

CHAPTER 15

The $\partial \bar{\partial}$ -problem for extendable currents defined on a half space of \mathbb{C}^n , by M. Eramane Bodian, W. Ndiaye and S. Sambou

Mamadou Eramane Bodian. Email : m.bodian2966@zig.univ.sn Waly Ndiaye. Email : walyunivzig@yahoo.fr. Salomon Sambou. Email : ssambou@univ-zig.sn Université Assane Seck University de Ziguinchor, (SENEGAL).

Abstract. We solve the $\partial \bar{\partial}$ -problem for extendable currents defined on a half space of \mathbb{C}^n . \Diamond

Keywords. half-space; extensible currents; de Rham's cohomology group.

AMS 2010 Mathematics Subject Classification. 32F32.

Cite the chapter as : Bodian E. M., Ndiaye W. and Sambou S.(2018). The $\partial \bar{\partial}$ -problem for extendable currents defined on a half space of \mathbb{C}^n . In *A Collection of Papers in Mathematics and Related Sciences, a festschrift in honour*, 275–281 Doi : 10.16929/sbs/2018.100-03-03

©Spas Editions, Saint-Louis - Calgary 2018 H. Seydi *et al.* (Eds.) A Collection of Papers in Mathematics and Related Sciences, a festschrift in honour of the late Galaye Dia. Doi : 10.16929/sbs/2018.100

1. Introduction

In this paper, we solve the $\partial \bar{\partial}$ -problem for extendable currents defined on $\Omega = \{z = (z_1, \ldots, z_n) \in \mathbb{C}^n \mid \text{Im}(z_n) < 0\}$ that is an example of unbounded pseudo-convex domain as well as its complement. The de Rham cohomology group of the boundary $H^j(b\Omega)$ is trivial for $1 \leq j \leq 2n-1$. In this context, we first solve the equation dS = T where T is an extendable current defined on Ω and we have :

THEOREM 40. The de Rham cohomology group for extendable currents

$$\check{H}^j(\Omega) = 0$$
 for $1 \le j \le 2n - 1$.

 \diamond

The domain Ω is fat i.e $\overline{\Omega} = \Omega$ therefore according to Martineau (1996) the extendable currents defined on Ω are topological dual of differential forms with compact support on $\overline{\Omega}$. for that we are led to solve the equation df = g where f et g are differential forms with compact support on Ω and go to the extendable currents by duality. The first particularity lies on the resolution with prescribed support by the operator d because if we solve with compact support in \mathbb{C}^n , then we can not as in Bodian et al. (2017b) correct by the solution with compact support. We use the results of Brinkschulte (2004) and Seeley (2002) to get a solution with compact support and then as the concave case, we use the same techniques to correct the solutions because the space of differential forms with compact support on $\overline{\Omega}$ is not a Frechet space but rather an inductive limit of Frechet spaces.

The second particularity compared to Bodian et al. (2016) and Bodian et al. (2017b) lies to resolution of the $\bar{\partial}$ with prescribed support because Ω being the unbounded Levi flat domain, we can not use the techniques of Sambou (2002a). Then we use the results of Brinkschulte (2004) to solve with prescribed support the equation $\bar{\partial}S = T$ in the unbounded domain Ω in order to establish:

THEOREM 41. Let $\Omega = \{z = (z_1, \ldots, z_n) \in \mathbb{C}^n \mid Im(z_n) < 0\} \subset \mathbb{C}^n$ be a domain, then for all extendable (p,q)-current T defined on Ω and d-closed, there is S an extendable (p-1, q-1)-current defined on Ω such that $\partial \bar{\partial} S = T$ for $1 \leq p, q \leq n-1$.

1.1. Notations.

we note by $\check{D}_X^p(\Omega)$ the space of *p*-currents defined on Ω and extendable in *X*, $D^p(\bar{\Omega})$ the space of smooth differential *p*-forms defined in *X* with compact

support in $\overline{\Omega}$. If X is a complex manifold of dimension n, then we note by $D_X^{p,q}(\Omega)$ the space of extendable (p,q)-currents defined in Ω and $D^{p,q}(\overline{\Omega})$ the space of differential (p,q)-forms with compact support in $\overline{\Omega}$. We note by $\check{H}^p(\Omega)$ the de Rham cohomology group for extendable currents defined in Ω , $\check{H}^{p,q}(\Omega)$ the Dolbeault cohomology group for extendable currents defined in Ω . $H^p_{\infty}(X)$ is the cohomology group of de Rham for smooth differential p-forms defined in X, $H^p_c(X)$ is the de Rham cohomology group for smooth differential p-forms defined in X with compact support in $\overline{\Omega}$ and finaly $\Lambda^p(\Omega)$ the space of smooth differential p-forms in Ω .

