$ along the unique shortest geodesic from m. Then we define

$$
\begin{equation*}
\omega^{i+1}(x):=\int_{M} \omega^{i, m}(x) \eta^{m}\left(\tau_{M} x\right) d m \tag{3.6}
\end{equation*}
$$

Then ω^{i+1} defines in fact a connection. Now we compute the curvature form Ω^{i+1}. By (ii) of (3.5) and the fact that $\omega^{i, m}$ is flat we have

$$
\Omega^{i+1}=\int_{M}\left(\omega^{i, m} \wedge d \eta^{m}\right) d m-\int_{M}\left(\omega^{i, m}-\omega^{i+1}\right) \wedge\left(\omega^{i, m}-\omega^{i+1}\right) \eta^{m} d m
$$

Taking the following norm for $\mathcal{O}(d+1)$-valued forms,

$$
\|\omega\|:=\max _{x \in U M}|\omega(x)|, \quad\|\Omega\|:=\max _{x, y \in U M}|\Omega(x, y)|
$$

we get by direct computations with Cauchy-Schwarz

$$
\begin{equation*}
\left\|\Omega^{i+1}\right\| \leq\left\|\alpha^{i}\right\| \int_{M}\left|d \eta^{m}\right| d m+\left\|\alpha^{i}\right\|^{2} \tag{3.7}
\end{equation*}
$$

where

$$
\alpha^{i, m}:=\omega^{i, m}-\omega^{i} \quad \text { and } \quad\left\|\alpha^{i}\right\|:=\max _{m \in M}\left\{\max \left\{\left|\alpha^{i, m}(x)\right| ; x \in U M_{\text {|supp } \left.\eta^{m}\right\}}\right\}\right\}
$$

Now the following is essential for the proof.
Lemma (3.8). Let r be greater than the radius of the ball on which $\omega^{i, m}$ is defined. Then we have $\left\|\alpha^{i}\right\| \leq 2(1-\cos r) /(\delta \sin r) \cdot\left\|\Omega^{i}\right\|$.

Proof. For $x \in U_{n} M, n \in U_{m}$ we estimate $\left|\alpha^{i, m}(x)\right|$. Let $n=\operatorname{Exp}_{m} t_{0} v$ $\left(t_{o}=d(m, n)\right)$ and $d \operatorname{Exp}_{m}\left(t_{0} v\right) w=x$. We put $\alpha(s, t):=\operatorname{Exp}_{m} t\left(t_{o} v+s w /\right.$ $\left.\left|t_{0} v+s w\right|\right), 0 \leq t \leq\left|t_{0} v+s w\right|$, and $\gamma_{s}:=\alpha\left(s,\left|t_{0} v+s w\right|\right)$. Then we have a triangle $\left(m, n, \gamma_{s}\right)$. Let $a(s)(\in O(d+1))$ be the parallel translation w.r.t. ∇^{i} along the triangle. Then we have for the above section $u^{i, m}=\left(e_{a}\right)$

$$
\alpha^{i, m}(x) f=-\nabla_{x}^{i} f^{a} e_{a}=P_{\gamma m, n} \circ \dot{a}(0) \circ P_{r_{m, n}}^{-1}\left(f^{a} e_{a}\right), \quad f \in R^{d+1} .
$$

Thus we get

$$
\left|\alpha^{i, m}(x)\right|=|\dot{a}(0)| \leq d / d s_{\mid s=0}|a(s)| \quad\left(|a(s)|:=\operatorname{Max}_{|u|=1}\{|a(s) u-u|\}\right)
$$

On the other hand we have $|a(s)| \leq \operatorname{Area}\left(m, n, \gamma_{s}\right)\left\|R^{i}\right\| \leq 2 \operatorname{Area}\left(m, n, \gamma_{s}\right)$. $\left\|\Omega^{i}\right\|((1.16))$. Then we get using (1.2.21) and (1.2.20)

$$
\begin{aligned}
\text { Area }\left(m, n, \gamma_{s}\right)= & \iint_{\left(o_{m}, t_{0} v, t_{0} v+s w\right)}\left|\operatorname{det} d \operatorname{Exp}_{m}\right| d s d t \leq \int_{0}^{t_{0}} d t \int_{0}^{t s|w| / t_{0}}\left(s_{\delta}(t) / t\right) d s \\
& \leq s\left(1-c_{\delta}\left(t_{0}\right)\right) /\left(\delta \sin t_{0}\right) \leq s(1-\cos r) /(\delta \sin r)
\end{aligned} \quad \text { q.e.d. } .
$$

Then we have

$$
\begin{aligned}
\left\|\Omega^{i+1}\right\| & <\text { const. } d \sin ^{d-1} \sqrt{\delta} r \cdot(1-\cos r) /(\delta \sin r)\left\|\Omega^{i}\right\|+4\left(\frac{1-\cos r}{\delta \sin r}\left\|\Omega^{i}\right\|\right)^{2} \\
& =:\left(a+b\left\|\Omega^{i}\right\|\right)\left\|\Omega^{i}\right\| .
\end{aligned}
$$

Since $d \sin ^{d-1} \sqrt{\delta} r \rightarrow 0(d \rightarrow \infty)$ if $\sqrt{\delta} r \neq \pi / 2$, taking $\sqrt{\delta} r$ greater than but arbitrary close to $\pi / 2$ and choosing $\delta \doteqdot 1$ we have from $\left\|\Omega^{\circ}\right\|<(1-\delta) / 3$ that $a+b\left\|\Omega^{0}\right\|<1$ and consequently it is possible to get $\sum\left\|\Omega^{i}\right\|<c \delta \sin r /$ $2(1-\cos r)$ or equivalently $\sum\left\|\alpha^{i}\right\|<c$ 。 Then from $\left\|\omega^{i+1}-\omega^{i}\right\| \leq\left\|\alpha^{i}\right\|$ we see that ω^{i} converges to a connection form ω^{∞} w.r.t. the C^{0}-topology. Moreover we have $\left\|\omega^{\infty}-\omega^{0}\right\| \leq \sum\left\|\alpha^{i}\right\|<c$.

Note that from the construction ∇^{i} and ∇^{∞} is G-invariant. $\quad \nabla^{\infty}$ is only continuous. But the parallel translation w.r.t. ∇^{∞} is independent of the path and ∇^{∞} is flat in this sense. As final step Im Hof-Ruh approximate ∇^{∞} by an invariant smooth connection D which may be chosen arbitrarily close to ∇^{∞}. This may be done by means of the center of mass technique with above weight η (see Chapter $1, \S 5$).

Remark. See $[\mathrm{Ru} 4]$ for another kind of differentiable pinching problem.

Grove-Shiohama [Gr-S] asked for the differentiable sphere theorem for general case. See also the work of T. Yamaguchi in this proceeding.

Problem. Let M be a complete riemannian manifold with $K_{\sigma} \geq$ $\delta(>0)$. Is M is diffeomorphic to a sphere if d_{M} is close to $\pi / \sqrt{\delta}$?

§ 4. Ricci curvature pinching problem

Let M^{d} be a complete d-dimensional riemannian manifold whose Ricci curvature satisfies

$$
\begin{equation*}
r(v) \geq(d-1) \delta \quad(\delta \text { is a positive constant }) \tag{4.1}
\end{equation*}
$$

Then M is compact and in fact $d_{M} \leq \pi / \sqrt{\delta}((1.2 .21))$. Especially considering the universal covering \tilde{M} of M, which should be again compact, we know that $\pi_{1}(M)$ is a finite group.

Firstly we give maximal diameter theorem. This was given in ([B 5]) without proof. A proof is given by Cheng ([Che]) using the comparison theorem for the first eigenvalue of Laplacian. Then more direct proof using (1.4.1) has been given by Shiohama ([S 4]) and Itokawa ([It]), which will be presented here.

Theorem (4.2). Suppose that a complete riemannian manifold satisfy (4.1). Then $d_{M}=\pi / \sqrt{\delta}$ if and only if M is isometric to $S^{a}(\delta)$.

Proof. Take points p, q with $d(p, q)=d_{M}$. Put $R:=\pi / \sqrt{\delta}, r=$ $\pi / 2 \sqrt{\delta}$. Then from $d_{M}=\pi / \sqrt{\delta}$ we have $B_{r}(p) \cap B_{r}(q)=\phi$. On the other hand from (1.4.1) we get

$$
\begin{equation*}
v_{M} / v_{B_{r}(p)}=v_{B_{R}(p)} / v_{B_{r}(p)} \leq b_{\delta}(R) / b_{\delta}(r)=2 \tag{4.3}
\end{equation*}
$$

From this $v_{B_{r}(p)} \geq v_{M} / 2$ and also $v_{B_{r}(q)} \geq v_{M} / 2$ by the same reason. Then we get $v_{M} \geq v_{B_{r}(p)}+v_{B_{r}(q)} \geq v_{M}$ which implies that equality holds in (4.3) and that $\overline{B_{r}(p)} \cup \overline{B_{r}(q)}=M$. Also it is not difficult to see $\partial B_{r}(p)=\partial B_{r}(q)$. Looking at the proof of (1.4.1) when equality does hold we see that cut distance $t(v)=R$ for all $v \in U_{p} M$ and $\operatorname{Exp}_{p} R v=q$ for all $v \in U_{p} M$. Namely every geodesic c_{v} emanating from p reaches q at the parameter value R. Next for any $v \in U_{p} M$ take an orthonormal basis $\left\{v=e_{1}, \cdots\right.$, $\left.e_{d}\right\}$ and parallel fields $E_{i}(t)$ along c_{v} with $E_{i}(0)=e_{i}(i=2, \cdots, d)$. Then by the second variation formula for $Y_{i}(t)=\sin \delta t E_{i}(t)$ we have

$$
\begin{aligned}
0 & \leq \sum_{i=2}^{d} d^{2} E(c)\left(Y_{i}, Y_{i}\right)=\sum \int_{0}^{R}\left\{g\left(\nabla Y_{i}, \nabla Y_{i}\right)-K\left(\dot{c}_{v}, Y_{i}\right)\left|Y_{i}\right|^{2}\right\} d t \\
& =\int_{0}^{R}\left\{(d-1) \delta \cos ^{2} \delta t-r\left(\dot{c}_{v}\right) \sin ^{2} \delta t\right\} d t \leq 0
\end{aligned}
$$

From this we see that $K_{\sigma} \equiv \delta$ for all $\sigma \ni \dot{c}_{v}(t), 0<t<R$ and Y_{i} are Jacobi fields. Thus we have $\Theta_{p}^{M}(v, t)=\left(s_{\delta}(t) / t\right)^{d-1}$ and consequently $v_{M}=v_{B_{R}(p)}$ $=b_{\hat{\delta}}(R)=v_{S^{d}(\delta)} . \quad$ Then M is isometric to $S^{d}(\delta)$ by (1.4.2). q.e.d.

Next Assuming $r(v) \geq(d-1)$ for a complete riemannian d-manifold M we may ask whether there exists $V=V(d)$ (or $\rho=\rho(d)$) such that $v_{m}>V$ (or $d_{M}>\rho$) implies that M is topologically similar to the sphere. For this problem Shiohama has obtained

Theorem (4.4) ([S 4], see also the work of Itokawa [It]). Let M^{d} be a complete riemannian manifold with $r(v) \geq d-1$ and $K_{\sigma} \geq-\kappa^{2}$. Then there exists an $\varepsilon(d, \kappa)>0$ such that if $v_{M} \geq v_{S^{a_{(1)}}}-b_{1}^{d}(\varepsilon(d, \kappa))$ holds, M is homeomorphic to the sphere. In the above we denote by $b_{1}^{d}(\varepsilon(d, \kappa))$ the volume of ε-ball of $S^{a}(1)$.

In this case instead of injectivity radius estimate, estimate of radii of contractible metric balls, which is given by the infimum of minimal critical values of distance function, plays important roles. In fact under the assumption of the theorem M may be covered by two contractible balls. See also [It] for further informations.

Remark. As for the diameter pinching problem see the work of Kasue in this proceeding ([Kas]). The following example due to Itokawa is also suggestive.

