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We discuss two empirical Bayes estimation problems
for heterogeneous matched binary samples with systematic
growth effects, in the applied study of recognized
spontaneous abortion. The first problem is to estimate
an assumed systematic component in the random growth
curve, and sufficient conditions are provided for
consistent estimation of governing structural
parameters The second problem is to estimate future
risk based on past outcomes, and for this we extend
Robbins1 general empirical Bayes estimator for binomial
variables to the case of a sum of conditionally
independent, non-identically distributed binary
variables

1 Introduction.

There is an interesting application of empirical Bayes estimation in

the study of recognized spontaneous abortion (miscarriage) We specify a

mathematical model for binary outcome data that incorporates several factors

identified by epidemiologists as necessary for a realistic analysis of obstetric

sequences. The factors are heterogeneity of risk, systematic effects of

maternal age and gravidity, selective fertility, and differential pregnancy
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spacing. Two estimation problems are considered in the context of a cross-

sectional survey: (I) estimation of the systematic effects of maternal age and

gravidity, and (II) estimation of future risk based on past obstetric history.

In the first problem, we identify sufficient conditions under which one obtains

consistent estimates of structural age and gravidity effects that are free of

the biases often encountered in marginal analyses of rates due to the factors of

risk heterogeneity, selective fertility, and differential pregnancy spacing. An

important feature of the model is that it allows the individual contributions of

age and gravidity to be simultaneously assessed, thus addressing a controversy

in the epidemiologic literature of the past decade. For the second estimation

problem, we require an extension of Robbinsf general empirical Bayes estimator

for binomial variables to the case of a sum of conditionally independent, non-

identically distributed binary variables.

An analysis of serially correlated binary variables has recently been

given by Stiratelli, Laird, and Ware (1984) for longitudinal studies, extending

the related work in normal theory of Laird and Ware (1982) and Hui and Berger

(1983). The papers of Koch et al. (1977) and Korn and Whittemore (1979) discuss

alternative analyses for repeated categorical observations. Our analysis

differs from these authors1 in the following respects: (i) we consider only the

simplest case of a single random effect parameter for risk, with no random

heterogeneity in the structural growth curves (all such heterogeneity is treated

as systematic); (ii) we do not restrict ourselves to parametric families of

priors, the empirical Bayes estimators being "general" in the sense of Robbins

(1980, 1983) (although we consider only the simpler problem of estimating

posterior odds as opposed to probabilities); (iii) the analysis is applicable to

both longitudinal and survey designs in dynamically stable populations where

explicit adjustments are necessary for the kinds of biasing factors considered

herein. James (1969) has discussed a test for birth order effects in the

presence of selective fertility which is close in spirit to the present paper

In section 2 we briefly review some substantive findings that

characterize the spontaneous abortion process among gravid women. The
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discussion motivates the model assumptions specified in section 3. In section 4

we provide a consistent estimator for the structural growth parameters, and the

extension of the general empirical Bayes estimator of future risk given observed

obstetric history.

It is a pleasure to acknowledge Professor Robbins for his development

of empirical Bayes theory, the elegance of which still shines through the

details of this application, Robbins
1
 interest in empirical Bayes methods for

binary variables may be traced at least as far back as Robbins (1956), and as

recently as his work on general and linear e B. estimation for binomials,

discussed in Cr-s sie (1982), ΛΊΛ Robbins (1983).

2. Substantive background from the epidemiology of spontaneous abortion.

The relations of maternal age, gravtdity (birth order), and obstetric

history to the risk of spontaneous abortion have proven difficult to separate.

When marginal age-specific rates of spontaneous abortion are studied (as a

proportion of spontaneous abortions plus term births), the risk is observed to

increase at late maternal ages, beginning in the mid-thirties. It increases

with gravidity, and also among women who have experienced one or more previous

miscarriages ("recurrence risk"). These three observations are not unrelated.

