A COLLECTION OF PAPERS IN MATHEMATICS AND RELATED SCIENCES, A FESTSCHRIFT IN HONOUR OF THE LATE GALAYE DIA

EDITORS: PROFS HAMET SEYDI, GANE SAMB LO, ABOUBAKARY DIAKHABY SPAS-EDS (SAINT-LOUIS, CALGARY, 2018), WWW.STATPAS.ORG/SPASEDS/

IN EUCLID (WWW.PROJECTEUCLID.ORG)

DOI: 10.16929/SBS/2018.100

CHAPTER 4

Points algébriques de degré donné sur la courbe de Picard, by Moussa FALL, Oumar SALL

Moussa FALL. Email : moussafalls@yahoo.fr **Oumar SALL**. Email : oumarsfr@yahoo.fr

Laboratoire de Mathématiques et Applications (L.M.A.), U.F.R. des Sciences et Technologies, Université Assane SECK de Ziguinchor.BP: 523 Sénégal.

Abstract. We give a parameterization of the algebraic points of given degree over \mathbb{Q} on the Picard curve given by $y^3 = x^4 - 1$. This result extends a previous result of Klassen and Schaefer(1996) on the set of algebraic points of degree at most 3 over \mathbb{Q} in the same curve. \Diamond

Keywords. Picard curve; Algebraic points of given degree; Jacobian; linear system

AMS 2010 Mathematics Subject Classification. 14H50; 14hH40; 11D68; 12FO5

Cite the chapter as:

Fall M. and Sall O.(2018). Points algébriques de degré donné sur la courbe de Picard .

In A Collection of Papers in Mathematics and Related Sciences, a festschrift in honour of the late Galaye Dia (Editors: Seydi H., Lo G.S. and Diakhaby A.). Spas Editions, Euclid Series Book, pp. 33–41

Doi: 10.16929/sbs/2018.100-01-04

©Spas Editions, Saint-Louis - Calgary 2018 H. Seydi *et al* (Eds.) A Collection of Papers in Mathematics and Related Sciences, a festschrift in honour of the late Galaye Dia. Doi: 10.16929/sbs/2018.100

1. Introduction and motivations

Soit $\mathcal C$ la courbe algébrique définie sur $\mathbb Q$ par l'équation affine

$$y^3 = x^4 - 1$$
.

Klassen and Schaefer (1996) ont montré que les seuls points \mathbb{Q} -rationnels de la courbe \mathcal{C} sont

$$Q_1 = (0, -1, 1)$$
 $Q_2 = (-1, 0, 1)$ $Q_3 = (1, 0, 1)$ $\infty = (0, 1, 0)$.

Ils ont, d'une part donné dans Klassen and Schaefer (1996), une description des points algébriques sur les extensions quadratiques et cubiques de $\mathbb Q$ et d'autre part, déterminé le groupe de Mordell-Weil de la jacobienne $J(\mathbb Q)$ de $\mathcal C$:

$$J\left(\mathbb{Q}\right) \cong \frac{\mathbb{Z}}{4\mathbb{Z}} \oplus \left(\frac{\mathbb{Z}}{3\mathbb{Z}}\right)^2.$$

Dans cette note, nous déterminons les points algébriques de degré 4 et étendons ces résultats en donnant une paramétrisation des points algébriques de degré donné quelconque d ($d \ge 5$) sur \mathbb{Q} .