Example (4.5). Let M be the riemannian product $M=S^{j}(j+k-$ $1 /(j-1)) \times S^{k}(j+k-1 /(k-1))$. Then M is an Einstein manifold with $r(v) \equiv j+k-1=\operatorname{dim} M$. By Pythagoras' theorem we have

$$
d_{M}=\sqrt{j+k-2 /(j+k-1)} \pi \longrightarrow \pi \quad(j+k \longrightarrow \infty) .
$$

On the other hand

$$
v_{M}=(j-1 /(j+k-1))^{j / 2}(k-1 /(j+k-1))^{k / 2} \omega_{j} \omega_{k} \longrightarrow 0 \quad(j+k \longrightarrow \infty) .
$$

For three dimensional case we have now complete answer.
Theorem (4.6) (Hamilton [Ha]). A compact riemannian manifold of dimension 3 with positive Ricci curvature admits a metric of positive constant curvature.

Method of proof heavily depends on P.D.E.
Remark. For noncompact case see Schoen-Yau ([Sc-Y]): A complete open 3-manifold of positive Ricci curvature is diffeomorphic to \boldsymbol{R}^{3}. see also Gromoll-Cheeger ([CG 1]).

§ 5. General comparison theorems

$\mathbf{1}^{\circ}$. Next we consider comparison problem when the model space is a compact symmetric space. One of the crucial properties of geodesics in a compact simply connected symmetric space is the following. First we define

Definition (5.1) (Cheeger [C 1-2]). For a compact riemannian manifold M and $p \in M,(M, p)$ has property $C M$ if
(*) for any $m, n \in M \backslash C_{p}$ and $\varepsilon>0$ there exists a curve h_{ε} with $L_{h_{\varepsilon}}<$ $d(m, n)+\varepsilon$ whose interior is disjoint from C_{p}.
$(* *)$ For every geodesic $c_{v}\left(v \in U_{p} M\right)$ cut point of c_{v} is the first conjugate point to p along c_{v}.

In fact $(*)$ implies $(* *)$. When (M, p) has property $C M$ for every p, we say that M has property $C M$.

Example (5.2). Suppose that M is simply connected and for every geodesic c_{v} emanating from p the first conjugate point $c(t(v))$ to p along c_{v} has order ≥ 2 (i.e., $\operatorname{dim}\left\{Y\right.$; Jacobi field along c_{v} with $\left.Y(0)=Y(t(v))=0\right\}$ ≥ 2). Then (M, p) satisfies $C M$. This follows from the fact that $(d-1)$ Hausdorff measure of C_{p} in this case equals 0 ([War 3], [C 1-2]).

Example (5.3). If M is a compact simply connected symmetric space, then M has property $C M$. (For $(* *)$ see [C-E], [Cr], [Sa 2]). For (*) Cheeger proved that ($d-1$)-Hausdorff measure of C_{p} equals zero using the fact that in this case any conjugate point is induced by a one parameter subgroup in the isotropy subgroup of the isometry group.

Now the problem is as follows: If the metric structure of a compact manifold is similar to that of symmetric spaces, are they also topologically similar? For that purpose we should have a number which measures how close are curvature behaviour of two compact riemannian manifolds M, \bar{M} of same dimension. Let $I: T_{p} M \rightarrow T_{\bar{p}} \bar{M}$ be an isometry and define for $v \in U_{p} M I_{v}^{t}: T_{c_{v}(t)} M \rightarrow T_{c \bar{v}(t)} \bar{M}$ as $I_{v}^{t}:=P_{c \bar{v}} \circ I \circ P_{c_{v}}^{-1}(\bar{v}:=I v)$. We define for a positive number d as

$$
\rho_{d}(M, \bar{M}):=\inf _{I: T_{p} M \rightarrow T_{\bar{p}} \overline{\bar{M}}, p \in M, \bar{p} \in \bar{M}} \sup \left\{\left\|R-\left(I_{v}^{t}\right)^{-1} \bar{R}\right\| ; 0 \leq t \leq d, v \in U M\right\}
$$

and $\rho(M, \bar{M}):=\rho_{2 d_{c}}(M, \bar{M})$, where d_{c} is the supremum of the conjugate distances in all directions.

We shall give some consequences when $\rho(M, \bar{M})$ is sufficiently small. In the following let $I: T_{p} M \rightarrow T_{\bar{p}} \bar{M}$ be the isometry which minimizes the quantity in the definition of $\rho(M, \bar{M})$. Firstly from the theory of O.D.E.
(5.4) Let $\left\{x^{i}\right\},\left\{\bar{x}^{i}\right\}$ be normal coordinates in $T_{p} M, T_{\bar{p}} \bar{M}$ based on orthonormal bases $\left\{e_{i}\right\}\left\{\bar{e}_{i}:=I e_{i}\right\}$ respectively. Then for any $\varepsilon>0$, there exists $\delta>0$ such that $\rho(M, \bar{M})<\delta$ implies $\left|\tilde{g}_{i j}-I^{*} \widetilde{g}_{i j}\right|<\varepsilon$, for $\sqrt{\sum x_{i}^{2}}<2 d_{c}$ where $\tilde{g}_{i j}, \widetilde{g}_{i j}$ denote (pseudo)metric tensors induced from g, \bar{g} via the exponential mappings at p, \bar{p} respectively.

Next for $v \in U_{p} M$ we denote by $t_{0}(v)$ the conjugate distance in direction v. Considering the second variation $d^{2} E\left(c_{v}\right)$ we may show
(5.5) Suppose that M satisfies $t_{0}(v)<+\infty$ for all $v \in U M$. Then for any $\varepsilon>0$, there exist $\delta>0$ and $s(v) \in\left[t_{0}(v), t_{0}(v)+\varepsilon\right]$ for $v \in U M$ such that if $\rho(M, \bar{M})<\delta$ then $c_{\bar{v}}$ has no conjugate point on $\left[0, t_{0}(v)-\varepsilon\right]$ and c_{v} and $c_{\bar{v}}$ have the same number of conjugate points on the interval $[0, s(v)]$. In particular we have $d_{\bar{M}}<d_{M}+\varepsilon$.
(5.6) Suppose that M has property $C M$ and that some real characteristic number of M is non-zero and the corresponding Chern-Weil form B vanishes nowhere. Then there exist $i_{0}>0$ and $\delta>0$ such that if $\rho(M, \bar{M})$ $<\delta$ we have $i_{\bar{M}}>i_{0}$.

In fact let $\int_{M}\|B\| d m>c(>0)$. If $\rho(M, \bar{M})<\delta$ for sufficiently small
δ then we have $\int_{\bar{M}}\|\bar{B}\| d m>c / 2$ and $v_{\bar{M}} \geq c /\left(2\|\bar{B}\|_{\text {max }}\right)>c /\left(4\|B\|_{\max }\right)$. Also noting that $\left|K_{\bar{\sigma}}\right| \leq 2 \max \left|K_{\sigma}\right|$ we have our assertion from (5.5) and (1.3.1).

Now we put $\Phi:=\operatorname{Exp}_{\bar{p}} \circ I \circ \operatorname{Exp}_{p}^{-1}: M \rightarrow \bar{M}$, where $\operatorname{Exp}_{p}^{-1}$ is some inverse of Exp_{p}. Although $\operatorname{Exp}_{p}^{-1}$ may not be continuous, we have from (5.4) and the definition of property $C M$,
(5.7) Let M have property $C M$. Then for any $\varepsilon>0$ there exists δ such that $\rho(M, \bar{M})<\delta$ implies $d(\Phi(m), \Phi(n))<d(m, n)+\varepsilon$ for all $m, n \in M$.

Then Cheeger obtained
Theorem (5.8) ([C 2]). Suppose that M has property CM and satisfy the condition in (5.6). Then there exists δ such that $\rho(M, \bar{M})<\delta$ implies that for any field F with non-zero characteristic $H^{*}(\bar{M}, F)$ is isomorphic to a subring of $H^{*}(M, F)$.

Proof. By Poincaré duality it suffices to construct a continuous map $\varphi: M \rightarrow \bar{M}$ with $\operatorname{deg} \varphi \neq 0$. From (5.6) there exists $i_{0}>0$ such that $i_{M}, i_{\bar{M}}$ $>i_{0}$ if $\rho(M, \bar{M})<\delta$. Now we put $\mathscr{I} \varepsilon_{1}:=\left\{x ; x=\left(1+\varepsilon_{1}\right) u, u \in \overline{\mathscr{I}}_{p}\right\}$, where \mathscr{I}_{p} is the interior set defined in Chapter 1, Section 4, 1°. Then from R.C.T. there exists $\varepsilon_{1}>0$ such that $\operatorname{vol}\left(\operatorname{Exp}_{p} I\left(\mathscr{I}_{\varepsilon_{1}}-\mathscr{I}_{-\varepsilon_{1}}\right)\right)<\operatorname{vol}\left(B_{i_{0}}(\bar{p})\right)$. Taking δ sufficiently small Φ defined above satisfies (5.7) and $\Phi_{\mid \operatorname{Exp}_{p}\left(\mathcal{s}-\varepsilon_{1 / 4}\right)}$ is a regular smooth map. Then we may approximate Φ by a continuous map $\varphi: M \rightarrow \bar{M}$ so that $\varphi_{1,-\varepsilon_{1 / 2}}$ and $\max d(\Phi(m), \varphi(m))<4 \varepsilon$. Then taking ε sufficiently small (which is possible by taking φ small) we have $\varphi \operatorname{Exp}_{p}\left(\mathscr{I}_{0}-\mathscr{I}_{-\varepsilon_{1 / 2}}\right) \subset \operatorname{Exp}_{\bar{p}} I\left(\mathscr{I}_{\varepsilon_{1}}-\mathscr{I}_{-\varepsilon_{1}}\right)$.

Now we assert that there exists a point $\bar{p} \in \varphi(M)$ such that $\varphi^{-1}(\bar{p}) \subset$ $\operatorname{Exp}_{p}\left(\mathscr{I} \varepsilon_{-\varepsilon_{1 / 2}}\right)$. Then we are done because on this connected set $\operatorname{Exp}_{p}\left(\mathscr{I}-\varepsilon_{1 / 2}\right)$ φ is smooth and non-singular. It follows that all inverse images are counted with the same sign and this shows that $\operatorname{deg} \varphi \neq 0$. Now if there are no points $\bar{p} \in \varphi(M)$ with the above property we have $\varphi\left(\operatorname{Exp}_{p}\left(\mathscr{I}_{0}-\right.\right.$ $\left.\left.\mathscr{I}_{-\varepsilon_{1 / 2}}\right)\right)=\varphi(M)$ and consequently $\operatorname{vol}\left(\varphi\left(\operatorname{Exp}_{p}\left(\mathscr{I}_{0}-\mathscr{I} \varepsilon_{-\varepsilon_{1 / 2}}\right)\right)\right)=\operatorname{vol} \varphi(M)>$ $\operatorname{vol}\left(B_{i_{0}}(\bar{p})\right)$. On the other hand we get

$$
\operatorname{vol}\left(\varphi\left(\operatorname{Exp}_{p}\left(\mathscr{I}_{0}-\mathscr{I}_{-\varepsilon_{1 / 2}}\right)\right)\right) \leq \operatorname{vol}\left(\operatorname{Exp}_{\bar{p}} I\left(\mathscr{I}_{\varepsilon_{1}}-\mathscr{I}_{-\varepsilon_{1}}\right)\right)<\operatorname{vol}\left(B_{i_{0}}(p)\right)
$$

a contradiction.
q.e.d.