For example, maternal age and gravidity are positively correlated, and total

gravidity and rate of spontaneous abortions may be associated in circumstances

where the decision to become pregnant again is related to the outcomes of

previous pregnancies. The apparent tendency toward recurrence is usually

interpreted as an indication of underlying heterogeneity between women in their

risk for spontaneous abortion (Wacburton and Fraser, 1964; Naylor, 1974; James,

1974; Leridon, 1976; reviewed In Wilcox anil Ola-l^n, 1932). In f\U view,

recurrence risk is a selection effect, where women who have experienced one or

more miscarriages overrepresent women with a high risk of spontaneous abortion

on any pregnancy, relative to the population as a whole. An alternative

explanation — that one spontaneous abortion is causally relate 1 to a later

spontaneous abortion ("state dependence") — has not been examined carefully,
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although several authors point to this possibility as well (Naylor and

Warburton, 1978; Wilcox and Gladen, 1982). The state dependence model will not

be pursued here.

Previous discussions of risk heterogeneity have usually (James, 1974;

Leridon, 1976; Wilcox and Gladen, 1982), but not always (Warburton and Fraser,

1964), focused on whether or not heterogeneity could have produced the maternal

age and gravidity effects observed in the marginal rates of abortion. Besides

heterogeneity, and the possibility of recall bias and evasive answer bias,

several other factors have been identified that might give rise to spurious

marginal associations between the risk of abortion and the characteristics of

age, gravidity, and obstetric history. Much debate has arisen over the relative

importance of age versus gravidity because of failures to account for one or

more of these biasing factors. Leridon (1976) and Wilcox and Gladen (1982)

provide the most comprehensive reviews of the issues that have been raised. Two

factors in particular, selective fertility (wherein continuation of reproduction

depends on the outcome of previous pregnancies), and differential spacing

between pregnancies (on average shorter after miscarriage than after term birth)

are cited as major sources of spurious associations. Our focus here is not on

the ways in which a marginal analysis of pregnancy outcomes may be misleading.

Instead, we provide an analytic framework for studying the influences of age and

gravidity on abortion risk within women, and for estimating the future risk of

spontaneous abortion for each woman interviewed.

3. Model specification.

Let Iΐ denote a population of gravid women whose first pregnancy

occurred since calendar date t^ In a cross-sectional "door-to-door" survey

conducted around date t^ > t
Q
, information is gathered on respondents

1
 current

gravidity I, and for those women with I > 1, the age A^ and binary outcome X^ on

each pregnancy i=l, ..,I is obtained. Let X ^ = A ^ « φ, and for i > 1, let

χ(i) = (χ
l
,...,χ

i
) and A^*' « (Ap

 9
A^) Each women surveyed in Π

contributes the datum ( I ^ ^ . X ^ ) .
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Below we consider a class of coin-tossing models for the outcome

process in which the outcomes are assumed to be conditionally independent within

women given age, gravidity, and a random intensity parameter. The substantive

considerations in section 2 lead us to make the following specific assumptions.

Al. (Heterogeneous risk) There exists an intensity parameter λ for each woman

describing the log-odds on the event [X, = 1], assuming that a first pregnancy

were to occur at reference age AQ which is fixed at, say, 20 years of age.

The distribution of λ in Π, say dH(λ) on [-
00
,
00
], is assumed to satisfy

e
λ
 dH(λ)

but is otherwise arbitrary and unknown.

A2. (Selective fertility) Each woman is assumed to follow a stopping rule N

during her reproductive life indicating desired family size. We assume stopping

may depend on the outcome sequence Xp..., age Ap..., and also on other factors

that are completely independent of outcomes (such as sex of livebirths,

accidental conception, or early infertility). Across women in Π, N varies as a

random variable N defined on the class C of stopping rules just described. The

distribution of N is unknown, but is assumed independent of λ,

dP
χ
[N - N] - dP[N - N].