Le principe sous-jacent de la méthode utilisée est le suivant : On suppose donné un point $\infty \in \mathcal{C}(\mathbb{Q})$ et le plongement jacobien $j:\mathcal{C} \to J(\mathbb{Q}), P \mapsto [P-\infty]$. La méthode suppose que l'on connaisse ou détermine la structure du groupe $J(\mathbb{Q})$ et que celui-ci soit fini: $J(\mathbb{Q}) \simeq \mathbb{Z}/N_1\mathbb{Z} \times \ldots \times \mathbb{Z}/N_s\mathbb{Z}$. On choisit alors D_1, \ldots, D_s des diviseurs sur \mathcal{C} définis sur \mathbb{Q} tels que $j(D_i)$ soit d'ordre N_i et $j(D_1), \ldots j(D_s)$ engendrent $J(\mathbb{Q})$. Si R est un point algébrique de degré k et si on note R_1, \ldots, R_k ses conjugués sous l'action de Galois, alors $j(R_1 + \ldots + R_k)$ appartient à $J(\mathbb{Q})$ et par conséquent il existe $0 \le m_i \le N_i - 1$ tels que $j(R_1 + \ldots + R_k) = m_1 j(D_1) + \ldots + m_s j(D_s)$. Le théorème d'Abel-Jacobi entraîne alors l'existence d'une fonction rationnelle f définie sur \mathbb{Q} telle que

$$R_1 + \ldots + R_k - m_1 D_1 - \ldots - m_s D_s + \sum_{i=1}^s (m_i \deg D_i - k) \infty = div(f).$$

La fonction f a donc des pôles prescrits, et si l'on sait analyser les espaces

$$\mathcal{L}(D) = \left\{ f \in \overline{\mathbb{Q}}(C) \mid div(f) + D \ge 0 \right\}$$

on en déduit des restrictions sur les R_i et même dans les bons cas une description explicite.

Nos principaux résultats sont les deux théorèmes suivants:

2. Results and proofs

Theorem 11. Les points algébriques sur C, de degré 4 sur \mathbb{Q} , sont donnés par:

- (i) $\Gamma_1.C$ où Γ_1 est une droite définie sur \mathbb{Q} .
- (ii) $\Gamma_2.\mathcal{C} = R_1 + \ldots + R_4 + n_1Q_1 + n_2Q_2 + n_3Q_3 + r\infty$ où Γ_2 est une conique; avec $n_1 \in \{0, 1, 2, 3\}$ et $\{n_2, n_3\} \subset \{0, 1, 2\}$, $r = 4 n_1 n_2 n_3$, et $6 \le 4 + n_1 + n_2 + n_3 \le 8$.
- (iii) $\Gamma_3.\mathcal{C} = R_1 + \ldots + R_4 + n_1Q_1 + n_2Q_2 + n_3Q_3 + r\infty$ où Γ_3 est une cubique, avec $n_1 \in \{0, 1, 2, 3\}$ et $\{n_2, n_3\} \subset \{0, 1, 2\}$, $r = 8 n_1 n_2 n_3$, et $9 < 4 + n_1 + n_2 + n_3 < 11$.

Theorem 12. Soit $R \in \mathcal{C}\left(\overline{\mathbb{Q}}\right)$ avec $[\mathbb{Q}\left(R\right):\mathbb{Q}]=d$. Notons R_1,\ldots,R_d les conjugués de Galois de R. Alors il existe une courbe Γ_n définie sur \mathbb{Q} de degré $n \leq \left\lceil \frac{d+7}{3} \right\rceil$ telle que:

$$\Gamma_n.C = R_1 + \ldots + R_d + n_1Q_1 + n_2Q_2 + n_3Q_3 + r\infty$$

avec $r = 4n - d - n_1 - n_2 - n_3$; $r \ge 0$, $n_1 \in \{0, 1, 2, 3\}$ et $\{n_2, n_3\} \subset \{0, 1, 2\}$ La notation [x] désigne la partie entière de x.

Résultats auxiliaires Pour un diviseur D sur \mathcal{C} , nous notons par l(D) la $\overline{\mathbb{Q}}$ -dimension de $\mathcal{L}(D)$ où $\mathcal{L}(D)$ est le $\overline{\mathbb{Q}}$ -espace vectoriel des fonctions rationnelles définies par

$$\mathcal{L}\left(D\right) = \left\{ f \in \overline{\mathbb{Q}}\left(\mathcal{C}\right)^* \mid \operatorname{div}\left(f\right) \ge -D \right\} \cup \left\{ f = 0 \right\}.$$