Cheeger furthermore refined the above argument especially for the estimate of i_{M} and got

Theorem (5.9) ([C 2]). Let M be a compact simply connected riemannian symmetric space or have the property in Example (5.2) for all $p \in M$. Then there exists $\delta>0$ such that $\rho(M, M)<\delta$ implies that M is PL-homeomorphic to M.
$\mathbf{2}^{\circ}$. With respect to the above problem Ruh took another view point. Firstly we take as a model space compact simply connected semi-simple Lie group G with Lie algebra $\mathfrak{g} \cong T_{e} G$. Then we have the Maurer-Cartan form $\bar{\omega}: T G \rightarrow \mathrm{~g}$ defined by $\bar{\omega}(x):=L_{g}^{-1} x, x \in T_{g} G$, which satisfies the MaurerCartan equation $d \bar{\omega}+[\bar{\omega}, \bar{\omega}]=0$, where [,] denotes the Lie bracket in g. Now Let P be a compact manifold, $\omega: T P \rightarrow g$ a parallelization of P, i.e., $\omega: T_{p} P \rightarrow \mathrm{~g}$ is a vector space isomorphism for every $p \in P$. Then the curvature Ω of ω is defined to be a g-valued 2-form given by $\Omega=d \omega+[\omega, \omega]$. In our case since g carries an inner product defined from the Killing form, ω induces a riemannian metric on P, by which we may define the norm $\|\Omega\|:=\max \left\{\left|\Omega\left(x_{1}, x_{2}\right)\right| ; x_{1}, x_{2} \in T P\right.$, unit vectors $\}$. Then Min-Oo and Ruh [MO-R1] solved the equation $d \bar{\omega}+[\bar{\omega}, \bar{\omega}]=0$ on P under the assumption that $\|\Omega\|$ is sufficiently small by the iteration method as in (3.1). But here we need more tools from P.D.E. Then for the universal covering \widetilde{P} of P with the pull back $\tilde{\omega}$ of $\bar{\omega}$ via covering projection, vanishing of curvature of $\tilde{\omega}$ implies that $\tilde{\omega}: \tilde{g}(:=\{$ vector fields X on P with $\tilde{\omega}(X)=$ const. $\}) \rightarrow \mathrm{g}$ is a Lie algebra isomorphism. From this we may get a diffeomorphism $\widetilde{F}: \widetilde{P}$ $\rightarrow G$ with $d \tilde{F}=\tilde{\omega}$.

Theorem (5.10) ([MO-R1]) Let g be a compact semi-simple Lie algebra, $\omega: T P \rightarrow \mathfrak{g}$ a parallelization of a compact manifold P. Then there exists $\delta>0$ such that $\|\Omega\|<\delta$ implies that P is diffeomorphic to a quotient $\Gamma \backslash G$, where Γ is a finite subgroup of G.

This was extended to the symmetric case as follows: Let $\bar{M}=G / K$ be a compact simply connected irreducible symmetric space and $\mathfrak{g}=\mathfrak{f} \oplus \mathfrak{m}$ be a Cartan decomposition. Then the \mathfrak{f}-valued part of $\bar{\omega}$ is the Levi-Civita connection form of M and the m-valued part is the canonical soldering form given by the identification $T \tilde{M} \cong G \times{ }_{K} \mathfrak{n}$.

Now let M be a compact riemannian manifold and $\pi: P \rightarrow M$ the bundle of frames of M. We assume that $\pi: P \rightarrow M$ has a reduction to the structure group K represented in $\mathfrak{m t}$ via adjoint action. On P we have an \mathfrak{m}-valued form θ defined as $\theta(x):=u^{-1} \circ d \pi(x), x \in T_{u} P, u: \mathfrak{m} \cong T_{\pi(u)} M$. Let η be a connection form on P, which is a metric connection since the structure group K of P is compact (We don't assume that η is a Levi-Civita connection). Combining θ and η to define a g-valued 1 -form $\omega=\eta+\theta$ with curvature $\Omega=d \omega+[\omega, \omega]$, we get

Theorem (5.11) ([MO-R]). Let $\bar{M}=G / K, M, P, \omega$ be as above. Then there exists a positive constant $\delta>0$ such that $\|\Omega\|<\delta$ implies that M is diffeomorphic to a quotient $\Gamma \backslash \bar{M}$, where Γ is a finite subgroup of G.

Furthermore Ruh proposed to study "almost Lie group": A compact riemannian manifold with a metric connection D is called an ε-almost Lie
group if $(\|D T\|+\|R\|) d_{M}^{2}<\varepsilon$, where R and T denote the curvature and torsin of D respectively. Then is almost Lie group diffeomorphic to $\Gamma \backslash G$ with Γ an extension of a lattice of a Lie group G ? ([R 3])

Chapter 3. Finiteness Theorem

In the preceding chapter we compared riemannian manifold M with a model space \bar{M} and asked whether M is topologically similar to \bar{M} if M is similar to \bar{M} in riemannian sense. More generally we may ask the problem to classify all the topological types of riemannian manifolds which satisfy some conditions given in terms of riemannian invariants, e.g., classify manifolds of positive (non-negative) or negative (non-positive) curvature. But usually these classification problems are very difficult and we treat here the problem whether there are only finitely many topological types of riemannian manifolds if their riemannian structures are restricted.

§ 1. Weinstein's homotopy type finiteness theorem

Weinstein ([W 1]) and Cheeger ([C 1,3]) attacked the above problem for the first time.

Theorem (1.1). When $d \in Z^{+}, \Delta, \rho, V \in \boldsymbol{R}^{+}$are given, there are only finitely many homotopy types of compact d-dimensional riemannian manifolds M with $\left|K_{\sigma}\right| \leq \Delta, d_{M} \leq \rho$ and $v_{M} \geq V$.

Proof. The idea is to estimate the number of convex open balls which cover M. For that purpose we introduce the notion of ε-dense subset of $M ;\left\{m_{1}, m_{2}, \cdots, m_{N}\right\} \subset M$ will be called ε-dense if $\bigcup_{i=1}^{N} B_{\varepsilon}\left(m_{i}\right)$ $=M$. Now from the injectivity radius estimate (1.3.1) there exists $\varepsilon_{1}>0$ such that $i_{M}>\varepsilon_{1}$ if M satisfies the assumption of the theorem. Thus we see that for the convexity radius estimate $c_{M} \geq \varepsilon:=\min \left(\varepsilon_{1} / 2, \pi / 2 \sqrt{\Delta}\right)$ holds. To obtain an ε-dense subset we consider a maximal family of open balls $B_{\varepsilon / 2}\left(m_{i}\right), i=1, \cdots, N$, which are mutually disjoint in M. Then maximality implies that $\cup B_{\varepsilon}\left(m_{i}\right)=M$, i.e., $\left\{m_{i}\right\}_{i=1}^{i=N}$ is an ε-dense subset. Now by the volume comparison theorems (1.4.2), (1.4.3), we have

$$
\begin{align*}
N b_{\Delta}^{d}(\varepsilon / 2)(: & \left.=N v_{B_{\varepsilon / 2}\left(M^{d}(\Delta)\right)}\right) \leq \sum_{i=1}^{N} v_{B_{\epsilon} / 2\left(m_{i}\right)} \leq v_{M} \tag{1.2}\\
& \leq b_{-\Delta}^{d}(\rho)\left(:=v_{B_{\rho}\left(M^{d}(-\Delta)\right)}\right)
\end{align*}
$$

Thus we have an open covering $\mathscr{U}=\left\{B_{i}:=B_{\varepsilon}\left(m_{i}\right)\right\}_{i=1 ;}^{i=N}$ by strongly convex open subsets. We shall consider the simplicial complex K defined by the
nerve of \mathscr{U}; we associate m_{i} the point $S_{i}:=(0, \cdots, 1, \cdots, 0) \in R^{N}$ and we define $\left(S_{i_{0}}, \cdots, S_{i_{k}}\right)$ is a k-simplex if and only if $B_{i_{0}} \cap \cdots \cap B_{i_{k}} \neq \phi$. We choose a continuous partition of unity $\left\{\varphi_{i}\right\}$ on M so that $\varphi_{i}(m)>0$ on B_{i}, $\varphi_{i}(m)=0$ outside B_{i} and $\sum \varphi_{i}(m)=1$.

Now we define a map $f: M \rightarrow|K|$ by $f(m):=\left(\varphi_{1}(m), \cdots, \varphi_{N}(m)\right.$, and show that f is in fact a homotopy equivalence. To see this we take the barycentric subdivision K^{\prime} of K. Then any simplex σ of K^{\prime} may be expressed by $\left(\left(S_{i_{l}}, \cdots, S_{i_{k}}\right),\left(S_{i_{l-1}}, \cdots, S_{i_{k}}\right), \cdots,\left(S_{i_{0}}, \cdots, S_{i_{k}}\right)\right)$, where $\left(S_{i_{0}}, \cdots, S_{i_{k}}\right.$) etc. also denotes the barycenter of the simplex of K. We define a map $g:|K| \rightarrow M$ inductively so that for above $\sigma g(\sigma) \subset B_{i_{l}} \cap \ldots$ $\cap B_{i_{k}}$: firstly to vertices $\left(S_{i_{j}}, \cdots, S_{i_{k}}\right)$ of K^{\prime} we assign any point in $B_{i_{j}} \cap \cdots$ $\cap B_{i_{k}}$. Next assuming that we have defined a map g on the l-skelton of K^{\prime} we define g on any $(l+1)$-simplex $\tau=\left(\left(S_{i_{l+1}}, \cdots, S_{i_{k}}\right), \cdots,\left(S_{i_{0}}, \cdots\right.\right.$, $\left.S_{i_{k}}\right)$) as follows. Taking a point p in $B_{i_{0}} \cap \cdots \cap B_{i_{k}}$, we map segments joining the barycenter $\left(S_{i_{0}}, \cdots, S_{i_{k}}\right)$ and the points of $\partial \tau$ to the minimal geodesics joining p to the corresponding points of $g(\partial \tau)$. Then $g \circ f$ is homotopic to the identity because m and $g \circ f(m)$ are contained in a convex ball and it is not so difficult to see that $f \circ g$ is also homotopic to the identity (see e.g. ([dR])) for details). Thus M has a homotopy type of a simplicial complex with at most $b_{-\Delta}^{d}(\rho) / b_{\Delta}^{d}(\varepsilon / 2)$ vertices. q.e.d.

Corollary (1.3). Let d be an even positive integer and $0<\delta<1$. Then there are finitely many homotopy types of compact simply connected riemannian manifolds of dimension d with $\delta \leq K_{\sigma} \leq 1$.

In fact we have in this case $d_{M} \leq \pi / \sqrt{\delta}((1.2 .21))$ and $\left.i_{M} \geq \pi(1.3 .2)\right)$. On the other hand at least seven dimensional case there are infinitely many homotopy types of compact simply connected riemannian manifolds with $\delta \leq K_{\sigma} \leq 1$, where δ is some positive constant ($[\mathrm{Hu}]$).

§ 2. Cheeger's finiteness theorem

Cheeger ([C 3]) has proved the following which improves the previous result (1.1).

Theorem (2.1). For given $d \in Z^{+}, \Delta, \rho, V \in \boldsymbol{R}^{+}$, there are only finitely many homeomorphism classes of compact d-dimensional riemannian manifolds such that $\left|K_{\sigma}\right| \leq \Delta, d_{M} \leq \rho, v_{M} \geq V$.

Let M be a compact riemannian manifold satisfying the assumption of theorem. There exists $r=c_{d}(\Delta, \rho, V)>0$ such that $c_{M} \geq c$ for such M. Considering as before a maximal mutually disjoint open balls $\left\{B_{r / 2}\left(p_{i}\right)\right\}_{i=1}^{i=N}$ $(r:=c / 8)$ we have an open covering $\left\{B_{r}\left(p_{i}\right)\right\}_{i=1}^{i=N}$ of M with $N \leq$
$b_{-\Delta}^{d}(\rho) / b_{\Delta}^{d}(r / 2)$. Thus considering the exponential mappings and homotheties in the tangent spaces we have the family of embeddings

$$
\phi_{k}: \bar{B}_{8}(0), \bar{B}_{1}(0), \bar{B}_{1 / 2}(0)\left(\subset \boldsymbol{R}^{d}\right) \longrightarrow \bar{B}_{18 r}\left(p_{i}\right), \bar{B}_{2 r}\left(p_{i}\right), \bar{B}_{r}\left(p_{i}\right)(\subset M)
$$

($k=1, \cdots, N$) with the following properties:
(2.2) $\quad \phi_{k}\left(\bar{B}_{8}(0)\right)$ are strongly convex and $\bigcup_{k=1}^{N} \phi_{k}\left(B_{1 / 2}(0)\right)=M$.
(2.3) $\quad \phi_{l}\left(\bar{B}_{1}(0)\right) \cap \phi_{j}\left(\bar{B}_{1}(0)\right) \neq \phi \Longrightarrow \phi_{l}\left(\bar{B}_{1}(0)\right) \subset \phi_{j}\left(\bar{B}_{4}(0)\right)$.
(2.4) There exists a $\xi(\Delta, r)$ such that the C^{1}-norm of the coordinates transformations satisfy $\left\|\left(\phi_{k}^{-1} \circ \phi_{i}\right)_{\mid \bar{B}_{1}(0)}\right\|_{C^{1}} \leq \xi(\Delta, r)$.

