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1. Introduction
Let D = {(2',2%,...,2%) € R?: 2! >0}, 8D = {(z',2%,...,2%) e R?: 2! =0}
and let
d d

a2 =530 () g + 22 (3 4o () () oo

Z7‘7

d x\ O
(1.2) Lei= 27 <E> O

be given (with ¢ > (). The problem of constructing diffusion equipped
with boundary conditions has been discussed by many authors (see, for
example Stroock and Varadhan (1971) ,Andreson (1976a), Anderson
(1976Db)). It well know that such diffusions do exist in the case that all
the coefficients are smooth and functions periodic in each variable, that
satisfies certain centering conditions, and that v, = 1, the first component
of the vector-valued ~ (precise assumptions on the coefficient are stated
in Section 2). Tanaka (1984) gave a formulation of the boundary value
problem associated with such diffusions for the case §, = 0. Using the
formulation Tanaka (1984), Ouknine and Pardoux (2002) investigated the
homogenization of semilinear PDEs with nonlinear Neumann boundary
condition, periodic coefficients and highly oscillating drift and nonlinear
term. The purpose of the present note is to study a similar problem in the
following sense :

( Ou® T z
S (ta) = Liw(ta) + £ (Z,u'(t,0))
1 /x|
(1.3) +—e(Zfta)), weD o<t

Cou(t,z) + h <§,u5(t,:c)> =0, reoD, 0<t
5
Lu®(0,z) = g(z), r e D.

Here ¢, f, g and h are subject to suitable conditions.

The approach developed in this work is the method of transformation of
drift to the study of the diffusion in terms of martingale problem accord-
ing to Girsanov Formula. The present note requires for its development
the systematic generalization of certain results contained in the papers
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of Ouknine and Pardoux (2002). When the details of a particular proof
do not appreciably differ from the presentation of Ouknine and Pardoux

(2002) and do not affect the clarity of our development, we will feel free
to refer the reader to the original proofs in Ouknine and Pardoux (2002)
and simply describe the significant differences which lead to our general-
izations.

This note is organized as follows. In Section 2, we deal with the formula-
tion of the problem and state theorem of (Backward) stochastic differential
equations (BSDE) SDE and weak convergence. In Section 3, we deal with
the homogenization of equation (1.3).

2. Preliminaries

2.1. Statement of the problem - SDE and weak convergence.

The following hypotheses are required :

(H.1) The matrix-value a(x) = (a;j(x)) is uniformly non-degenerate for all
x, and can be factored as « := 77" where * denotes the transpose.
(H.2) The maps 7: R — R4 3:R? — R¢, ¢: R? — R¢ and
v: (0D =~ R*') — R? are smooth and periodic of period 1 in each
variable. In particular, we can choose the direction of reflection ~
such that

v (z) = 1.

(H.3) We also choose §, : R, — R? such that it is bounded.

The differential operator L (1.1) inside D along with the boundary con-
dition I'.u = 0 on D determine a unique diffusion process X¢ in D which
we call the (L%, T.)-diffusion.

Given a d-dimensional Brownian motion {Wt, t> 0} defined on a completed
probability space (Q, F, IP), such a process X*¢ with the local time ¢° of X'
on 0D, satisfies the reflected SDE :
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, X X:
deZT(E)dBt-f- ( Syt + 6(€>dt

X E
+c< . )dt—l—’y(—t) de;, 0<t,

X/* >0, ¢ is continuous and increasing and

¢
/ Xledes =0, 0<t,
0
L X, = 2.

(2.1)

Next we let
t
(2.2) Bt = Bt + / 5rd7“.
0

By (H.3), it follows from Girsanov’s theorem that there exists a new prob-
ability measure P equivalent to P, defined as

JP t Lo
2.3) 1 = exp <—/0 5rdBT—§/O 16, dr>,

under which Et is a standard Brownian motion. This implies that <X c, R)

is a solution on the probability space (2, F,P”) of the following SDE with

the reference family (F),., :

/ X&‘ X€
dezT( )dBt+ B( )dt
£ €
X7 X;
+c(€)dt+7( >dg0t, 0<t,

X/* >0, ¢ is continuous and increasing and

¢

/ X1fdps =0, 0<t,
0

(X = .