Soient x et y les fonctions rationnelles définies sur \mathcal{C} données par: x(X,Y,Z) = X/Z et y(X,Y,Z) = Y/Z. On a le lemme suivant

Lemma 5. Soient les points

$$Q_4 = (0, \sqrt{-1}, 1), \ Q_5 = (0, -\sqrt{-1}, 1), \ Q_6 = \left(0, \frac{1 + \sqrt{-3}}{2}, 1\right), \ Q_7 = \left(0, \frac{1 - \sqrt{-3}}{2}, 1\right)$$

- $div(x-1) = 3Q_3 3\infty$
- $div(x+1) = 3Q_2 3\infty$
- $div(x) = Q_1 + Q_6 + Q_7 3\infty$
- $div(y) = Q_2 + Q_3 + Q_4 + Q_5 4\infty$
- $div(y+1) = 4Q_1 4\infty$.

Preuve. Il s'agit d'un calcul du type $div(x-a) = (X-aZ=0) \cdot \mathcal{C} - (Z=0) \cdot \mathcal{C}$ Par exemple : $div(x-1) = (X-Z=0) \cdot \mathcal{C} - (Z=0) \cdot \mathcal{C}$. On a alors: $(X - Z = 0) \cdot C = 3Q_3 + \infty$ et $(Z = 0) \cdot C = 4\infty$. D'où $div(x - 1) = 3Q_3 - 3\infty$. \square Soit j le plongement jacobien de $\mathcal{C} \to j(\mathbb{Q})$, la classe $[P - \infty]$ de P est notée j(P). Nous déduisons du lemme 5 le résultat:

$$4j(Q_1) = 0$$
, $3j(Q_2) = 0$ et $3j(Q_3) = 0$. (1)

Lemma 6. i) $J(\mathbb{Q}) \cong \mathbb{Z}/4\mathbb{Z} \oplus (\mathbb{Z}/3\mathbb{Z})^2 \cong \langle j(Q_1), j(Q_2), j(Q_3) \rangle$. ii) Pour tout $x \in J(\mathbb{Q})$, il existe $n_1 \in \{0, 1, 2, 3\}$ et $n_2, n_3 \in \{0, 1, 2\}$ tels que: $x = -n_1 j(Q_1) - n_2 j(Q_2) - n_3 j(Q_3)$.

Preuve. i) Voir Klassen and Schaefer (1996).

ii) C'est une conséquence directe de i) et du résultat (1).

EMMA 7. \bullet $\mathcal{L}(\infty) = \langle 1 \rangle = \mathcal{L}(2\infty)$ \bullet $\mathcal{L}(3\infty) = \langle 1, x \rangle$ Lemma 7.

- $\mathcal{L}(4\infty) = \langle 1, x, y \rangle = \mathcal{L}(5\infty)$
- $\mathcal{L}(6\infty) = \langle 1, x, y, x^2 \rangle$
- $\mathcal{L}(7\infty) = \langle 1, x, y, x^2, xy \rangle$
- $\mathcal{L}(8\infty) = \langle 1, x, y, x^2, xy, y^2 \rangle$
- $\mathcal{L}(9\infty) = \langle 1, x, y, x^2, xy, y^2, x^3 \rangle$
- $\mathcal{L}(10\infty) = \langle 1, x, y, x^2, xy, y^2, x^3, x^2y \rangle$
- $\mathcal{L}(11\infty) = \langle 1, x, y, x^2, xy, y^2, x^3, x^2y, xy^2 \rangle$.
- Plus généralement, pour $m \geq 5$, une base de $\mathcal{L}(m\infty)$ est:

$$\mathcal{B}_m = \left\{ x^a y^b \mid a, \ b \in \mathbb{N} \ avec \ b \le 2 \ et \ 3a + 4b \le m \right\}.$$

Preuve. On a $l(\infty) = 1$ puisque si l(point) > 1 alors la courbe est de genre 0, ce qui n'est pas le cas avec \mathcal{C} .

On a $l(2\infty) = 1$, car si $l(2\infty) > 1$ alors la courbe est hyperelliptique, ce qui n'est pas le cas avec \mathcal{C} .