In fact for (2.4) put $\left(y^{u}\right)=\phi_{k}^{-1} \circ \phi_{i}\left(x^{a}\right), g_{a b}=g\left(\partial / \partial x^{a}, \partial / \partial x^{b}\right)$ and $\bar{g}_{u v}=$ $g\left(\partial / \partial y^{u}, \partial / \partial y^{v}\right)$. Let $\lambda(x)$ be the maximum eigenvalue of $\left(g_{a b}(x)\right), \mu(y)$ the minimum eigenvalue of $\left(\bar{g}_{u v}(y)\right)$. Then we have $\lambda(x) \geq \mu(y) \cdot \sum\left|\partial y^{a} / \partial x^{i}\right|^{2}$. On the other hand from R.C.T. (1.2.20) we get $\lambda(x) \leq s_{-4}(2 r) /(2 r)$ and $\mu(y) \geq 2 / \pi$, and consequently $\left|\partial y^{a} / \partial x^{i}\right| \leq \pi / 2 \cdot s_{-4}(2 r) /(2 r)$.
$\mathbf{2}^{\circ}$. Now for the proof of theorem we need a tool to show that two manifolds are homeomorphic. We consider the following situation: let M be a compact (topological) manifold, $\phi_{l}: \bar{B}_{2}(0)\left(\subset \boldsymbol{R}^{d}\right) \rightarrow M(l=1, \cdots, N)$ (topological) embeddings. Put $B_{j}^{l}:=\phi_{l}\left(\bar{B}_{1-j / 2 N}(0)\right), j=0, \cdots, N$ and

$$
\left\{\begin{array}{l}
K_{l}:=B_{l}^{1} \cup \cdots \cup B_{l}^{l}, \tag{2.5}\\
H_{l}:=B_{l}^{1} \cup \cdots \cup B_{l}^{l-1}, \quad\left(K_{l-1} \supset H_{l}\right) \\
L_{l}:=\phi_{l}^{-1}\left(H_{l} \cap B_{l}^{l}\right), \\
J_{l}:=\phi_{l}^{-1}\left(K_{l-1} \cap B_{l-1}^{l}\right) \subset B_{1}(0), \quad\left(L_{l} \subset J_{l}\right)
\end{array}\right.
$$

We assume that $\bigcup_{l=1}^{N}$ int $B_{N}^{l}=M$. Now the main tool is
Lemma (2.6). For any $\varepsilon>0$ there exists $\varepsilon_{1}>0$ with the following property: let $\Psi_{j}: B_{0}^{j}\left(=\phi_{j}\left(\bar{B}_{1}(0)\right) \rightarrow \bar{M}(j=1, \cdots, N)\right.$ be embeddings into a riemannian manifold \bar{M} such that

$$
\begin{equation*}
\Psi_{l}\left(B_{j+2}^{l} \cap B_{j+2}^{j}\right) \subset \Psi_{j}\left(B_{0}^{j}\right), \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
d_{0}\left(\phi_{j}^{-1} \circ \Psi_{j}^{-1} \circ \Psi_{l} \phi_{j}, \iota\right)<\varepsilon_{1} \quad \text { on } \quad \phi_{j}^{-1}\left(B_{j+2}^{l} \cap B_{j+2}^{j}\right) \quad \text { for all } j \tag{2.8}
\end{equation*}
$$

where we denote by d_{0} the uniform C^{0}-topology, i.e., $d_{0}(\phi, \psi) ;=\operatorname{Sup}_{x, y} d(\phi(x)$, $\psi(y)$) and c denotes the inclusion map. Then we have an immersion $\Psi: M$ $\rightarrow \bar{M}$ such that $d_{0}\left(\Psi_{j \mid B_{j}^{j}}, \Psi_{\mid B_{j}^{j}}\right)<\varepsilon$.

We don't give a proof of (2.6), but only mention that it follows by
the successive applications of the isotopy extension theorem ([E-K]): let C_{1}, C_{2} be closed sets in \boldsymbol{R}^{d} such that $C_{1} \subset \operatorname{int} C_{2} \subset B_{1}(0)$. For any $\varepsilon>0$ there exists $\delta>0$ such that if the inclusion $\iota: C_{2} \rightarrow \bar{B}_{1}(0)$ and a (topological) immersion $h: C_{2} \rightarrow \bar{B}_{1}(0)$ satisfy $d_{0}(h, \iota)<\delta$, then there exists a homeomorphism $\tilde{h}: \bar{B}_{1}(0) \rightarrow \bar{B}_{1}(0)$ with $\tilde{h}_{\mid C_{1}}=h_{\mid C_{1}}$ and $d_{0}(\tilde{h}, \mathrm{id})<\varepsilon$. To apply this to (2.7) we need closed sets $C_{l}^{1}, C_{l}^{2}(l=1, \cdots, N)$ with $L_{l} \subset C_{l}^{1} \subset$ int $C_{l}^{2} \subset J_{l} \subset$ $B_{1}(0)$.
3°. Assuming (2.7) we proceed as follows. By Ascoli-Arzela theorem the set \mathscr{E}_{1} of embeddings $f: \bar{B}_{1}(0) \rightarrow \bar{B}_{4}(0)$ whose C^{1}-norm $\leq \xi(\Delta, r)$ is totally bounded with respect to the uniform C^{0}-topology. Namely for any $\delta>0$ there exists a δ-dense subset $\left\{f_{1}, \cdots, f_{n(\delta)}\right\}$ of \mathscr{E}_{1}. From (2.4) $\phi_{j}^{-1} \circ$ $\phi_{l \mid \bar{B}_{1}(0)} \in \mathscr{E}_{1}$. Now there exists $\delta_{1}=\delta_{1}(\Delta, r)$ such that

$$
d\left(\phi_{j}^{-1} \circ \phi_{l}\left(\partial B_{1-3 k / 6 N}(0)\right), \phi_{j}^{-1} \circ \phi_{l}\left(\partial B_{1-(3 k-1) / 6 N}(0)\right)\right)>\delta_{1}
$$

because $\phi_{j}^{-1} \circ \phi_{l} \in \mathscr{E}_{1}$. For a fixed $l(1 \leq l \leq N)$ we choose $f_{i_{1}}, \cdots, f_{i_{l-1}} \in \mathscr{E}_{1}$ so that $d_{0}\left(f_{i_{j}}, \phi_{l}^{-1} \circ \phi_{j}\right)<\delta_{1} / 4(j=1, \cdots, l-1)$ and define

$$
\begin{aligned}
& C_{l}^{1}:=\left\{f_{i_{1}}\left(\bar{B}_{1-(3 l-1) / 6 N}(0)\right) \cup \cdots \cup f_{i_{l-1}}\left(\bar{B}_{1-(3 l-1) / 6 N}(0)\right)\right\} \cap \bar{B}_{1-(3 l-1) / 6 N}(0) \\
& C_{l}^{2}:=\left\{f_{i_{1}}\left(\bar{B}_{1-(3 l-2) / 6 N}(0)\right) \cup \cdots \cup f_{i_{l-1}}\left(\bar{B}_{1-(3 l-2) / 6 N}(0)\right)\right\} \cap \bar{B}_{1-(3 l-2) / 6 N}(0) .
\end{aligned}
$$

Then we may check that C_{l}^{1}, C_{l}^{2} satisfy the above mentioned property.
Now we prove the theorem by contradiction. Suppose that there are infinitely many compact riemannian manifolds $M_{i}(i=1,2, \cdots)$ satisfying the assumption of the theorem which are not mutually homeomorphic. We may further assume that all M_{i} have the atlases consisting of the same number of local charts $\left\{\left(\phi_{j}^{(i)}, \bar{B}_{8}(0)\right), j=1, \cdots, N\right\}$ with (2.2), (2.3) and (2.4) and that $\phi_{j}^{(i)}\left(B_{1}(0)\right) \cap \phi_{l}^{(i)}\left(B_{1}(0)\right) \neq \phi$ if and only if $\phi_{j}^{(k)}\left(B_{1}(0)\right) \cap \phi_{l}^{(k)}\left(B_{1}(0)\right) \neq \phi$ for all pairs (i, k). Now from Ascoli's theorem there exists $(i, k)(i \neq k)$ such that

$$
d_{0}\left(\phi_{j}^{(k)-1} \circ \phi_{l \mid \bar{B}_{1}(0)}^{(k)}, \phi_{j}^{(i)-1} \circ \phi_{l \mid B_{1}(0)}^{(i)}\right)<\varepsilon / \xi(\Delta, v) \text { for all } i, l=1, \cdots, N .
$$

Put $\Psi_{j}:=\phi_{j}^{(i)} \circ \phi_{j}^{(k)-1}: B_{0}^{j}\left(\subset M_{k}\right) \rightarrow M_{i} . \quad$ Then we have by taking $\varepsilon<1 / N$, $\Psi_{l}\left(B_{j-2}^{l} \cap B_{j-2}^{j}\right) \subset \Psi_{j}\left(B_{0}^{j}\right)$ and

$$
\begin{align*}
& d_{0}\left(\phi_{j}^{(k)-1} \circ \Psi_{j}^{-1} \circ \Psi_{l} \circ \phi_{j}^{(k)}, \iota\right) \tag{2.9}\\
& \quad=d_{0}\left(\phi_{j}^{(i)-1} \circ \phi_{l}^{(i)}\left(\phi_{l}^{(k)-1} \circ \phi_{j}^{(k)}\right), \phi_{j}^{(k)-1} \circ \phi_{l}^{(k)}\left(\phi_{l}^{(k)-1} \circ \phi_{j}^{(k)}\right)\right)<\varepsilon .
\end{align*}
$$

Thus applying (2.6) to ($M=M_{k}, \bar{M}=M_{i}, \Psi_{j}$) we have an immersion ψ_{k} : $M_{k} \rightarrow M_{i}$ and also an immersion $\psi_{i}: M_{i} \rightarrow M_{k}$ reversing i and k. Taking ε sufficiently small $\psi_{k} \circ \psi_{i}(m)$ and m (resp. $\psi_{i} \circ \psi_{k}(n)$ and n) are in a small convex neighborhood and we see that $\psi_{k} \circ \psi_{i}$ and $\psi_{i} \circ \psi_{k}$ are homotopic
to the identity. Then since ψ_{k} is a covering map and a homotopy equivalence, ψ_{k} is in fact a homeomorphism. This contradiction completes the proof of (2.1). Then from the results of differential topology we get

Corollary (2.10). If $d \neq 4$ then there are only finitely many diffeomorphism classes of riemannian manifolds which satisfy the assumption of the theorem.

Remark (2.11). In general dimension, under the additional assumption $\max \|\nabla R\| \leq \Delta_{1}$, Cheeger directly proved that there are only finitely many diffeomorphism classes. For this we need in (2.8) of lemma (2.6) the estimate of uniform C^{1}-topology to apply Thom's isotopy extension theorem. We need the estimate on $\|\nabla R\|$ to get (2.4) in terms of C^{2}-norm, which suffices to get the estimate (2.9) w.r.t. the C^{1}-topology. Now recently T. Yamaguchi obtained a more explicit result, namely the estimate of the number of diffeomorphism classes of riemannian manifolds satisfying the above conditions, by using center of mass technique ([Y 1], [Y 2]).