(2.4) .

Throughout the paper, we denote by E the expectation operator associate
with P°.
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Now we set

(2.5) Za” axa% Zﬁ, -, z€eRY,

l

and let X denote the unique diffusion process with values in the d-dimensional
torus T?, whose generator is the operator L. Then it well know that X is
ergodic. We denote by m its unique invariant measure. In order for the
process X° on (2, F, 7, P*) to have a limit in law as ¢ — 0, we need that
the following be in force :

(H.4) centering condition : B(x)m(dx) = 0.

First, we check that under (H 4) there exists a unique periodic solution
ﬁ of Lﬂ = —f with zero integral against the measure m. Such solution

+oo
is given by B(z) := / E. [3 (X:)] dt where, under P° with the reference
0

family (F;),.,, X starts from z.

Now we put

¢ = / (1+VB) @e(wym(a)
a0 = / (1+V8) @at) (1+ V) (@ym(ds),

d d
1 > .
Ly = 5 Z &B’Jaiaj + Z CB&Z
i,j i=1
Write v = Hy for the solution v of :

Lv=0 inD
(2.6)

v=¢ ondD.

Then % sends functions defined on 9D to functions defined on D, while
I'H sends functions defined on 0D to functions on 0D, where

.= Z vi(x)0;. It well know there exists a unique Markov process on 0D

with generator I'H. By the periodicity assumption, this process induces
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a Markov process on T !; let m be the unique invariant measure of the
induced Markov process, and let us set

o i= /T B <[ + VB) y(x)(dr) and Tg:= i%@-.

i=1

Let us introduce the process X defined as:

Xi=xi+e|3(7) -5 ()]
2.7) =x+/0 (1+v8)r (=) dB, +/0 (1+98)e(2)as
+/0t <I+VB>% <i§>dgoi.

Let us write (2.7) in coordinate form :

(

l.e
Xt

=x1+ f(f (1 + VBl) T (XSE) désl
—l—fo (1—|—V61) cl( )ds
\ +Jy (1 +V61> <T> dpS

(2.8)

and (continued)

Xj*
w4y (1+V8) 7 (=
+ fg (1 + V@) C; (X?> ds

forall j=2,...,d.

) dBi

\
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Then there exists a bounded and smooth solution 7 of the PDE with
Neumann-type boundary condition :

Ln=0 in D
(2.9)

Vi = (1 + vBl) — [ (1 + vél) (¢)i(dz) on &D.

Taking such a solution n, we have by Ito :
(%) =)
(2.10) :/Ot Vi (=) dB, + /Ot Ve (=) ds

t . P A
+/ 1+ Vp ) (=) des — 5/ 14+ VG ) (z)m(dx).
(1w (2t [, (155 i

Putting (2.10) into the first component of (2.8) we have

X} = x1+/t <1+V61)n <X§>d§j+/t <1+VB1) o (Xg)ds
0 € 0 e

+ o /T (14 V8) @)in(da)

—/DtVUT (%) aB, —/Otvnc (%) ds+en (=) = (—)l

Ac(t)

From (H.3) and (2.10) using lemma 6.3 of Tanaka (1984) we can see that
the term:

(2.11) limE, { max ]Ag(t)|} = 0.

0 0<t<T

Before proceeding, we introduce some definition :

And finally, we have according to Theorem 2.1 in Ouknine and Pardoux
(2002):
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THEOREM 54. Assume that the assumptions (H.1) to (H.4) hold true. Then
the (L, T.)-reflected diffusion process X¢ on (0, F, F;,P*) converges in law
to the (L, I'y)-reflected diffusion process X as ¢ | 0. Moreover,

(X205 ¢°) = (X, M%),

S

/\XE t -~ XS =~ .
where M+ = (I + Vﬂ) s dB, and with
0

e M* is the martingale part of X ;
e ¢ (resp. ©°) is the local time of X! (resp. X'*).