Puisque (Z=0). $\mathcal{C}=4\infty$ et que le genre de \mathcal{C} est égal à 3, alors le diviseur canonique que l'on note $K_{\mathcal{C}}$ de \mathcal{C} est égal à 4∞ . Il résulte du théorème de Riemann-Roch que si l'on pose $D=m\infty$, alors $l(D)-l(K_{\mathcal{C}}-D)=degD+1-g$ c'est-à-dire $l(m\infty)-l(4\infty-m\infty)=m+1-g$, d'où $l(m\infty)=m-2+l(4\infty-m\infty)$ et par suite $l(3\infty) = 2$.

Puisque $K_{\mathcal{C}} = 4\infty$ est un diviseur canonique, on sait que $l(4\infty) = g = 3$. Lorsque $m \geq 5$, on obtient $l(m\infty) = m - 2$. Les éléments de \mathcal{B}_m sont linéairement indépendants et appartiennent à $\mathcal{L}(m\infty)$. Posons

$$\mathcal{B}_{m}^{0} = \left\{ x^{a} \mid a \in \mathbb{N} \ avec \ a \leq \frac{m}{3} \right\},$$

,

$$\mathcal{B}_m^1 = \left\{ x^a y \mid a \in \mathbb{N} \text{ avec } a \le \frac{m-4}{3} \right\}$$

et

$$\mathcal{B}_m^2 = \left\{ x^a y^2 \mid a \in \mathbb{N} \text{ avec } a \le \frac{m-8}{3} \right\}.$$

•

Il est évident que \mathcal{B}_m^0 , \mathcal{B}_m^1 et \mathcal{B}_m^2 constituent une partition de \mathcal{B}_m .

$$Card\left(\mathcal{B}_{m}\right)=Card\left(\mathcal{B}_{m}^{0}\right)+Card\left(\mathcal{B}_{m}^{1}\right)+Card\left(\mathcal{B}_{m}^{2}\right)$$

$$Card\left(\mathcal{B}_{m}\right) = \left(\left[\frac{m}{3}\right] + 1\right) + \left(\left[\frac{m-4}{3}\right] + 1\right) + \left(\left[\frac{m-8}{3}\right] + 1\right) = m-2$$

donc $l(m\infty) = m - 2$, ce qui prouve que \mathcal{B}_m est une base de $\mathcal{L}(m\infty)$.

Démonstration des théorèmes

Preuve du Théorème 11. Soit $R \in \mathcal{C}(\overline{\mathbb{Q}})$ avec $[\mathbb{Q}(R) : \mathbb{Q}] = 4$. Notons R_1, \ldots, R_4 les conjugués de Galois de R. Nous remarquons qu'aucun des R_i n'est égal à ∞ ou un des points Q_i . Le point $[R_1 + \ldots + R_4 - \infty] \in J(\mathbb{Q})$ et d'après le Lemme 6 on a :

$$[R_1 + \ldots + R_4 - 4\infty] = -n_1 j(Q_1) - n_2 j(Q_2) - n_3 j(Q_3) \quad (\star)$$
avec $n_1 \in \{0, 1, 2, 3\}$ et $n_2, n_3 \in \{0, 1, 2\}$.

Notre analyse se scinde en quatre cas:

Cas 1: Supposons que $4 + n_1 + n_2 + n_3 = 4$, alors (*) devient

$$[R_1 + \ldots + R_4 - \infty] = 0$$

D'après le théorème d'Abel Jacobi (voir Griffiths (1989) page 156), il existe alors une fonction rationnelle f définie sur \mathbb{Q} telle que

$$div(f) = R_1 + \ldots + R_4 - 4\infty$$

On a donc $f \in \mathcal{L}(4\infty)$ et d'après lemme 7, il existe une droite Γ_1 définie sur \mathbb{Q} telle que

$$\Gamma_1.\mathcal{C} = div f + 4\infty = R_1 + \ldots + R_4.$$

Cas 2: Supposons que $4 + n_1 + n_2 + n_3 = 5$, alors (\star) devient

$$[R_1 + \ldots + R_4 + Q_i - 5\infty] = 0.$$

Il existe alors une fonction rationnelle f définie sur $\mathbb Q$ telle que

$$div(f) = R_1 + \ldots + R_4 + Q_i - 5\infty.$$

On a donc $f \in \mathcal{L}(5\infty)$. Or $\mathcal{L}(5\infty) = \mathcal{L}(4\infty)$ donc un des R_i devrait être égal à ∞ , ce qui est absurde.