Very recently S. Peters ([P]) gave a direct proof of corollary (2.10) for all dimensions. Consider two compact d-dimensional riemannian manifolds M, \bar{M} with $i_{M}, i_{\bar{M}} \geq i_{0}$ and $\left|K_{M}\right|,\left|K_{\bar{M}}\right| \leq \Lambda^{2}$. Suppose that M (\bar{M}) is covered by N convex balls $\left\{B_{R / 2}\left(x_{i}\right)\right\}_{i=1}^{i=N}\left(\left\{B_{R / 2}\left(\bar{x}_{i}\right)\right\}_{i=1}^{i=N}\right)$ such that $B_{R / 4}\left(x_{i}\right)\left(B_{R / 4}\left(\bar{x}_{i}\right)\right.$'s are mutually disjoint, where we have put $R:=i_{0} / 10$. Then we have normal coordinates $\phi_{i}:=\operatorname{Exp}_{x_{i}} \circ u_{i}: B_{R}(0)\left(\subset T_{x_{i}} M\right) \rightarrow B_{R}\left(x_{i}\right)$ $\left(\bar{\phi}_{i}:=\operatorname{Exp}_{x_{i}} \circ \bar{u}_{i}: B_{R}(0) \rightarrow B_{R}\left(\bar{x}_{i}\right)\right.$), where $u_{i}: R^{d} \rightarrow T_{x_{i}} M$ etc. is an orthonormal basis at x_{i}. For $B_{R / 2}\left(x_{i}\right) \cap B_{R / 2}\left(x_{j}\right) \neq \phi$ we get embeddings $\phi_{j}^{-1} \circ \phi_{i}$: $B_{R R}(0) \rightarrow B_{3 R}(0)$. We denote by $P_{i j}$ the parallel translation along the shortest geodesic from x_{i} to x_{j}. Then Peters gave instead of (2.6)

Proposition (2.12). Let M, \bar{M} be as above and $\varepsilon_{0} \leq i_{0} \cdot 6^{2-n}, \varepsilon_{1} \leq \Lambda i_{0} / 70$. Then

$$
\begin{gather*}
d_{0}\left(\phi_{j}^{-1} \phi_{i}, \bar{\phi}_{j}^{-1} \bar{\phi}_{i}\right)<2 / 3 \cdot \varepsilon_{0}, \tag{2.13}\\
\left\|u_{j}^{-1} \circ P_{i j} \circ u_{i}-\bar{u}_{j}^{-1} \circ \bar{P}_{i j} \circ \bar{u}_{i}\right\|<\varepsilon_{1}^{2} \quad \text { for all } i, j \tag{2.14}
\end{gather*}
$$

imply that M and \bar{M} are diffeomorphic.
Then Corollary (2.10) follows from (2.12) as in 3° of the proof of (2.1). For infinitely many mutually non-diffeomorphic riemannian manifolds $\left\{M_{k}\right\}$ satisfying the assumptions of (2.1), (2.14) holds for some two of them because the set $\left\{\left(u_{j}^{(k)}\right)^{-1} \circ P_{i j}^{(k)} \circ u_{i}^{(k)}\right\}$ is contained in the compact group $O(n)$, which admits a finite covering by balls of radius $\varepsilon_{1 / 2}^{2}$. For the proof of (2.12) we glue up local maps $F_{i}:=\bar{\phi}_{i} \phi_{i}^{-1}: B_{R}\left(x_{i}\right) \rightarrow B_{R}\left(\bar{x}_{i}\right)$ to a smooth map $F: M \rightarrow \bar{M}$ by center of mass technique, which turns out to be regular
by R.C.T. and an estimate of the area of geodesic triangles in terms of curvature.

§ 3. Gromov's approach ([G7])

Now Gromov ([G7]) considered to embed a compact d-dimensional riemannian manifold M with $\left|K_{\sigma}\right| \leq \Delta, d_{M} \leq \rho$ and $v_{M} \geq V$ into euclidean space R^{N} of dimension N, where N may be estimated in terms of Δ, ρ, V and d. Take $0<r<c_{M}:=\min \left\{\pi / 2 \sqrt{ } \bar{\Delta}, i_{M} / 2\right\}$. We choose an ε-dense subset $N=\left\{m_{i}\right\}_{i=1}^{i=N}$ with $\varepsilon<\min \left\{r / 8, s_{4}(r) / 2 \cdot\left(1-(1 / \sqrt{2}+\alpha)^{2}\right)^{1 / 2}, 1 /(2(r \Delta+\right.$ $16 / r)) \cdot\left(1-r /\left(8 s_{\Delta}(r / 4)\right)\right\}$, where α will be determined later. From this ε we may estimate $N \leq b_{-\Delta}^{d}(\rho) / b_{\Delta}^{d}(\varepsilon / 2)$ (see (1.1)).

Taking a C^{∞} cut function $h: \boldsymbol{R} \rightarrow \boldsymbol{R}^{+}$such that $h(t)=1$ if $t \leq 0, h(t)=0$ if $t \geq r$, and $h^{\prime}(t)<0(0<t<r)$, we define a smooth mapping $f: M \rightarrow \boldsymbol{R}^{N}$ as

$$
\begin{equation*}
f(p):=\left(h \left(d\left(m_{1}, p\right), \cdots, h\left(d\left(m_{N}, p\right)\right) .\right.\right. \tag{3.1}
\end{equation*}
$$

Note that there exists $k(r)>0$ such that $\left|h^{\prime}(t)\right|,\left|h^{\prime \prime}(t)\right|<k(r)$.

1. Firstly we see that f is immersive at any point $p \in M$. Take an orthonormal basis $\left\{e_{i}\right\}$ of $T_{p} M$ and choose $m_{i_{1}}, \cdots, m_{i_{d}} \in N$ such that $d\left(m_{i j}, \operatorname{Exp}_{p} r / 2 \cdot e_{j}\right)<\varepsilon(j=1, \cdots, d) . \quad$ Note that $3 r / 8<d\left(p, m_{i j}\right)<5 r / 8$. We take $u_{j} \in U_{p} M(j=1, \cdots, N)$ such that $m_{i_{j}}=\operatorname{Exp}_{p} t_{j} u_{j}, t_{j}:=d\left(p, m_{j}\right)$. Then from R.C.T. (1.2.20) we have

$$
\frac{s_{\Delta}(r)}{r}\left|r / 2 \cdot e_{j}-t_{j} u_{j}\right| \leq d\left(m_{i_{j}}, \operatorname{Exp}_{p} r / 2 \cdot e_{j}\right)<\varepsilon<s_{\Delta}(r) / 2 \cdot\left(1-(1 / \sqrt{2}+\alpha)^{2}\right)^{1 / 2}
$$

from which we easily see that $g\left(e_{j}, u_{j}\right)>1 / \sqrt{2}+\alpha$. This implies that $\left\{u_{j}\right\}$ are linearly independent. Now remark that rank $d f(p) \geq \operatorname{rank}\left(d \cdot h\left(d\left(m_{i j}, \cdot\right)\right.\right.$ $\left.(p)), \cdots, d \cdot h\left(d\left(m_{i_{d}}, \cdot\right)(p)\right)\right)=\operatorname{rank}\left(h^{\prime}\left(d\left(m_{i_{1}}, p\right)\right) u_{1}, \cdots, h^{\prime}\left(d\left(m_{i_{d}}, p\right)\right) u_{d}\right)$ $=d$, because grad $d_{m_{i_{j}}}=-u_{j}((1.4 .4))$.
$\mathbf{2}^{\circ}$. Secondly we show that f is injective. Suppose that $f(m)=f(n)$ for $m, n \in M(m \neq n)$. We have then $d\left(m_{i}, m\right)=d\left(m_{i}, n\right)$ for all $m_{i} \in N \cap$ $B_{r}(m)=N \cap B_{r}(n)$. Note that $d:=d(m, n)<2 \varepsilon(<r / 4)$. Let γ be the minimal geodesic from m to n and $z:=\gamma(r / 2+d / 2)$. Then $z \in B_{r / 2}(n) \backslash \bar{B}_{r / 2}(m)$ and $B_{\varepsilon}(z) \subset B_{r}(n) \backslash \bar{B}_{r / 4}(m)$. Now there exists a point $p \in N \cap B_{\varepsilon}(z)$. Let λ be the minimal geodesic from n to p and put $u:=\dot{\lambda}(0) \in U_{n} M$ and $d^{\prime}:=$ $d(p, n)$. We estimate $g(u, \dot{\gamma}(d))$. From R.C.T. (1.2.20) we get

$$
\begin{aligned}
& \left|(r / 2-d / 2) \dot{\gamma}(d)-d^{\prime} u\right| \\
& \quad=\left|\operatorname{Exp}_{n}^{-1} z-\operatorname{Exp}_{n}^{-1} p\right| \leq d^{\prime}\left|s_{\Delta}\left(d^{\prime}\right) \cdot d(p, z)<d^{\prime}\right| s_{\Delta}\left(d^{\prime}\right) \cdot \varepsilon
\end{aligned}
$$

from which follows

$$
\begin{aligned}
& r / 2 \cdot g(\dot{\gamma}(d), u)>(r / 2-d / 2) g(\dot{\gamma}(d), u) \\
& \quad=g\left((r / 2-d / 2) \dot{\gamma}(d)-d^{\prime} u, u\right)+d^{\prime} \geq d^{\prime}\left(1-\varepsilon / s_{\Delta}\left(d^{\prime}\right)\right) \\
& \quad \geq(r / 2-d / 2-\varepsilon)\left(1-\varepsilon / s_{\Delta}(r / 2-d / 2-\varepsilon)\right) \geq r / 4\left(1-r /\left(8 s_{\Delta}(r / 4)\right)\right),
\end{aligned}
$$

namely

$$
g(\dot{\gamma}(d), u) \geq 1-r /\left(8 s_{\Delta}(r / 4)\right) .
$$

On the other hand note that $d(p, \gamma(t))<r(0<t<d)$. From Rolle's theorem the distance function d_{m} has a point $m_{0}=\gamma\left(t_{1}\right), 0<t_{1}<d$ with $g\left(\dot{\gamma}\left(t_{1}\right)\right.$, $\left.u_{t_{1}}(0)\right)=0$, where u_{t} is the initial direction of the minimal geodesic from $\gamma(t)$ to p. Then we have from the hessian estimate (1.4.4) that

$$
\begin{aligned}
g(\dot{\gamma}(d), u) & =\int_{t_{1}}^{d} d / d t \cdot g(\dot{\gamma}(t), u) d t=\int_{t_{1}}^{d} \operatorname{Hess} d_{p}(\dot{\gamma}(t), \dot{\gamma}(t)) d t \\
& \leq \int_{t_{1}}^{d}\{(1 / d(p, \gamma(t))+d(p, \gamma(t)) \Delta / 2\} d t<2 \varepsilon(8 / r+r \Delta / 2)
\end{aligned}
$$

Thus we get $2 \varepsilon(r \Delta+16 / r)>1-r /\left(8 s_{\Delta}(r / 4)\right)$, a contradiction.
3°. Here we remark that there exists $D(\alpha, d, r)>0$ such that dil ${ }_{m} f^{-1}$ $<D(\alpha, d, r)$ (see remark after (1.2.20) for the definition of the dilatation). In fact taking a basis $\left\{u_{1}, \cdots, u_{d}\right\}$ it suffices to consider a linear map l : $T_{p} M \rightarrow R^{d}$ defined by $l(\xi):=\left(a_{1} g\left(u_{1}, \xi\right), \cdots, a_{d} g\left(u_{d}, \xi\right)\right)$ with $a_{i}=h^{\prime}(d(p$, $\left.m_{i}\right)$). We have the following properties: $g\left(u_{j}, e_{j}\right)>1 / \sqrt{2}+\alpha,\left|g\left(u_{i}, e_{j}\right)\right|<$ $\left(1-(1 / \sqrt{2}+\alpha)^{2}\right)^{1 / 2}(i \neq j)$, and there exists $c(r)>0$ such that $\left|a_{i}\right|=$ $\left|h^{\prime}\left(d\left(p, m_{i}\right)\right)\right|<c(r)$ (recall that $\left.3 r / 8<d\left(p, m_{i}\right)<5 r / 8\right)$. Then we can show that

$$
\begin{aligned}
& \operatorname{Min}\{|l(\xi)| ;|\xi|=1\} \\
& \quad \geq c(r) / \sqrt{d} \cdot\left\{(1 / \sqrt{2}+\alpha) / d-(d-1)\left(1-(1 / \sqrt{2}+\alpha)^{2}\right)^{1 / 2}\right\}
\end{aligned}
$$