Below we write marginal conditional probability measures with the usual

P[ | ] notation, and we use subscript notation when conditioning also on given

values of the intensity parameter and stopping rule, as in Fχ ^[ \ ]

A3
U
 (Conditional independence of outcomes given age) Given λ and N, and the

a

occurrence of an i-th pregnancy, the outcome X^ depends only on gravidity i and

a
β

e
 Ai, but not on earlier outcomes or ages. That is,
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P
λ j N

[X
i
 - 1 I I > i, A

( i )
, X

( i
"

1 )
] = P

X
U*\) - 1 -

 (
lλ

( i ί A
i

)

for some risk functions p^(i,A^) (1-1,2, • • • ) •

A4. (Structural age effect) There are structural growth functions φ (1,A),
p

defined for i > 1 and A > 0, that depend for each i on a fixed number of unknown

population parameters 3
 β
 3(i), such that Φ 3 ( I ) O > A Q ) - 0, and for any A and λ ,

log (p,(i,A) / q,(i,A) ) - λ +

Although φ depends on AQ, we suppress this from the notation. For simplicity

here we assume no structural heterogeneity in the growth curves as a function of

covariates. Some practical choices of φ include quadratic functions of A-AQ or

of log(A/A
Q
), e.g.

2
|> (1,A) = b log(A / A ) + b log (A / A )
3(1) 11 0 12 0

2
|> (i,A) = a + b log(A / A ) + b log (A / A )
3(i) i il 0 i2 0

3(1) - <b , b ) , 3(i) = (a^ b , b ).

The parameters a. represent a gravidity effect superposed on the structural

growth curves parameterized by b^.

A5|j. (Conditional independence of censoring plus fertility with respect to

intensity) For i M and any A ^
1
"

1
) , X^

1
""

1
), N,

P
χ
 [I > i I I > i-1, A

( i l
\ X^

1
""

1
^] is independent of λ.

Assumption A5
N
 declares the obstetric sequence (A^

i - 1
\ X ^ *•') sufficient for

the determination of the proportion of women who may be observed to have at
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least i pregnancies, given i-1 or more, and stopping rule N. In the absence of

recency censoring, accidental conception, and early infertility, assumption A5*τ

is trivially satisfied, since for any λ the proportion of women observed to have

at least i pregnancies given i-1 or more is either zero or one, depending only

on the stopping rule N and the observed outcomes X^ '. When recency

censoring, accidental conception, or early infertility do occur, the proportions

may be non-degenerate, and may depend on previous outcomes, but under A5^ these

effects apply independently of λ.

A6j|. (Conditional independence of pregnancy spacing wrt intensity) For i > 1

and any A^
1
 ', X^ , N there is a conditional probability density describing

pregnancy spacing, say

P
λ
 Λdk, I I > i, A ^

 1
', x'

1
 ^ ] that is independent of λ.

λ ,N i '

Thus the observable sequence up to gravidity i-1 suffices to determine pregnancy

interval A^ - ^i-i g*
v e n

 I > i and N. Note that the inter-pregnancy interval

may depend differentially on previous outcomes X^ '.

Assumptions A3jg, A5^, and A6^ have been stated in stronger form than

we actually require, it being sufficient for our purposes to state these

assumptions marginally with respect to N:

A3. P
X
[X

±
 - 1 I I > i, A

( i )
, X

( i
~

1 }
] - p

x
(i,A

±
),

A5. P,[I > i I I > i-1, A
( i l

\ X
( i X )

] is independent of λ,

A6. P
Λ
[dA. I I > i, A^

1
"" , X^

1
"

1
^] is independent of λ.

We expect the assumptions to hold in gravid populations that are dynamically

stable, in which pregnancy behavior is dependent only on past events observable

to the woman, but not otherwise on the unobservable intensity parameter λ. The
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importance of A5 and A6 is that the distributions of continuation and pregnancy

spacing may be estimated from the marginal observed data. We now show that

assumptions A2, A3^, A5jg, and A6JJ imply A3, A5, and A6

The likelihood of observing the event [I > i, A^\ X ^ ] given λ and

N = N is

(i) (i) i , (j-1) (j-1),
P [I > i, dA , X ] = Π P [I > j I > j-1, A , X ]
λ,N j = l λ,N '

i , (j-1) (j-1)
• Π P [dA I > j, A , X ]
j-1 λ,N j '

(J) (x

if X^ ' is realizable under N, and is zero if not (e.g. if we exclude accidental

fertility and early infertility). The likelihood is of the form

X 1-X

P [I > i , dA
 ί
 , X ] = Π p (j,A )