Thus, it easily follows a from result in Tanaka (1984).

LEmma 32. Under the assumptions of (54) foranyp > 1,
SupIEI(]Xﬂp—l— gof) <00
2.2. BSDE and weak convergence.

Here, we require that :
ec: R¥ xR — R is a measurable mapping, which is periodic, of

period one in each direction in the first argument, continuous in the
second argument uniformly with respect to the first, and satisfies :

(2.12) / e(x,y)m(dz) =0, VyeR
Td

Suppose e be twice continuously differentiable in y, uniformly with
respect to z, and there exists a constant K such that :

(2.13) ( i (2, y) A
. le(x,y)| + aye z,y)| + Iy

e f:RIXR —R,g:R — Rand h: R x R — R are sufficiently
smooth functions.
Equivalently the coefficients can be seen as periodic functions with
respect to the first variable with period one in each direction on R¢
which are such that for some ¢ > 0, p > 0, o € R, § < 0, and all
reRY, v,y eR:
(H.5) |g(z)| < c(1+ |x|p),2
(H.6) |f(x.y)| < c(1+]y).
(H.7) (y— o) [f(z.y) = [z <ply—y
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(H.8) (y — ) [h(z,y) — h(x,y)] < Bly —v/|".
(H.9) |A(z,y)| < c (1 +[y*).

Throughout this note, the triple (X ° MY 906)5>o is the one which appears
in the statement of Theorem 54. We now consider a type of BSDE which
has been introduced in Pardoux and Zhang (1998).

Let { (YE,75);0<s < T} be the solution of the following BSDE :
for (t,z) €[0,7T] x D,

Lo 1 [t (X¢
Yj:g(Xf)%—/f(—r,Yf)dr—l——/e( ’”,Yf)dr
s £ e /s £
t Xe t t
+/ h< ;,Yf) dys —/ Z:dB, —/ 6, (Z2)" dr.

From (2.2) we have :

Lo(X 1 [t (X
nf=g<Xf>+/f(—’",W)dr+—/e( ’“,Y:)dr
s 5 e /s 5
t X€ t .
i / h(—’",Yf) do / 7dB,.
S 6 S

For each fixed y € R, let set ¢ be the solution of the Poisson equation :
(2.16) Lé(z,y) +e(z,y) =0, 2 € T y € R.

(2.14)

(2.15)

More precisely by (2.12), é is centered with respect to the invariant mea-
sure m and is given by the formula:

(2.17) é(x,y) = / E.e (X, y) dt.
0

Note that ¢ € C%? (T4, R) (see Pardoux and Veretennikov (2001)) and

2
) Lelo), Lely) € W (T,
‘ dy y

and for any p > 1 there exists K’ such that for all y € R

0% ,

—26(., y) S K.

0 Mlwer(e
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In the same way we define { (Y, Z5);0 < s < T} as the unique solution of
the BSDE :

t t t
219) Yo+ [ fdr+ [ ha()de - [ 2B,

where

o = | (f # |G - (5o xe) + af;ya(x)(%)*]) (2, y)m(d),
o) = [, (e + { Gotnate ) ) ta).

Choose Z such that Z; := U;T (X[ /<) and we introduce the notation,

s

Mi:/ UsdMX" and M, ::/ U dMX, 0<s<t.
0 0

So we consider the quintuple (X, MX, .Y, M) (resp. <X5, MX" Ve, M€>)

as a random element of the space C ([0,¢],R**!) x D ([0,t],R?), where we
equip the first factor with the sup-norm topology, and the second factor
with the S-topology of Jakubowski (1997).

THEOREM 55. Assume the conditions (H.1)-(H.9) hold true. On the space
C ([0, t], R2d+ 1) x D ([0, t], R2> equipped with the sup-norm topology in the first
Jactor and the S-topology of Jakubowski in the second, we have
(X, MY, 05 Y, M°) = (X, M¥,0,Y,M).