α is chosen so that the last quantity is positive.
Now we extend the above embedding to a tubular neighborhood of $f(M)$. Let $\nu: T M^{\perp} \rightarrow M$ be the normal bundle of M and $\operatorname{Exp}_{\nu}: T M^{\perp} \rightarrow R^{N}$ the normal exponential mapping. Then Exp, is a diffeomorphism on $B_{\delta}\left(T M^{\perp}\right):=\left\{u \in T M^{\perp} ;|u|<\delta\right\}$ for some $\delta>0$. We estimate the value of δ for which $\operatorname{Exp}_{\nu \mid B \delta(T M \perp)}$ is a local diffeomorphism. For that purpose suppose that $n \in \boldsymbol{R}^{N}$ is a critical value of Exp_{ν}. Namely there exist a curve $s \rightarrow c_{s}=f\left(m_{s}\right)$ in $f(M)$, normal vector field n_{s} along c_{s} such that $n=c_{0}+n_{0}$, $\dot{c}_{0}+\dot{n}_{0}=0$. Then we have from $g\left(n_{s}, \dot{c}_{s}\right)=0$,

$$
g\left(n_{0}, \ddot{c}_{0}\right)=-g\left(\dot{n}_{0}, \dot{c}_{0}\right)=\left|\dot{c}_{0}\right|^{2}
$$

Since $c_{s}=\left(h\left(d\left(m_{i}, m_{s}\right)\right)\right)$ we have

$$
\ddot{c}_{0}=\left(h^{\prime \prime}\left(d\left(m_{i}, m_{0}\right)\right)\left(d / d s_{\mid s=0} d\left(m_{i}, m_{s}\right)\right)^{2}+h^{\prime}\left(d\left(m_{i}, m_{0}\right)\right) d^{2} / d s_{\mid s=0}^{2} d\left(m_{i}, m_{0}\right)\right)
$$

Recall that

$$
\begin{aligned}
& \left|d / d s_{\mid s=0} d\left(m_{i}, m_{s}\right)\right|=\left|g\left(\operatorname{grad} d_{m_{i}}, \dot{m}_{0}\right)\right| \leq\left|\dot{m}_{0}\right|, \\
& \left|d^{2} / d s_{\mid s=0}^{2} d\left(m_{i}, m_{s}\right)\right|=\mid \text { Hess } d_{m_{i}}\left(\dot{m}_{0}, \dot{m}_{0}\right)\left|\leq\left|\dot{m}_{0}\right|^{2} \psi\left(d\left(m_{i}, m_{0}\right), \Delta\right) .\right.
\end{aligned}
$$

$(\psi(t, \Delta):=1 / t+\Delta t / 2)$. There exists $k(r)>0$ such that $\left|h^{\prime}(t) \psi(t, \Delta)\right|,\left|h^{\prime \prime}(t)\right|$ $<k(r)(0 \leq t \leq r)$. Then we have

$$
\begin{aligned}
&\left|\dot{c}_{0}\right|^{2} \leq\left|n_{0}\right|\left|\ddot{c}_{0}\right| \leq 2\left|n_{0} \| \dot{m}_{0}\right|^{2} \sqrt{N} k(r), \quad \text { namely } \\
& d(n, f(M))=\left|n_{0}\right| \geq 1 /(2 \sqrt{N} k(r)) \cdot\left|\dot{c}_{0}\right|^{2} /\left|\dot{m}_{0}\right|^{2} \\
& \geq 1 /(2 \sqrt{N} k(r)) \cdot\left(\operatorname{dil}_{c_{0}}\left(f^{-1}\right)\right)^{-2} \geq D^{-2} /(2 \sqrt{N} k(r))
\end{aligned}
$$

This gives an estimate for δ such that $\operatorname{Exp}_{\nu \mid B_{\delta}(T M \perp)}$ is a local diffeomorphism. Gromov further asserts that we may have $\delta \approx \operatorname{const}(r, \Delta, d) N \sqrt{N}$.

Next suppose that we have another compact riemannian manifold M^{\prime} with $\left|K_{\sigma}^{\prime}\right| \leq \Delta, d_{M^{\prime}} \leq \rho, v_{M^{\prime}} \geq V$, which carries an ε-dense subset $\left\{m_{i}^{\prime}\right\}_{i=1}^{i=N}$ such that

$$
\begin{equation*}
1-a \leq \frac{d\left(m_{i}^{\prime}, m_{j}^{\prime}\right)}{d\left(m_{i}, m_{j}\right)} \leq 1+a \tag{3.2}
\end{equation*}
$$

Then we get from the definition of f and f^{\prime} that $d\left(f\left(m_{k}\right), f^{\prime}\left(m_{k}^{\prime}\right)\right) \leq$ $k(r) a \sqrt{N} \rho$ and similarly $d\left(f(m), f^{\prime}\left(M^{\prime}\right)\right) \leq k(r) \sqrt{N} \rho(a+\varepsilon)$. Namely for sufficiently small $a, \varepsilon, f(M) \subset B_{\delta}\left(f^{\prime}\left(M^{\prime}\right)\right)$. From this Gromov asserts that M is diffeomorphic to M^{\prime} (it seems to the author that we need some more arguments for this). Anyway this implies finiteness of diffeomorphism types of compact riemannian manifolds with $\left|K_{\sigma}\right| \leq \Delta, d_{M} \geq \rho, v_{M} \geq V$. In fact if there are infinitely many such M_{k} which are not mutually diffeomorphic we have a sequence of points $\left(d\left(m_{i}^{(k)}, m_{j}^{(k)}\right)\right) \in \boldsymbol{R}^{N(N+1) / 2}$, which are obtained from ε-dense subsets and lie in a bounded subset of $\boldsymbol{R}^{N(N+1) / 2}$. Thus we have two M_{k} and $M_{k^{\prime}}$ for which (3.2) holds.
5°. Now Gromov proposed much more general scheme. Namely he considered the Hausdorff metric on the space of metric structures. Firstly for metric spaces X, Y assume that there exists a bijection $f: X \rightarrow Y$ such that dil f, dil $f^{-1}<+\infty$. We define the Lipschitz distance $d_{L}(X, Y)$ between X, Y as $d_{L}(X, Y):=\inf \left\{|\log \operatorname{dil} g|,\left|\log \operatorname{dil} g^{-1}\right| ; g: X \rightarrow Y\right.$, bijection $\}$. Secondly we set for subsets A, B of a metric space Z

$$
d_{H}(A, B):=\inf \left\{R>0 ; A \subset B_{R}(B), \text { and } B \subset B_{R}(A)\right\}
$$

where $B_{R}(A):=\{z \in Z ; d(z, A)<R\}$ etc. Then for metric spaces X, Y, we define the Hausdorff distance between them as
(3.3) $\quad d_{H}(X, Y):=\inf \left\{d_{H}^{Z}(f(X), g(Y)) ; Z\right.$, metric space, $f: X \rightarrow Z, g:$ $Y \rightarrow Z$, isometric injections $\}$.

In the case when X, Y are compact $d_{H}(X, Y)<+\infty$ and $d_{H}(X, Y)=0$ holds if and only if X is isometric to Y. In particular d_{H} determines a distance on the set of isometry classes of compact riemannian manifolds. Gromov considered in [G 7] what is the limit of sequences of riemannian structures w.r.t. Hausdorff distance. In general such a limit may not be a differentiable manifold. Nevertheless using the above arguments he asserts the following:

Gromov's convergence theorem (3.4). Let $\mathfrak{M}:=\{(M, g) ; \operatorname{dim} M=d$, $\left.d_{M} \leq \rho,\left|K_{\sigma}\right| \leq \Delta, v_{M} \geq V\right\}$. Then a sequence g_{k} of riemannian structures in \mathfrak{M} admits a limit g which is a weak riemannian structure.

By weak riemannian manifold we mean a differentiable manifold which admits continuous metric, notion of geodesics, exponential mapping and injectivity radius etc. In the above the fact that $i_{g_{k}}$ has a positive lower bound is essential. Applying the above to pinching problem Berger asserts the following:

Theorem (3.5). For even $d \in \mathbf{Z}^{+}$there exists $\delta(d)<1 / 4$ such that all compact simply connected riemannian manifolds of dimension d with $\delta(d) \leq$ $K_{\sigma} \leq 1$ are either homeomorphic to a sphere or diffeomorphic to one of GROSS's.

Remark. In [G 1] Gromov also asserts that the number of diffeomorphism types of compact riemannian manifolds with $d_{M} \leq 1,\left|K_{\sigma}\right| \leq \Lambda$, $v_{M} \geq \Lambda^{-1}, \operatorname{dim} M=d$, is less than $\mathrm{ex}_{6}(d+\Lambda)$, where

$$
\operatorname{ex}_{6} \cdot=\underbrace{\exp (\exp (\cdots(\exp \cdot)))}_{6} .
$$

It will be also very nice if we get finiteness theorems assuming bounded Ricci curvature instead of sectional curvature.

§ 4. Curvature, diameter and Betti numbers

As we have seen in (1.2.21), for a compact riemannian manifold M with positive Ricci curvature its fundamental group $\pi_{1}(M)$ is finite and first Betti number $b_{1}(M)$ equals zero. In the case of non-negative Ricci
curvature Milnor obtained the following (see also [Wo 2], [G 4,7] for further informations):

Theorem (4.1) ([Mi 2]). Let M be a compact riemannian manifold with $r(v) \geq 0$. Then $\pi_{1}(M)$ has a polynomial growth (Let $\pi_{1}(M)$ be generated by $\left\{g_{1}, \cdots, g_{k}\right\}$ and we put $m(s):=\#\left\{g \in G ; g=g_{i_{1}}^{p_{1}} \cdots g_{i_{1}}^{p_{1}}\right.$ with $|g|:=\left|p_{1}\right|+\left|p_{2}\right|$ $\left.+\cdots+\left|p_{1}\right| \leq s\right\}$. Then by definition $\pi_{1}(M)$ has polynomial growth if $m(s)$ \leq Const. s^{e} for some $e \in Z^{+}$. This is independent of the choice of the generators).

Proof. We consider elements $g \in \pi_{1}(M)$ as deck transformations of the universal covering $\pi: \tilde{M} \rightarrow M$. Then $g \in \pi_{1}(M)$ is an isometry of \tilde{M} w.r.t. the complete induced metric. For a fixed $\tilde{m} \in \tilde{M}$, there exists an $\varepsilon>$ 0 such that $\|g\|:=d(\tilde{m}, g \tilde{m})>\varepsilon$ for all $g \in \pi_{1}(M) \backslash\{e\}$ and consequently $\left\{B_{\varepsilon / 2}(g \tilde{m}) ; g \in \pi_{1}(M)\right\}$ are mutually disjoint. Taking $R \geq \max _{1 \leq i \leq k} d\left(g_{i} \tilde{m}\right.$, $\tilde{m})$ we see that if $|g| \leq s, B_{\varepsilon / 2}(g m)$ is contained in $B_{s / 2+R s}(\tilde{m})$. Then we have from (1.4.2) and (1.4.3)

$$
b_{0}^{d}(\varepsilon / 2+R s) \geq \operatorname{vol}\left(B_{\varepsilon / 2+R s}(\tilde{m})\right) \geq \sum_{g ;|g| \leqq s} \operatorname{vol}\left(B_{\varepsilon / 2}(g \tilde{m})\right) \geq m(s) b_{\Delta}^{d}(\varepsilon / 2)
$$

where Δ is an upper bound of K_{σ}. Namely we get $m(s) \leq$ Const. $(\varepsilon / 2+R s)^{d}$. q.e.d.