 J
q (j ,A )

 j
 f(i, A

 ±
 , X * , N)

λ,N j=l λ j λ j

where f does not depend on λ, and equals zero if X^ ' is not realizable under

N. Thus
(i) (i)

P [I > i, dA , X ] dP[H = N]
, (i) (i) λ,N

dP [N - N I I > i, A , X ]
λ ' (i) (i)

/ P [I > i, dA , X ] dP[N = N]
C λ,N

(i) (i)
f(i, A , X , N) dP[H » N]

(i) (i)
/ f(i, A , X , N) dP[N = N]
C

is independent of λ. Consequently

P
λ
[I > i+1 I I > ί, A

( i )
, X

( i )
] = /

c
 P

χ > N
[I > i+1 I I > i, A

( 1 )
, X

( i )
]

dP, [N = N I I > i, A
( i )

, X
( i )

]
Λ i

is independent of λ, which is A5. A similar argument shows that both



ADAPTIVE STATISTICAL PROCEDURES 187

dP, [H - N I I > i, A
( i )

, X
( i 1 }

] and dP, [H = N I I > i, A
( ± 1 }

, X
( i 1

independent of λ, implying A3 and A6, respectively.

4. Likelihood functions and estimation of structural parameters and future risk.

Let g > 2 be a given integer. Given λ, the likelihood of observing

the event [I-g, A'
g
', X^

g
'] is, under assumptions Al - A6,

X 1—X

(g) (g) (g) (g) (g) (g) g i i

(1) P [I«g,A ,X ] - μ (A ,X ) V (A ,X ) Π p (i,A ) q (i,A )
λ g g i-1 λ i λ i

where

(g) (g) g . (i-1) (i-1) . (g) (g)

μ (A ,X ) - Π P[I > i I > i-l,A ,X ] P[I = g I > g,A ,X ]

g i-1

and

(g) (g) g . (i-1) (i-1)
v (A ,X ) - Π P[dA I > i,A ,X ]
g 1-1 ±

are independent of λ. Note that v depends on X^
g
' only through X^

g - 1
'. The

o

product in (1) depending on λ can be written as

g g

exp(λS ) exp( Σ φ (i,A )X )/ Π {l + exp(λ + φ
g i=l 3(i) i i i l

where S - Σf X . Thus given λ, the likelihood of [I=g, A^
g
\ S ] is

o i l o

( g ) ( g ) g r t . ,
P [ I - g , A ,S ] = c (S ,A ) exp(λS )/ Π { l + exp(λ + φ ( i , A ) ) }

λ g g g g i - 1 3 ( i ) i

where

(g)
 Γ

 (g) (g) (g) (g)
 f Λ

(2) c (s,A ) = I μ (A ,x ) v (A ,x ) exp( Σ φ (i,A ) x ),

g (g) g g 3(i) i i

x i-1

the sum being taken over D^
g
^(s) » {all binary vectors x^

g
^ with x ^ . .+x = s},
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4.1 Conditional likelihood analysis for the structural parameters .

Now let 0 < s < g. Writing x^ = s - (x
2
 +...+ x

g
) , the conditional

likelihood function for X^
g
^ given λ, I = g, A ^ , and S = s is

(g). (g) (g) (g) (g) (g)
P [X I I=g,A ,S -s] - μ (A ,X ) v (A ,X )
λ g g g

(3)

where
 e x

P ί~
ψ
 + ^ [φ (i,A ) - φ (1,A )] x }

i-2 3(i) i 3(1) 1 i

(g) (g) (g) (g)
Ψ - log ( I μ (A ,x ) v (A ,x )

(g) g g
x

g
•exp { Σ [φ (i,A ) - φ (1,A )] x }).

i-2 3(i) i 3(1) 1 i

Equation (3) is an exponential family of distributions over D^
g
'(s) with respect

to the dominating measure placing mass μ (A
 g
 ,x

 g
 ) v (A

 g
 ,x

 g
 ) at

χ(S)
 ε
 D '