Cas 3: Supposons que $6 \le 4 + n_1 + n_2 + n_3 \le 8$, alors (\star) devient

$$[R_1 + \ldots + R_4 + n_1Q_1 + n_2Q_2 + n_3Q_3 - (4 + n_1 + n_2 + n_3) \infty] = 0.$$

Il existe alors une fonction rationnelle f définie sur \mathbb{Q} telle que

$$div(f) = R_1 + \ldots + R_4 + n_1Q_1 + n_2Q_2 + n_3Q_3 - (4 + n_1 + n_2 + n_3) \infty.$$

On a donc $f \in \mathcal{L}(m\infty)$ avec $6 \le m \le 8$ et d'après lemme 7, il existe une conique Γ_2 définie sur \mathbb{Q} telle que

$$\Gamma_2.\mathcal{C} = divf + 8\infty = R_1 + \ldots + R_4 + n_1Q_1 + n_2Q_2 + n_3Q_3 - (4 + n_1 + n_2 + n_3)\infty + 8\infty.$$

C'est à dire

$$\Gamma_2.\mathcal{C} = R_1 + \ldots + R_4 + n_1Q_1 + n_2Q_2 + n_3Q_3 + (4 - n_1 - n_2 - n_3) \infty.$$

Cas 4: Supposons que $7 \le 4 + n_1 + n_2 + n_3 \le 11$, alors (\star) devient

$$[R_1 + \ldots + R_4 + n_1Q_1 + n_2Q_2 + n_3Q_3 - (4 + n_1 + n_2 + n_3)\infty] = 0$$

Il existe alors une fonction rationnelle f définie sur \mathbb{Q} telle que

$$div(f) = R_1 + \ldots + R_4 + n_1Q_1 + n_2Q_2 + n_3Q_3 - (4 + n_1 + n_2 + n_3) \infty.$$

On a donc $f \in \mathcal{L}(m\infty)$ avec $7 \leq m \leq 11$ et d'après lemme 7, il existe une cubique Γ_3 définie sur \mathbb{Q} telle que

$$\Gamma_3.\mathcal{C} = divf + 12\infty = R_1 + \ldots + R_4 + n_1Q_1 + n_2Q_2 + n_3Q_3 - (4 + n_1 + n_2 + n_3) + \infty + 8\infty.$$

C'est à dire

$$\Gamma_3.\mathcal{C} = R_1 + \ldots + R_4 + n_1Q_1 + n_2Q_2 + n_3Q_3 + (8 - n_1 - n_2 - n_3) \infty.$$

Preuve du Théorème 12

Soit $R \in \mathcal{C}(\overline{\mathbb{Q}})$ avec $[\mathbb{Q}(R):\mathbb{Q}]=d$ et R_1,\ldots,R_d les conjugués de Galois de R. Le cas $d \leq 3$ est traité dans Klassen and Schaefer (1996) et le cas d=4 dans le théorème 11, nous pouvons donc supposer que $d\geq 5$ et en particulier qu'aucun des R_i n'est égal à ∞ ou un des points Q_i . Ainsi $[R_1+\ldots+R_d-d\infty]\in J(\mathbb{Q})$ et d'après le Lemme 6 peut s'écrire sous la forme :

$$[R_1 + \ldots + R_d - d\infty] = -n_1 j\left(Q_1\right) - n_2 j\left(Q_2\right) - n_3 j\left(Q_3\right),$$
 avec $n_1 \in \{0, 1, 2, 3\}$ et $n_2, n_3 \in \{0, 1, 2\}$.