On the other hand for the estimate of the first Betti number we know that for a compact manifold M with $r(v) \geq 0, b_{1}(M) \leq d(=\operatorname{dim} M)$ holds, where the equality holds just for flat tori ([Bo]). Now Gromov ([G 7]) took the following approach: let M be a compact riemannian manifold and $\pi: \tilde{M} \rightarrow M$ the universal covering. Take $\tilde{m} \in \tilde{M}$ and $\varepsilon>0$. We put for $g \in \pi_{1}(M),\|g\|:=d(\tilde{m}, g \tilde{m})$. Now let h_{1}, \cdots, h_{p} be a maximal family of elements of $\pi_{1}(M)$ with the following properties;
(i) $\left\|h_{i} h_{j}^{-1}\right\|>\varepsilon$ if $i \neq j$,
(ii) $\left\|h_{i}\right\|<2 d_{M}+\varepsilon$.

Let Γ be the normal subgroup of $\pi_{1}(M)$ generated by $\left\{h_{i}\right\}$. We show that Γ is of finite index in $\pi_{1}(M)$. To see this we consider the Galois covering $\pi^{\prime}: M^{\prime} \rightarrow M$ corresponding to Γ. Namely the group of deck transformations of M^{\prime} is isomorphic to $\pi_{1}(M) / \Gamma$. Now suppose that $\# \pi_{1}(M) / \Gamma=\infty$. Let $m^{\prime} \in M^{\prime}$ correspond to \tilde{m}. Then there exists $n^{\prime} \in M^{\prime}$ such that $d\left(m^{\prime}, n^{\prime}\right)$ $=d_{M}+\varepsilon$ because M^{\prime} is not compact. On the other hand there exists $h^{\prime} \in$ $\pi_{1}(M) / \Gamma$ such that $d\left(n^{\prime}, h^{\prime} m^{\prime}\right) \leq d_{M}$ because of $d\left(m, \pi^{\prime} n^{\prime}\right) \leq d_{M}$. Then we get $\varepsilon \leq d\left(m^{\prime}, h^{\prime} m^{\prime}\right) \leq d\left(m^{\prime}, n^{\prime}\right)+d\left(n^{\prime}, h^{\prime} m^{\prime}\right) \leq 2 d_{M}+\varepsilon$. Namely choosing $h \in$ $\pi_{1}(M)$ such that $h^{\prime}=h \Gamma$ we see that $\|h\| \leq 2 d_{M}+\varepsilon,\left\|h h_{i}^{-1}\right\|>\varepsilon$, which contradicts the maximality.

Now considering the Hurewicz map $\varphi: \pi_{1}(M) \rightarrow H_{1}(M, Z)$ the sub-
group G of $H_{1}(M, Z)$ generated by $\varphi\left(h_{1}\right), \cdots, \varphi\left(h_{p}\right)$ is of finite index. This shows that $b_{1}(M) \leq p$. Then (i) means that $B_{\varepsilon / 2}\left(g_{i} m\right)(i=1, \cdots, p)$ are mutually disjoint and (ii) means that they are contained in $B_{2 d_{M}+3 \varepsilon / 2}(m)$. Thus we have as before

$$
b_{1}(M) \leq p \leq \operatorname{vol}\left(B_{2 d_{M U}+3 \varepsilon / 2}(m)\right) / \operatorname{vol}\left(B_{s / 2}(m)\right)
$$

Now assuming that $r(v) \geq-(d-1) r$ for all $v \in U M$ we get from (1.4.1)

$$
b_{1}(M) \leq \int_{0}^{5 d_{M}}(s h r t)^{d-1} d t / \int_{0}^{d_{M}}(\operatorname{sh} r t)^{d-1} d t
$$

which depends only on r, d, d_{m}. Refining the above argument Gromov got

Theorem (4.2) ([G7]). There exists an integer-valued function $\varphi\left(d, r, d_{M}\right)$ such that for all compact riemannian manifolds M of dimension d with $r(v)$ $\geq-(d-1) r$ we have $b_{1}(M) \leq \varphi\left(d, r, d_{M}\right) . \quad \varphi=d$ when $r d_{M}^{2}$ is sufficiently small.

Remark. Gallot ([G 1,2], [B 9]) gave a proof of the above result by analytic tools.

Now assuming that curvature is bounded below, Gromov obtained the estimate of all Betti numbers.

Theorem (4.3) ([G 3]). There exists a constant $C=C(d)$ such that for all compact d-dimensional riemannian manifolds M with $K_{\sigma} \geq-\Lambda^{2}$ and d_{M} $\leq \rho$ we get $\sum_{i=0}^{d} b_{i}(M) \leq C^{1+\Lambda \rho}$.

From this we see that $\sum b_{i}(M) \leq C$ if $K_{\sigma} \geq 0$ and that connected sum of sufficiently many copies of $S^{p} \times S^{a-p}(0<p<d)$ can not admit riemannian metric of non-negative sectional curvature. Note also that there are infinitely many homotopy types of riemannian manifolds satisfying the assumption of the theorem. If we can estimate the number of convex open balls which cover M then we easily have such an estimate for $\sum b_{i}(M)$ by Mayer-Vietoris sequence. Such an estimate follows from the injectivity radius estimate which is impossible in this case because we assume nothing about the volume. Gromov overcame the difficulties by many brilliant ideas including isotopy lemma (1.4.11) (see [G 3]).

Gallot ([G 1,2], [B 9]) also got such an estimate using analytic methods refining Weitzenböck's formula, Sobolev's inequality, etc. His methods are also applied for the estimate of eigenvalues of Laplacian, dimension of harmonic spinors, dimension of moduli of Einstein metrics etc. It will be very interesting if we have similar estimate for $\sum b_{i}(M)$ assuming bounded Ricci curvature instead of sectional curvature.

References

[BB 1] Berard-Bergery, L., Sur certaines fibration d'espaces homogènes riemanniennes, Compositio Math., 30 (1975), 43-61.
[BB 2] -, Les variétés riemanniennes homogènes simplement connexes de dimension impair à coubure strictment positive, J. Math. Pures Appl., 55 (1976), 47-68.
[BB 3] -, Quelques exemples de variétés riemanniennes où toutes les géodesiques issue d'un point sont fermées et de même longueur, suivis de quelques résultats sur leur topologie, Ann. Inst. Fourier, 27 (1977), 231-249.
[B 1] Berger, M., Sur quelques variétés riemanniennes suffisamment pincées, Bull. Soc. Math. France, 88 (1960), 57-71.
[B 2] - Les variétés riemanniennes 1/4-pincées, Ann. Scuola Norm. Sup. Pisa, 14 (1960), 161-170.
[B 3] -, Les variétés riemanniennes homogènes normales simplement connexes à coubure strictment positive, Ann. Scuola Norm. Sup. Pisa, 15 (1961), 179-246.
[B 4] - An extension of Rauch's metric comparison theorem and some applications, Illinois J. Math., 6 (1962), 700-712.
[B 5] - Lectures on Geodesics in Riemannian Geometry, Tata Inst. of Fund. Research, Bombay, 1965.
[B6] - Une borne inférieure pour le volume d'une variété riemannienne et fonction du rayon d'injectivite, Ann. Inst. Fourier, 30 (1980), 259-265.
[B 7] - Sur les variétés riemanniennes pincées juste audessous de $1 / 4$, Ann. Inst. Fourier, 33 (1983), 135-150.
[B.8]
[B 9]
——, Recent trends in riemannian geometry, preprint (1982).
——, Riemannian manifolds whose Ricci curvature is bounded from below (note by T. Tsujishita) (in Japanese), Osaka Univ., (1982).
Besse, A. L., Manifolds all of whose geodesics are closed, Springer Verlag, Berlin-Heidelberg-New York (1978).
Bishop, R and Crittenden, R., Geometry of Manifolds, Academic Press, New York, 1964.
Bishop, R. L., Decomposition of cut loci, Proc. Amer. Math. Soc., 65 (1977), 133-136.
[Bu 1] Buchner, M., Simplicial structure of the real analytic cut locus, Proc. Amer. Math. Soc., 64 (1977), 118-121.
[Bu 2] -, Stability of the cut locus in dim ≤ 6, Invent. Math., 43 (1977), 199-231.
[Bu 3] \quad, The structure of cut locus in $\operatorname{dim} \leq 6$, Compositio Math., 37 (1978), 103-119.
[Bur-T] Burago, Yu. D. and Toponogov, V. A., On 3-dimensional Riemannian spaces with curvature bounded above, Math. Zametic, 13 (1973), 881-887.
[Bus] Busemann, H., The Geometry of Geodesics, Academic Press, New York, 1955.
Buser, P. and Karcher, H., Gromov's almost flat manifolds, Asterisque n° 81, Soc. Math. France, (1981).
[Cha 1] Chavel, I., A class of Riemannian homogeneous spaces, J. Differential Geom., 4 (1970), 13-20.
[Cha 2] , Riemannian Symmetric Spaces of Rank One, Marcel Dekker, 1972.
[CI1]
Cheeger, J., Comparison and finiteness theorems for Riemannian
[C 2]
[C 3]
[C 4]
[C-E]
[C-G 2]
[Che]
[Cr]
[Cro]
[Eh]
[Es]
[E-K]
[Ga 2]
[GI-S]
[Gr]
[G 2]
[G 3]
[G 4]
[G 5]
[G6]
[GI7]
[C-G 1] Cheeger, J. and Gromoll, D., The splitting theorem for manifold of non-negative Ricci curvature, J. Differential Geom., 6 (1971), 119-129.
[Ga 1] Gallot, S., Estimées de Sobolev quantitative sur les variétés riemanniennes et applications, C.R. Acad. Sci., Paris, 292 (1981), 375-377.
[Gr-Gro] Gromoll, D. and Grove, K., Rigidity of positively curved manifolds with large diameter, Seminar on Differential Geometry, ed. S.-T. Yau, Ann. of Math. Studies, (1982), 203-208.
[G-K-M] Gromoll, D., Klingenberg, W. and Meyer, W., Riemannsche Geometrie im Grossen, Lecture Notes in Math., Springer Verlag, Ber-lin-Heidelberg-New York, 55 (1968).
[Gr-M] Gromoll, D. and Meyer, W., An exiotic sphere with non-negative romoll, D. and Meyer, W., An exiotic sphere with non-
sectional curvature, Ann. of Math., 100 (1974), 401-408.
[G 1] Gromov, M., Almost flat manifolds, J. Differential Geom., 13 (1978), 231-241.
manifolds, Ph. D. Thesis, Princeton Univ., (1967).
-, Pinching theorems for a certain class of Riemannian manifolds, Amer. J. Math., 91 (1969), 807-834.
__, Finiteness theorems for Riemannian manifolds, Amer. J. Math., 92 (1970), 61-74.
-, Some examples of manifolds of non-negative curvature, J. Differential Geom., 8 (1973), 623-628.
Cheeger, J. and Ebin, D. G., Comparison Theorems in Riemannian Geometry, American Elsevier, New York, 1975.

- On the lower bound for the injectivity radius of $1 / 4$-pinched manifolds, J. Differential Geom., 15 (1980), 437-442.
Cheng, S.-Y., Eigenvalue comparison theorems and its geometric application, Math. Z., 143 (1975), 289-297.
Crittenden, R., Minimum and conjugate points in symmetric spaces, Canad. J. Math., 14 (1962), 320-328.
Croke, C. B., An eigenvalue pinching theorem, Invent. Math., 68 (1982), 253-256.