Moreover, Yy — Y, in R.

Proof of Theorem 55. Let us proceed step by step.

x Step 1: Transformation of the BSDE.

Set X? := ~X?¢ and consider the following process
€

Ve—ve 4 e(é(Xf, YE) — e(X¢ Y5)>.

R
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By applying Ito’s formula, we have :

Ve € ' oe oe E € taé E € T E €
Vi) 4 [ (G- e ) v+ [ G () ds
t ~
v [ (1 e ) (O g + £ v )
K 0%

VE VE e £\ * b/ oe S e - . R
T | Baay YT (X7) (Z9) d?‘+/s (%(XT,YT)T (XT)—ZT)dBr

b oe ~ e [10%
— (X5, YZ5dB, + = | — (X5, Y5)|Zdr.
v [ GNIZuB, + 5 [ Gz P

Let us set
oé

75 =7 —%(XS,YS)T(XS), 0<s<Ht,

and note that the difference between Z¢ and Z¢ is a uniformly bounded
process.

Thus we have :

~ t 2 2 2/\ 2 * -~
Y zg(Xf)+/ [%w—@w A (86> } (X, Y5)dr

Ox Ay (93(:(92/06 o e
Loe ., . . e [t0% .
—(XE, Y )y (X2)dy: + = —(X5,Y9)|Z¢d
+ s ax( ) r)fy( r) 907“—’_2 ) ayg( ro r)‘ rl r

t A~
+/ (1 - eg—;()?f, Y:)) (h(X;f, Y)dye: + f(XE, Y;f)dr)

+e/t@(f(f Y?)Z:dB —/tZE dB, — 7*(X?) i (X2, Y7)dr
. ay ry-Tr r T . r r T T axay Ty .

We next define

B,:=B —/8 (X°) o (X, Y )dr
s S 0 T r axay ry-r *

Thanks to Girsanov’s theorem, it well know there exists a new probability
measure P’ equivalent to P’ under which B, is a Brownian motion. Denote
by E the expectation operator associated to P.

Let X©:= X 4¢ B3 (X)) — 3 (x/ s)} . In order to simplify the further exposition,
we have (with the notations ¢, = ¢(X¢), and similarly for (I + V§),a,7,7)
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2/~

dX¢ = (I + vB)E <Tsd§s +eds +a, ai 5 (X¢,Y)ds + %dgo;), Xe=z

and

~. . t1oe oé 0%e oeé . e
7= s [ 5 Ser na (5) | iy (o)
t
v [ (- (Xf,K€>>f(Xﬁ,K€)d>

T A N | +5 O e yey e
81‘8 ry-or Te a 2 ry-or r r
t e - t oeé
e 9 (X2, Y7y (X2) dgs + / 1—ea—<X5,Y:> h(XE, o)yt

e € e\ 7e tNE 82A VE \E

S

A~

2 A
Since

dP
is bounded, the Radon-Nikodym derivative — belongs to all
0x 0y dIpd

spaces L? (P°), then for any p > 0, sup E | X; || < oo, hence for any & > 0,

sup E [|g(X7)[|* < oo

x Step 2: A priori estimate for (Y, Z¢)

We need to bound appropriate moments of ¥“ and Z¢ under P. We first go
back to our unperturbed BSDE under the mew Brownian B;.

t t 2 4
=g (X7) / PO YR+ [ e v+ [ 22 (6 Yo

[ it [ g,
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Let v > 0 be large enough, and apply Ité’s formula to e [Y<]®, we have

t
il [ en (sIeZ v Yo

ryor

t 3 t
—er |g(X)[ + 3 / Y Y (XS, Y )dr 42 / e Y| Yee(XE, Yo )dr

t t
=3 [ e VEIYEZAB, 43 [ e VA VARG Y )

rTyoTr

2/\

t
+3/ e Y| YEZE X, Y)dr.

