

CHAPTER 2

A conjecture of Hartshorne, by H. Seydi, T. H. Miabey and S. Maimouna.

Hamet Seydi. Email : hseydi@gmail.com.
University Cheikh Anta Diop, Dakar (SENEGAL).
Teylama Hervé Miabey. Email : thmiabey@ymail.com, teylama.miabey@udc.edu
Mathematics Department, University of the District of Columbia Community College, USA.
Maimouna Salou. Email : maimouna_idi@yahoo.fr

Département de Mathématiques et d'informatique, Université A. Moumouni de Niamey, NIGER.

Abstract. The present paper gives the solution of a Hartshorne conjecture : Every non singular real algebraic variety is affine. Other related results are provided.

Keywords. Hartshorne's conjecture; Projective algebraic varieties; Schemes

AMS 2010 Mathematics Subject Classification. 14-XX; 14P25; 14N05

Cite the paper as :

Seydi H., Miabey T.H. and Salou M.(2018). A conjecture of Hartshorne. In *A Collection of Papers in Mathematics and Related Sciences, a festschrift in honour of the late Galaye Dia* (Editors : Seydi H., Lo G.S. and Diakhaby A.). Spas Editions, Euclid Series Book, pp. 15 – 19 Doi : 10.16929/sbs/2018.100-01-02

©Spas Editions, Saint-Louis - Calgary 2018 H. Seydi *et al* (Eds.) A Collection of Papers in Mathematics and Related Sciences, a festschrift in honour of the late Galaye Dia. Doi : /10.16929/sbs/2018.100.

A Collection of Papers in Mathematics and Related Sciences, a festschrift in honour of the late Galaye Dia. Seydi H., Miabey T. H. and Maimouna S. (2018). A conjecture of Hartshorne. Pages 15 - 19.

1. Introduction and motivations.

Let *K* be a normal closed field, $A_n = K[T_1, \dots, T_n]$ the ring of polynomials in *n* variables over *K*, $X_n = K^n$ provided with the Zarisky topology *i.e* the topology on X_n the set of *K*-rational roots $Y_n = Spec(A_n)$ by the Zarisky topology on Y_n the seaf on X_n by the canonical sheaf on Y_n .

A space (V, O_V) is said to be an algebraic variety over X_n if (V, O_V) is isomorphic to a space (W, R_W) where W is the set of K-rational points of a finitely generated and separated (Y, O_Y) over K and R_W is the restriction to W of the topology on Y. The seaf O_V is also denoted R_V and called the sheaf of regular functions on V.

If $Y = P_K^n$ the projective space of dimension n over \mathbb{R} , W is denoted $P^n(K)$ and called the projective algebraic space of dimension n over K. An algebraic sub-variety of a projective space $P^n(K)$ is called a projective algebraic variety.

An algebraic variety over $K(V, O_V)$ is said to be affine if (Y, O_Y) is defined to be an algebraic sub-variety of X_n for some integer n.

2. Results and proofs.

THEOREM 1. The projective algebraic space $P^n(K)$ of dimension n over K is an affine algebraic variety.

For the proof of this proposition we need the following lemma.

LEMMA 1. Let *I* be an ideal of A_n . Then there exist an element *f* of *I* such that V(I) = V(f). Furthermore, if $I = sigmaf_iA_n$, *f* can be chosen to be equation $P(f_1, \dots, f_n)$ where *P* is a homogenous polynomial in *q* variables with coefficients in *K*.

Proof of Lemma 1. Since *K* is not algebraically closed, there exist a finite extension K' of *K* such that n = [K' : K] > m.

Let $B = x_1, \dots, x_m$ be a base of K' over K. Then there exist a homogenous polynomial P_1 in n variables with coefficients in K such that if $x \in K'$, $x = \sigma \lambda_i x_i$ with $\lambda_i \in K 1 \leq i \leq n$, and if f_x is the multiplication by x in K', then $def f_x = P_1(\lambda_1, \dots, \lambda_m)$.

A Collection of Papers in Mathematics and Related Sciences, a festschrift in honour of the late Galaye Dia. Seydi H., Miabey T. H. and Maimouna S. (2018). A conjecture of Hartshorne. Pages 15 - 19.

 $P_1(\alpha_1, \cdots, \alpha_m) = 0$ if and only if $\alpha_1 = \cdots, \alpha_m = 0$.

We will prove by induction on k > 1 that there exist a homogenous polynomial P_k in k variables with coefficients in K of degree m^k such that $P_k(\alpha_1, \dots, \alpha_{m^k}) = 0$ if and only if $\alpha_1 = \dots, \alpha_{m^k} = 0$.