Ehrlich, P., Continuity properties of the injectivity radius function, Compositio Math., 29 (1974), 151-178.
Eschenburg, J. H., New examples of manifolds of strictly positive curvature, Invent. Math., 66 (1982), 469-480.
Edwards, R. D. and Kirby, R. C., Deformations of space of imbeddings, Ann. of Math., 93 (1971), 65-88.
——, Applications de inégalitès de Sobolev à la géometrie, in preparation.
Gluck, H. and Singer, D., Scattering of geodesic field, I, II, Ann. of Math., 108 (1978), 347-372, 100 (1979), 202-225.
Gromoll, D., Differenzierbare Strukturen und metriken positiver Krümmung auf Sphären, Math. Ann., 164 (1966), 353-371.
-, Manifolds of negetive curvature, J. Differential Geom, 13 (1978), 223-230.
-, Curvature, diameter and Betti numbers, Comment. Math. Helv., 56 (1981), 179-195.
——,Group of Polynomial growth and expanding maps, Publ. Math. de 1'I.H.E.S., 53 (1981), 53-73.
__, Paul Levy's isoperimetric inequality, preprint, I.H.E.S., (1980).
, Volume and bounded cohomology, to appear in Publ. Math. de l'I.H.E.S.
-_, Structures métriques pour les variétés riemanniennes, rédigé par J. Lafontaine et P. Pansu, Textes Math. $\mathrm{n}^{\circ} 1$, Cedic-Nathan,

Paris, (1980)
[G 9]
[G-L]
[Gro-K] Grove, K. and Karcher, H., How to conjugate C^{1}-close actions, Math. Z., 132 (1973), 11-20.
[Gro-K-R 1] Grove, K. Karcher, H. and Ruh, E. A., Group actions and curvature, Invent. Math., 23 (1974), 31-48.
[Gro-K-R"2] __, Jacobi fields and Finsler metrics on compact Lie groups with applications to differentiable pinching problem, Math. Ann., 211 (1974), 7-21.
[Gro-S]
[Ha] Hamilton, R., Three manifolds with positive Ricci curvature, J. Differential Geom., 17 (1982), 255-306.
[Har] Hartman, P., Oscillation criteria for self-adjoint second-order differential systems and "principal sectional curvatures" J. Differential Equations, 34 (1979), 326-338.
[He] Heim, C., Une borne pour la longeur des géodésiques périodiques d'une variété riemannien compacte, These, Paris, 1971.
[H-K] Heintze, E. and Karcher, H., A general comparison theorem with applications to volume estimates for submanifolds, Ann Sci. École Norm. Sup., 11 (1978), 451-470.
[Hel] Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.
[Hu] Huang, H. M., Some remarks on the pinching problem, Bull. Inst. Math. Acad Sinica, 9 (1981), 321-340.
[IH-R] Im-Hoff, H. C. and Ruh, E., An equivariant pinching theorem, Comment. Math. Helv., 50 (1975), 389-401.
Itoh, J., Some considerations on the cut locus of Riemannian manifolds, in this proceedings, 29-46.
Itokawa, Y., On certain Riemannian manifolds with positive Ricci curvature, Ph. D. Dissertation, State Univ. of New York at Stony Brook, (1982).
Karcher, H., Riemannian center of mass and molifier smoothing, Comm. Pure Appl. Math., 30 (1977), 389-401.
[Kas] Kasue, A., Poisson equations and isoperimetric inequalities on a Riemannian manifold, in this proceedings, 333-386.
[K 1] Klingenberg, W., Contributions to Riemannian geometry in the large, Ann. of Math., 69 (1959), 654-666.
[K 2] -U Uber Riemannsche Mannigfaltigkeiten mit positive Krümmung, Comment. Math. Helv., 35 (1961), 47-54.
[K 3]
[K 4]
[K 5]
[K 6] - Riemannian Geometry, de Gruyter Studies in Math. 1°, de Gruyter, 1982.
[K-S] Klingerberg, W. and Sakai, T., Injectivity radius estimate for 1/4pinched manifolds, Arch. Math., 34 (1980), 371-376.
[Ko] Kobayashi, S., On conjugate and cut loci, Studies in Math., 4, Stu-
[K-N] Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry, John Wilery, New York, I, 1963, II, 1969.
[L-T] Li, P. and Trabergs, A., Pinching theorem for the first eigenvalue on positively curved four manifolds, Invent. Math., 66 (1982), 35-38.
[L-Z] Li, P. and Zheng, J. Q., Pinching theorem for the first eigenvalue on positively curved manifolds, Invent. Math., 65 (1980), 221-225.
[Mi 1] Milnor, J., Morse theory, Ann. of Math. Studies 51, Princeton, (1963).
[Mi 2] -, A note on curvature and the fundamental group, J. Diff. Geo., 2 (1968), 1-8.
[MO-R 1] Min-Oo. and Ruh, E., Comparison theorems for compact symmetric spaces, Ann. Sci. École Norm. Sup., 12 (1979), 335-353.
[MO-R 2] -, Vanishing theorems and almost symmetric spaces of noncompact type, Math. Ann., 257 (1981), 419-433.
[My 1] Myers, S. B,. Riemannian manifolds in the large, Duke Math. J., 1 (1935), 39-49.
[My 2] - Connections between differential geometry and topology I, Duke Math. J., 1 (1935), 376-391, II, 2 (1936), 95-102.
[My 3] -, Riemannian manifolds with positive mean curvature, Duke Math. J., 8 (1941), 401-404.
[Na-T] Nagayoshi, T. and Tsukamoto, Y., On positively curved Riemannian manifolds with bounded volume, Tôhoku Math. J., 25 (1973), 213-218.
[Nai] Naito, H., On cut loci and first conjugate loci of the irreducible symmetric R-spaces and the irreducible compact hermitian symmetric spaces, Hokkaido Math. J., 6 (1977), 230-242.
[N] Nakagawa, H., Riemannian Geometry in the Large (in Japanese), Kaigai, Tokyo, 1977.
[N-S 1] Nakagawa, H. and Shiohama, K., On Riemannian manifolds with certain cut loci, I, II, Tôhoku Math. J., 22 (1970), 14-23, 342-352.
[Pe] Peters, S., Cheeger's finiteness theorem for diffeomorphism classes of Riemannian manifolds, preprint, (1983).
[Po] Poor, W. A., Some exiotic spheres with positive Ricci curvature, Math. Ann., 216 (1975), 245-252.
[R 1] Rauch, H. E., A contribution to differential geometry in the large, Ann. of Math., 54 (1951), 38-55.
[R 2] - Geodesics, symmetric spaces and differential geometry in the large, Comment. Math. Helv., 27 (1953), 294-320.
[R 3] -, Geodesics and Curvature in Differential Geometry in the Large, Yeshiva Univ., New York, 1959.
[dR] de Rham, G., Complexes à automorphismes et homéomorphie différentiable, Ann. Inst. Fourier, 2 (1950), 51-67.
[Ru 1] Ruh, E., Curvature and differential structures on spheres, Comment. Math. Helv., 46 (1971), 127-136.
[Ru 2] -, Krümmung und differenzierbare Structure auf Spharen, II, Math. Ann., 205 (1973), 113-129.
[Ru 3]
[Sa 1] Sakai, T., On eigenvalues of Laplacian and curvature of Riemannian manifold, Tôhoku Math. J., 23 (1971), 589-603.
[Sa 2] -, On cut loci of compact symmetric spaces, Hokkaido Math. J., 6 (1977), 136-161.
[Sa 3] On On the structure of cut loci in compact riemannian symmetric spaces, Math. Ann., 235 (1978), 129-148.
[Sa 4]
[Sa 5]
[Sa 6]
[S-S]
[Sc-Y]
[Sh 1]
[Sh 2]
[S 1] Shiohama, K., The diameter of δ-pinched manifolds, J. Differential Geom., 5 (1971), 61-74.
[S 2]
[S 3]
[S 4]
[Su 1]
[Su 2]
[Su 3] - On the diameter of compact homogeneous Riemannian manifolds, Publ. RIMS, Kyoto Univ., 16 (1980), 835-847.
[Su 4] - The isometry group and the diameter of a Riemannian manifold with positive curvature, preprint.
[Sug] Sugimoto, M., On Riemannian manifolds with a certain closed geodesics, Tohoku Math. J., 22 (1970), 56-64.
[Sug-S] Sugimoto, M. and Shiohama, K., Improved by Karcher, H., On the differentiable pinching problems, Math. Ann., 195 (1971), 1-16.
[Ta] Takeuchi, M., On conjugate loci and cut loci of compact symmetric spaces I, II, Tsukuba Math. J., 2 (1978), 35-68, 3 (1979), 1-29.
[T 1] Toponogov, V., Riemannian spaces with curvature bounded below, Uspehi Math. Nauk, 14 (1959), 87-135.
[T 2] - Dependence between curvature and topological structure of Riemannian spaces of even dimension, Soviet Math. Dokl., 1 (1961), 943-945.
[Ts 1] Tsukamoto, Y., On Riemannian manifolds with positive curvature,

Mem. Fac. Sci. Kyushu Univ., 15 (1962), 90-96.
[Ts 2] - Closed geodesics on certain Riemannian manifolds of positive curvature, Tôhoku Math. J., 18 (1966), 138-143.
[Wa] Wall, C. T. C., Geometric properties of generic differentiable manifolds, Geometry and Topology, Lecture Notes in Math., Springer Verlag, Berlin-Heidelberg-New York, 597 (1979), 707-774.
[Wal 1] Wallach, N. R., Homogeneous positively pinched riemannian manifolds, Bull. Amer. Math. Soc., 76 (1970), 783-786.
[Wal 2] -, Three new examples of compact manifolds admitting riemannian structure of strictly positive curvature, Ann of Math., 96 (1972), 277-295.
[Wal-A] Wallach, N. R. and Aloff, S., An infinite family of distinct 7-manifolds admitting positively curved riemannian structures, Bull. Amer. Math. Soc., 81 (1975), 93-97.
[War 1] Warner, F. W., The conjugate locus of a Riemannian manifolds, Amer. J. Math., 87 (1965), 575-604.
[War 2] - Extensions of the Rauch comparison theorem to submanifolds, Trans. Amer. Math. Soc., 122 (1966), 341-356.
[War 3] Conjugate loci of constant order, Ann. of Math., 86 (1967), 192-212.
[W 1] Weinstein, A., On the homotopy type of positively pinched manifolds, Arch. Math., 18 (1967), 523-524.
[W 2] -, The cut locus and conjugate locus of a Riemannian manifold, Ann. of Math., 87 (1968), 29-41.
[W 3] - The generic conjugate locus, Global Analysis, Proc. Sym. Pure Math., Amer. Math. Soc., Providence, 15 (1970), 299-301.
[W 4] - Distance spheres in complex projective spaces, Proc. Amer. Math Soc., 39 (1973) 649-650.
[Wo 1] Wolf, J., Spaces of Constant Curvature, McGraw-Hill, New York, 1967.
[Wo 2] - Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. Differential Geom., 2 (1968), 421-446.
[Wol] Wolter, F. E., Distance function and cut loci on a compact manifold, Arch. Math., 32 (1979), 92-96.
[Ya] Yau, S. T. (ed.), Seminar on differential geometry, Ann. of Math. Studies, Princeton, 102 (1982).
[Y 1] Yamaguchi, T., On the number of diffeomorphism classes in a certain class of Riemannian manifolds, preprint, (1982).
[Y 2] -, A differentiable sphere theorem for volume-pinched manifolds, in this proceedings, 183-192.
[Z 1] Ziller, W., Closed geodesics on homogeneous spaces, Math. Z., 152 (1976), 67-88.
[Z 2] - The Jacobi equation on naturally reductive compact riemannian homogeneous spaces, Comment. Math. Helv., 52 (1977), 573590.
[F] Fukaya, K., Finiteness theorem for negatively curved manifolds, Preprint (1983).
Katsuda, A., Gromov's convergence theorem and its application, Preprint (1983).
[P]
Pansu, P., Seminaire BOURBAKI, 36e année, 1983/84 n ${ }^{\circ} 618$.
Department of Mathematics
"Faculty of Science"
Okayama University
Okayama, Japan