(&
T a 8 ( ) T
It follows from an argument in Pardoux and Peng (1990) that the expecta-
tion of the above stochastic integral is zero. Moreover, from (H.6) to (H.9)
and using similar arguments as those leading to (4.13) in Pardoux (1998),
we deduce:

t
(2.20) dE/ eW<|Y:| ]Zf|2>dr < c(s—l—E/ VEP dr + e (gf — gos)>
0
According to Formula (CC) (page 354), we have by applying It6’s formula
Sel? a ? Al VE 5 5 €
7 / Z; - 25 (XeY;)| dr = |o(X0) + ¢ [e(X5, %) — (X2, v

~.[oeé o¢ dé 62A AN
t~8 oé oe 86 e res e

aQA
XEYEYE | ZE dr

t
_2/S Y:Z:dB, + ¢ N 2( Y

€ 58 € € o 82é € €
+25/ YZTa (XT,Y,,)[dBMLax@ (XT,YT)dr]

To sum up: exploiting in 32 and the inequality (2.20), together with the

oe
fact that 1 — ea— — for ¢ small enough, and standard inequalities, one
can see :

2
= 12 1 PR ’6’ ! €2 € ~ [ €2
E ]YS|+§ ; d?“—{—Z YE|7del | <C{1+E [ |V dr).
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Hence from Gronwall’s theorem

~ 1 [t
sup B[V + 5 [

0<s<t

~ |2 2

And, in conclusion, from the Davis-Burkholder-Gundy inequality
~ b2 i 2
sup E[ sup |Ys€|2—|—/ Z dr+/ Y7 det | < .
0<e<eo 0<s<t 0 0

x Step 3: Tightness . Let
F=F

We write our reflected BSDE in the form :
Y = g(X7) + Af — A+ M; — M; + Kf — K,

sToe  oe 0% [0e\"
A % - PN (xeve
; /0 {8350 oy ¢ T woy (83:) ]( ro Y )dr

w [ (e o) v+ [ pxzve
0
M¢ ;:—/ Z:dB,
0

K

» o

e € v E e 82 e €
= (B(RE YD) - X5 + 5 [ G Y

02 o
dB, *(aa >(XT,YT)d

S a"
te XE, Y5 Z¢
/0 0y( )
s 0é

é 5 0e
— X2, Y9 f(XE, Y X& YE)h(XE, YE)dpe.
o [ GRS+ [N

It is not difficult to check that
E sup |KZ| — 0,

0<s<t

hence, sup |K:| tends to zero in P probability, or equivalently in law.
0<s<t

In order to treat the other terms, we adopt the point of view of the S-
topology of Jakubowski (1997). We define the conditional variation of the
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process A on the interval [0, t] as the quantity
OV, (A°) = Supﬂ-«:<z E(45,, - 45/7)| )

where the supremum is taken over all the partitions of the interval [0, ¢].
Clearly,

t
oV, (A9 ( / ALY+ [ h(Xe, Yf)dsOZ>
0
and it follows from Step 2 and the conditions (H.6) to (H.9) that

) <

t
hence, the sequences {(Yj, / Zder) ,0< s < t} satisfy Meyer-Zheng’s
0

sup (CVt(As) + sup E|Y7| + sup E

15 0<s<t 0<s<t

Z5dB,
0

tightness criterion for quasimartingales under P (see for example, Jakubowski
(1997), Kurtz (1991), Meyer and Zheng (1984)).

x Step 4: Passage to the limit.

After extraction of a suitable subsequence, which we omit as an abuse of
notations, we have that under P

(XE,JTJE,%YE,/‘ ZdeT) — (X, 0%, ,v, M)
0

weakly on C ([0, t]; R*) x D ([0, t]; R?) equipped with the product of the topol-
ogy of uniform convergence on the first factor, and the S-topology on the
second factor, where

T / (r+VB) (%) dB,.
0

It remains to recall the two next results:
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LEmMA 33. ¢ : R x R — R be measurable and locally bounded, pe-
riodic of period one in each direction, continuous with respect to its second
argument, uniformly with respect to the first. Then the sequence of processes

{ / ® (X;’ Yy) dr} converges in law under P to { / wo (Y;) dr} , where
0 0<r<s 0 0<r<s

oolw) = | olay)mldo).
T
Proor. see Pardoux (1998), Ouknine and Pardoux (2002). O

LEmMA 34. ¢ : R x R — R be measurable and locally bounded, periodic
of period one in each direction with respect to its first argument, continuous
with respect to its second argument, uniformly with respect to the first. Then

tés¢(X$J¢)d¢i— AS¢oo¢>wm

inP probability as ¢ — 0 ,where

sup
0<s<T

—0

bo(y) = ¢(x, y)m(dz).