S
' ( S ) , with sufficient statistics X

2
,...,X , and natural parameters

f o r

Note that (3) does not depend on λ so that consistent estimation of 3 is

possible

The essence of (3) can be easily grasped by considering the simplest

case g = 2, S
2
 - 1. In this case (3) implies that the probability ratio of

outcome X ^ - (0,1) to X^
2
^ = (1,0) will be a product of three factors:

(2) . (2) (2) (2)
P[X = (0,1) I I = 2, A , S » 1] μ

2
(A , (0,1)) v^(A , (0,1))

U ) ] (2)
 [

 (2)
 ]l

 (2)
 ]

P[X = (1,0) I I - 2, A , S - 1] μ^(A , (1,0)) v (A , (1,0))

Even without any age/gravidity effect, φ = 0, the outcomes (0,1) and (1,0) will



ADAPTIVE STATISTICAL PROCEDURES 189

not in general be equally likely, but will depend on selective fertility

(reflected in the first factor) and pregnancy spacing (reflected in the second

factor). For example, among women with two closely spaced pregnancies and

S2 - 1, we expect to find more (1,0) outcomes than (0,1) outcomes if

differential pregnancy spacing occurs as described in section 2, so that the

second factor is less than one. Likelihood (3) represents a generalization of

these remarks to the case of g pregnancies with A '
S
' and S fixed, and enables

one to adjust the estimate of the structural growth component in the third

factor for these null expectations.

For data analysis we need to consider a few practical matters and

simplifications.

(a) Obtaining estimates of the dominating measure for large g will typically

be difficult, so that we may wish to utilize information only up to some maximum

gravidity G for those women with I > G. The truncated likelihood function will

then be based on events [I > G, A
κ
 ', Yr

 J
] rather than on the complete

observed sequence. The only modification required is that the final factor in

y_(A ,X ) is omitted. We shall adopt a maximum G, the truncated μ, v , and
Or

truncated likelihood function without special notation.

(b) Assuming linear dependence of φ on the parameters 3(i), the log-

likelihood function based on n informative women (with 0 < S < g) is
o

(4) *(3) = ( Σ Σ X k
1
 )3 - Σ log { Σ μ 0 v exp [( Σ u k»

α-1 j=2 αj αj α=l u g(α) g(α) j=2 j αj

where for the α woman with observed gravidity I, g(α) = min(I,G), the sum

inside the logarithm extends over u ε D^ (S /
α
\)> k^. is a row-vector of

carrier age functions, and 3 is a column vector of parameters. For the example

following assumption A4, we have for 2 < j < g(α) < G

2 2
k

f
 - [ - £ , - £ , 0, 0, 0,..., 1, I , I ,..., 0, 0, 0]
αj 1 1 3 3

where I - log (A /A ), (j > 1), and
3 3 0

β
f
= [ b , b , a , b , b , . . . , a , b , b , . . . , a , b , b ] .

11 12 2 21 22 j jl j2 G Gl G2
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Maximizing (4) is now a standard calculation, and if the components of the
2

conditional information matrix J(3) = ί- ΊΓZ—Z7Γ~) grow unbounded as n > °°, the
dp dp.'

Λ 1 J

conditional maximum likelihood estimate (3 will be consistent with estimated

asymptotic covariance matrix J (3).

(c) The dominating measure in (3) can be expressed in relative terms by

dividing numerators and denominators by the mass at reference point
(σ) (σ) * *

x^
5
 = (1,...,1, 0,. .,0) ε D

 6
 (s). The measure then becomes μ v , where

o o

(g) (g) . (i-1) (i-1)
μ (A ,x ) P[I > i I I > i-1, A , x ]

* (g) (g) g g

μ (A ,x ) = = Π

g (g) (g) i-2 (i-1) (i-1)

μ (A ,x ) P[I > i I > i-1, A , x ]

g * *
, (g) (g)

P[I - g I > g, A , x ]

. (g) (g)
P[I - g I > g, A , x ]

1
 *

and similarly

(g) (g) . (i-1) (i-1)

v (A ,x ) P[dA I I > i, A , x ]
* (g) (g) g g i
v (A ,x ) = Π

g (g) (g) i-2 (i-1) (i-1)
v (A ,x ) P[dA I > i , A , x ]

g * i *

The measure v simplifies considerably under a stationary Markov assumption such

A7_. For i > 2, P[dA± | I > i , A ( i 1 } , x ( i l ) ] = Q[dA±

for some fixed density Q[ J A,x].