2. Resolution of the equation dS = T for a half space Ω of \mathbb{R}^{n+1}

we consider

$$\Omega = \{ x \in \mathbb{R}^{n+1} \mid x_{n+1} < 0 \} \subset \mathbb{R}^{n+1}$$

a convex domain, its boundary $b\Omega = \mathbb{R}^n \times \{0\} \simeq \mathbb{R}^n$ and the interior of its complement

$$\mathfrak{C} = \mathbb{R}^{n+1} \setminus \bar{\Omega} = \mathbb{R}^n \times \{ x_{n+1} > 0 \}.$$

 Ω is convex and unbounded and so is its complement \mathfrak{C} . So we have $H^j(\Omega) = 0$ and $H^j(b\Omega) = 0$ for $j \ge 1$. Then the principal result of this part is :

Theorem 40. The de Rham cohomology group for extendable currents

$$\check{H}^{j}(\Omega) = 0 \quad pour \quad 1 \le j \le n.$$

For giving the proof we need the following lemma :

Lemma 28.

$$D^p(\bar{\Omega}) \cap \ker d = d(D^{p-1}(\bar{\Omega}))$$

for $1 \le p \le n$.

Proof. Let $f \in D^p(\overline{\Omega}) \cap \ker d$, then there is Ω' a ball of center z_0 and radius R such that for $f \in D^p(\Omega') \cap \ker d$, $0 , there is <math>g \in D^{p-1}(\Omega')$ with dg = f. This implies that $dg_{|B} = 0$ where $B = \Omega' \cap (\mathbb{R}^{n+1} \setminus \Omega)$. If p = 1, then g is a constant with compact support so g = 0 in B.

If $1 , then <math>g_{|B}$ is a differential (p-1)-form d-closed then it exists a differential smooth (p-2)-form h in \overline{B} such that $dh = g_{|B}$. Let \tilde{h} a smooth extension with compact support of h in Ω' (we can use the extension operator of Seeley Seeley (2002)), $u = g - d\tilde{h}$ is a smooth differential (p-1)-form in $\mathbb{R}^{n+1} \setminus \Omega$ with compact support in $\overline{\Omega}$ and du = f. \Box

Proof (Theorem 40). . According to Martineau Martineau (1996),

since $\bar{\Omega} = \Omega$, the currents defined in Ω and extendable in \mathbb{R}^{n+1} are the elements of $(D^p(\bar{\Omega}))'$ topological dual of smooth differential *p*-forms in \mathbb{R}^{n+1} with compact support in $\bar{\Omega}$. However $\bar{\Omega}$ being unbounded, $D^p(\bar{\Omega})$ is an inductive limit of Fréchet spaces.

we consider a compact $K \subset \overline{\Omega}$ of \mathbb{R}^{n+1} and $D^p(K)$ the space of *p*-forms in \mathbb{R}^{n+1} with compact support in *K*. We set

$$L_T^K : d(D^p(\Omega) \cap D^p(K) \cap \ker d) \longrightarrow \mathbb{C}$$
$$\bar{\partial}\varphi \longmapsto \langle T, \varphi \rangle$$

a continuous linear application, and then L_T^K extend as an continuous linear operator :

 $\tilde{L}_T^K: D^{p+1}(\bar{\Omega}) \cap D^{p+1}(K) \longrightarrow \mathbb{C}$. It is an extendable current and $d\tilde{L}_T^K = (-1)^{n-p+1}T$ on $\overset{\circ}{K}$.

We consider a family $(K_n)_{n \in \mathbb{N}}$ of compacts set of $\overline{\Omega}$ then we can find in K_n , a current S_n extendable such that $dS_n = T$ in $\overset{\circ}{K_n}$ with $K_n \in \overset{\circ}{K}_{n+1}$. $S_{n+1} - S_n$ is *d*-closed and $S_{n+1} - S_n = dv_n$ in $\overset{\circ}{K}_{n+1}$.

Let χ be a smooth function on \mathbb{R}^{n+1} with compact support in K_{n+1}° such that $\chi = 1$ in a neighborhood of K_n contained in K_{n+1} and

$$S_{n+1} - d(\chi v_n) = S_n + d(1-\chi)v_n$$
 on $\overset{\circ}{K_n}$.

Let us put $U_{n+1} = S_{n+1} - d(\chi v_n)$ and $U_n = S_n + d(1 - \chi)v_n$.

We have $dU_{n+1} = dU_n = T$ in $\overset{\circ}{K}_n$ and $U_{n+1} = U_n$ in K_n . We set

$$S = \lim_{n} U_{n+1}.$$

This is an extendable current in Ω and verifies dS = T.

3. Resolution of the $\partial \bar{\partial}$ for extendable currents in a half space of type $\{\text{Im}(z_n) < 0\} \subset \mathbb{C}^n$

We give the following fundamental result of $\bar{\partial}$ -problem with prescribed support:

THEOREM 42. Let Ω be a domain and $f \in D^{p,q}(\overline{\Omega}) \cap \ker \overline{\partial}$. Then it exists $g \in D^{p,q-1}(\overline{\Omega})$ such that $\overline{\partial}g = f$; $1 \leq q \leq n-1$.