Td—1
Proor. see Ouknine and Pardoux (2002). O

As a result, we pass to the limit in the SDE and the BSDE, and we obtain
that for all 0 < s < ¢,

t
X, =+ cot + / Bo (Y) ds + /oo By + Y101
0

T T ~ .
Yt=g<XT>+/ f0<n>ds+/ ho (Y.) dips + M, — Ny
t t

14 98) o) wpm(de). o= [ (1+V5) cloym(aa).

(o)~ (%) + gy (52)

to= [ (e + (G )) i),

ap = /1rd (I + VB) (x)a(z) (I + VB)* (x)m(dz) .
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Using a similar argument as in Pardoux (1998), one can prove that M and
MX are F*Y-martingales.
x Step 4: Identification of the limit

Let (7, U) denote the unique solution of the BSDE

t t t
V,=g(X)+ / fo (Yr)dr+ / ho (V) deor + / UdM*

satisfying

E{H(A%MMMXLUD}<QQ

and let M, = / UdMY¥. Since Y and U are ¥ adapted and M~* is a 7V -
0

martingale , so is also M. 1t follows from Ité’s formula for possibly discon-
tinuous semimartingales that
BIY, - V.| +E (|m— 21| - |m-M] )
t s

o [ < (7)), (100~ 1) >
=4 (V=T (h(Y)) = h(T)) > de,

t
S 2[1’/ IE"Y; _Yr‘era

(Mind you, we use the fact 5 < 0).

Hence from Gronwall’s lemma Y, = Y, and M, = ]\Z, 0<s<t Yand M
are continuous and have the required properties.

Finally, for s =0,
Yy = g(X}) + Af + My + K.

Since our subsequence could have been chosen in such a way that for
some a > 0
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(Mz,,;0 < s <t+a} converges weakly to {M,,, ; 0<s<t+a} in D([o,t +
al, R) we can assume that
M; = M,.

Consequently

t t .
Yy =Y =g(Xy) + / fo(Y,)dr +/ ho(Y . )dp, — M,
0 0

in probability, since the limit is deterministic. W

3. Main result

The result of the section 2 permits to us to deduce weak convergence of a
sequence Y© of solutions of BSDEs from weak convergence of the sequence
X¢. In a sense, we deduct by the transformation of drift and from a proba-
bilistic proof of convergence of semilinear PDEs with nonlinear Neumann
boundary condition due to Ouknine and Pardoux (2002), a probabilistic
proof of convergence of equations (1.3).

For each z € D, let {(X5®,¢5%), s > 0} denote the solution of the SDE (2.1);
and let e, f, g and h be as in section 2. For each (t,z) € R, x D, let u‘(t,z) :=
Y, where Y*© denotes the solution of the BSDE considered in the section 2.
One can easy show as in Pardoux and Zhang (1998) that «° is a viscosity
solution of the semilinear parabolic PDEs (1.3). Therefore, let u be the

solution of the homogenized system :

ou
E(t,x) = Lou(t,x) + fo (u(t,x)) + Bo (u(t,:z:))Vu(t,:p) , x e D,

Tou(t, ) + ho(u(t,x)) =0, z € 0D, ¢t >0,
u(0,2) = g(z) , v € D,

(3.1)

where Ly, 'y, 5y, fo and hy as in section 2.

We now state our main result.

THEOREM 56. Under (H.1)-(H.9), V(t,2) € R, x D we have :

u(t,x) — u(t,x) as e — 0.
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