Assume that this assertion is true up to k > 1. Let $X_{ij}, 1 < i < m, 1 < j < m^k$ be m^{k+1} variables et $Q_k = P_k(X_{i1}, \dots, X_{im^k})$. It is clear that $P_{k+1} = P_1(Q_1, \dots, Q_m)$ is a homogenous polynomial in the m^{k+1} variables $X_{ij}, 1 < i < m, 1 < j < m^k$ of degree m^{k+1} such that $P_{k+1}(\alpha_{11}, \dots, \alpha_{1m^k}, \dots, \alpha_{m1}, \dots, \alpha_{mm^k}) = 0$ if and only if $\alpha_{ij} = 0$ for $1 \le i \le m, 1 \le j \le m^k$. Hence the assertion is true up to k + 1. Since the assertion is true for k = 1, we conclude that the assertion is true for every integer k > 1.

More assume that if $I = \sum_{i=1}^{n} f_i A_n$, there exist an integer k > 1 such that $m^k > q$. It is clear that $f = P_k(f_1, \dots, f_q, 0, \dots, 0)$ is an element of I because the constant term of P_k is equal to 0 and $\alpha = (\alpha_1, \dots, \alpha_m) \in K^m$ is a zero of f if and only if α is a zero of f_1, \dots, f_q ie V(f) = V(I).

Proof of Theorem 1. Let $R = K[X_1, \dots, X_{m+1}]$ the ring of polynomials in n + 1 variables over K and M the maximal ideal of R generated by X_1, \dots, X_{m+1} . Then there exist a homogenous polynomial $f \in M$ such that V(M) = V(f).

It is well know that Y = V(f) is an affine open subset of $P^n(K)$. It is also clear that $P^n(K)$ is contained in Y because of $\alpha \in P^n(K) \bigcap D(X_i)$. Then $\alpha = (\alpha_1, \dots, \alpha_{i-1}, 1, \alpha_{i+1}, \dots, \alpha_n)$ with $\alpha_j \in K$ for $j = 1, \dots, i-1, i+1, \dots, n$. So,

$$f(\alpha_1, \cdots, \alpha_{i-1}, 1, \alpha_{i+1}, \cdots, \alpha_n) \neq 0.$$

Hence $P^n(K)$ which is the set of *K*-maximal points of $P^n(K)$ is an affine algebraic variety.

COROLLARY 1. Every projective algebraic variety (V, O_V) over K is affine.

COROLLARY 2. Every compact non singular real algebraic variety is affine.

Proof. By a theorem of Nash (1995), every compact non singular algebraic variety is projective, so the conclusion follows from corollary 1

Тнеокем 2 (Harstshorne's conjecture). Every non singular real algebraic variety is affine.

A Collection of Papers in Mathematics and Related Sciences, a festschrift in honour of the late Galaye Dia. Seydi H., Miabey T. H. and Maimouna S. (2018). A conjecture of Hartshorne. Pages 15 - 19.

Proof of Theorem 2. Let (V, O_V) be a non singular real algebraic variety. Assume that V is the set of K-maximal points of separated finitely generated scheme over K, (Y, O_Y) and $O_V = O_Y)/V$. By Nagata (1962)'s compactification theorem there exist a complete scheme over K, (Z, O_Z) such that Y is an open subset of Z and $O_Y = O_Z)/Y$ and by Hiromota's resolution of singularities theorem we can assume that (Z, O_Z) is a regular scheme. Let W be a set of K-rational points of (Z, O_Z) and $O_W = O_Z)/W$. Then (W, O_W) is a compact non singular real algebraic variety. So (W, O_W) is an affine real algebraic variety (of Corollary 2), and by Lemma 1. There exist $f \in T(W, O_W)$ such that $W \setminus V = V(f)$. Hence V = D(f), so (V, O_V) is an affine real algebraic variety.

Bibliography

- Hironaka H. (1964). Resolution of singularities of an algebraic variety over a field of characteristic zero. *Ann. Math.* 79 (1964), 109-326
- Nagata M. (1962) Imbedding of an abstract variety in a complete variety *J. Math. Kyoto Univ.*, Volume 2, Number 1 (1962), 1-10.
- Nash, J. (1952). Real algebraic manifolds. Ann. of Math. (2) 56 (1952), 405âĂŞ421. MR0050928
- Nash J. F. Jr.(1995). Arc structure of singularities. *Duke Math.* J. 81 (1995), no. 1, 31âĂŞ 38 (1996), DOI 10.1215/S0012-7094- 95-08103-4. A celebration of John F. Nash, Jr. MR1381967