Proof. This is a consequence of the result of a resolution of the $\bar{\partial}$ with prescribed support (Theorem 4.2 in Brinkschulte (2004)). If the support of fis compact in Ω , then we choose pseudo-convex domain Ω' in Ω which contains the support of f. According to Theorem 4.2 in Brinkschulte (2004), there is $g \in D^{p,q-1}(\bar{\Omega'})$ such that $\bar{\partial}g = f$.

If now $\operatorname{supp}(f) \cap b\Omega \neq \emptyset$, since f has compact support and $b\Omega$ is Levi flat, we can find $K \subset \overline{\Omega}$ a compact with pseudo-convex interior and smooth boundary which contains the support of f. According to Theorem 4.2 in Brinkschulte (2004), it exists h a differential (p, q - 1)-form with support in K such that dh = f. We extend h by 0 in $\mathbb{C}^n \setminus K$ and we have the desired solution. So for all $f \in D^{p,q}(\overline{\Omega}) \cap \ker \overline{\partial}$, it exists $g \in D^{p,q-1}(\overline{\Omega})$ such that $\overline{\partial}g = f$. \Box

By classical duality (refer theorem 40), we have the following result:

Theorem 43.

Let $\Omega = \{z = (z_1, \ldots, z_n) \in \mathbb{C}^n \mid Im(z_n) < 0\}$ and T be an extendable current of bi-degree $(p,q) \ \bar{\partial}$ -closed in Ω . Then there is an extendable current S defined in Ω such that $\bar{\partial}S = T$ for $1 \leq p \leq n$ and $1 \leq q \leq n - 1$.

We are going to establish the following result.

Theorem 41. Let $\Omega = \{z = (z_1, ..., z_n) \in \mathbb{C}^n \mid Im(z_n) < 0\} \subset \mathbb{C}^n$ be a domain, then for all extendable (p,q)-current defined in Ω and d-closed, it exists S a extendable (p-1, q-1)-current defined in Ω such that $\partial \bar{\partial} S = T$ with $1 \leq p, q \leq n-1$.

Proof.

Let $T \ a \ (p,q)$ -current, $1 \le p \le n-1$ and $1 \le q \le n-1$, d-closed defined in Ω and extendable in \mathbb{C}^n with $1 \le p+q \le 2n-2$. Since the theorem 40 assures us that $\check{H}^{p+q}(\Omega) = 0$, it exists a extendable current μ defined in Ω such that $d\mu = T$. μ is an extendable (p+q-1)-current, it breaks down into (p-1,q)-current μ_1 and into (p,q-1)-current μ_2 . We have

$$d\mu = d(\mu_1 + \mu_2) = d\mu_1 + d\mu_2 = T.$$

Since $d = \partial + \overline{\partial}$, we have for bi-degree reasons, $\partial \mu_2 = 0$ and $\overline{\partial} \mu_1 = 0$. We get by theorem 43 $\mu_1 = \partial u_1$ and $\mu_2 = \overline{\partial} u_2$ where u_1 and u_2 are extendable currents defined in Ω . So we have :

$$T = \partial \mu_2 + \bar{\partial} \mu_1$$

= $\partial \bar{\partial} u_2 + \bar{\partial} \partial u_1$
= $\partial \bar{\partial} (u_2 - u_1)$

We set $S = u_2 - u_1$, then S is an extendable (p - 1, q - 1)-current defined in Ω such that $\partial \bar{\partial} S = T$. \Box

Bibliography

- E. Bodian, D. Diallo, S. Sambou. *Résolution du* $\partial \overline{\partial}$ *pour les courants prolongeables définis sur la boule euclidienne de* \mathbb{C}^n . C. R. Math. Rep. Acad. Sci. Canada Vol. 38 (2016), pp. 34–37.
- Bodian E., Diallo D., Sambou S.(2017) *Résolution du* $\partial \overline{\partial}$ *pour les courants prolongeables définis sur une variété contractile.* Arxiv : 1707.07964v1.
- Bodian E., Hamidine I., Sambou S.(2017). Résolution du $\partial \bar{\partial}$ pour les courants prolongeables définis dans un anneau. *ArXiv:1707.03430v1*.
- Brinkschulte J. (2004). *The* ∂*-problem with support conditions on some weakly pseudoconvex domains. Ark. Mat.*, 42 (2004), 283-300.
- Godbillon C.(1971) Élément de topologie algébrique. Hermann Paris, 1971.
- Martineau A.(1996) Distribution et valeurs au bord des fonctions holomorphes. Strasbourg RCP 25 (1966).
- Sambou S.(2002) Résolution du $\bar{\partial}$ pour les courants prolongeables définis dans un anneau. Annales de la faculté des sciences de Toulouse, 6^e série, tome 11, n° 1, (2002), p. 105-129.
- Sambou S.(2002) Résolution du ∂ pour les courants prolongeables. *Math. Nachrichten*, Vol. 235 (2002), pg. 179-190.
- Seeley R.T.(2002) Extension of C^{∞} functions defined in a half-space. *Proceeding AMS*, 15 (1964), pp. 625 626.