D'après le théorème d'Abel Jacobi (voir Griffiths (1989) page 156), il existe alors une fonction rationnelle F définie sur \mathbb{Q} telle que

$$div(F) = R_1 + \ldots + R_d + n_1Q_1 + n_2Q_2 + n_3Q_3 - (d + n_1 + n_2 + n_3) \infty$$

avec $n_1 \in \{0, 1, 2, 3\}$ et $n_2, n_3 \in \{0, 1, 2\}$.

On a donc $F \in \mathcal{L}\left((d+n_1+n_2+n_3)\infty\right)$ et le lemme 7 montre que la fonction F est un polynôme P(x,y) avec $n=\deg P\leq \left[\frac{d+7}{3}\right]$ et il existe alors une courbe Γ_n définie sur $\mathbb Q$ d'équation $\Gamma_n:Z^nP\left(\frac{X}{Z},\frac{Y}{Z}\right)=0$ comme la droite (Z=0) coupe $\mathcal C$ en 4∞ , on déduit l'égalité :

$$\Gamma_n.\mathcal{C} = R_1 + \ldots + R_d + n_1Q_1 + n_2Q_2 + n_3Q_3 + r\infty$$

$$\mathbf{avec} \ r = 4n - d - n_1 - n_2 - n_3; \ n_1 \in \{0, 1, 2, 3\} \ \text{et} \ n_2, \ n_3 \in \{0, 1, 2\}.$$

Ainsi pour toute fonction rationnelle définie sur Q telle que

$$div(F) = R_1 + \ldots + R_d + n_1Q_1 + n_2Q_2 + n_3Q_3 - m\infty$$

Si Γ_n est une courbe de degré n définie sur $\mathbb Q$ alors $\Gamma.\mathcal C$ est de degré 4n et on obtient

$$div(F) = \Gamma_n \mathcal{C} - 4n\infty$$
 et par suite $\Gamma_n \mathcal{C} = R_1 + \ldots + R_d + n_1 Q_1 + n_2 Q_2 + n_3 Q_3 + (4n - m) \infty$.

Ainsi la somme des conjugués $R_1 + \ldots + R_d$ est l'intersection résiduelle d'une courbe de degré n passant par les Q_i et ∞ avec les multiplicités indiquées.

Le théorème est explicite pour les points algébriques de petits degrés par exemple:

COROLLARY 5. .

Les points algébriques sur C, de degré 5 sur \mathbb{Q} , sont donnés par :

- (i) $\Gamma_2.\mathcal{C} = R_1 + \ldots + R_5 + n_1Q_1 + n_2Q_2 + n_3Q_3 + r\infty$ où Γ_2 est une conique; avec $n_1 \in \{0, 1, 2, 3\}$ et $\{n_2, n_3\} \subset \{0, 1, 2\}$, $r = 3 n_1 n_2 n_3$, et $6 \le 5 + n_1 + n_2 + n_3 \le 8$.
- (ii) $\Gamma_3.\mathcal{C} = R_1 + \ldots + R_5 + n_1Q_1 + n_2Q_2 + n_3Q_3 + r\infty$ où Γ_3 est une cubique; avec $n_1 \in \{0, 1, 2, 3\}$ et $\{n_2, n_3\} \subset \{0, 1, 2\}$, $r = 7 n_1 n_2 n_3$, et $9 \le 5 + n_1 + n_2 + n_3 \le 11$.
- (iii) $\Gamma_4.C = R_1 + \ldots + R_5 + 3Q_1 + 2Q_2 + 2Q_3 + 4\infty$ où Γ_4 est une quartique définie sur \mathbb{Q} .

Bibliography

Griffiths P.A(1989) *Introduction to algebraic curves*, Translations of mathematical monographs volume 76. (1989)

M. J. Klassen and E. F. Schaefer (1996) *Arithmetic and geometry of the curve* $y^3 + 1 = x^4$, Acta Arithmetica LXXIV.3 (1996) 241-257.