Under A7,
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Q[dA A , x ]
* (g) (g) g i i-1 i-1

v (A ,x ) = Π
g i=2 Q[dA A , x ]

i ' i-1 *(i-l)

Q[dA I A , 1 ] Q[dA I A , 1 ] x
β+1 i i-1 -1 g . i i-1 . i-1

- π { • } π { • }
i=2 Q[dA A , 0 ] i=2 Q[dA A , 0 ]

i i-1 i i-1
(σϊ Q[ A, 1 ]

depending on A
k S
' only through the likelihood ratios .

Q[ I A, 0 ]

On substantive grounds, assumption A7 appears plausible, corresponding to an

assumption that inter-pregnancy intervals (given that they are observed) dependonly on the age and outcome at the previous pregnancy (see Leridon, 1976). A

*
stationary Markov assumption for y is not plausible, although a one-step Mark

assumption in A' ' and x^
1
' may be tenable (see James, 1974), e.g.

A8. For i > 2,

P[I > i I > i-1, A
V 1 i ;

, x
K±
~
LJ
] - P[I > i I > i-1,

(d) For continuous age models, obtaining μ involves estimation of binary

regressions of continuation against age and previous outcomes, and obtaining

v involves estimation of smoothed density ratios . To avoid problems of density

estimation, Bayes
f
 theorem may be useful in that the desired quantities are

related to the marginal odds on abortion given A ^ ' and given A ^ ~ For

example,

(2)
Q[dA I A , X = 1] P[X - 1 I A ] P[X - 1 I A ]

2 ' 1 1 1
 ]

 1 ' 1
/(2)

Q[dA I A , X = 0] P[X = 0 I A ] P[X - 0 I A ]
2 ' 1 1 1 ' 1 ' 1

Note that the marginal logistic regressions of outcome given age are here used

only for purposes of indirectly estimating the dominating measure, not for

directly estimating the structural growth functions
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4 2 Estimation of future risk given past events.

Fix g > 1 and 0 < s < g. The marginal likelihood of the event

[I-g, A<S),
 S g
=s] is

(g) « exp(λs) dH(λ)
c (s, A ) . /
g —» g

Π {l + exp(λ + φ (i,A ))}
i l β(i) i

where c (s, A^*»') is defined at (2). The fundamental general empirical Bayes

identity is

exp(λ(s+l)) dH(λ)
(g) (gλ /

P[S • s + 1 I I - g, A ]/c (s+1, A ) Π {l + exp(λ + φ (i,A ))}
g g _ β(i) i

~ I ( g )
w
 , CgΓ ~ exp(λs) dH(λ)

P[S = s I - g, A 1/c ( 8, A ) /
(5) g ' g Π {1 + exp(λ + φ (i,A ))}

p(i) i

= E ( e
λ
 I I-g, A

( g >
, S - e ) = θ (g, A

( g )
) .

g s

Thus the expected odds given number of term births, abortions, and age can be

consistently estimated in large samples given the weights c (s, A ^ ) and
o

consistent estimates of the A^^-specific point probabilities for S . This is

considered below. The posterior expected odds on miscarriage at future

pregnancy i and age A under assumption A4 is

(6) E(exp(λ + φ
e ( i )

(i,A)) I I=g, A
( g )

, S
g
 = s) = θ

g
(g,A

( g )
) . exp(φ

β ( 1 )
(i,A)).

Given an estimate θ (g, A * ) of the posterior expected odds on miscarriage at

pregnancy 1, age AQ, we may estimate (6) by θ ( g , A ^ ) exp (φ
Λ
 (i,A)) .

g
 3()

We view the outcome S » s as a multinomial response taking on one of

g+1 possible values s=O,l,...,g with respect to the dominating measure placing

mass c
g
(s,A^

g
O at the point s. Using sufficient statistics
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the natural parameters are the quantities ζ (g,A ^ ) = log θ (g,A ^ ) for
s s

s » 0,...,g-l. These may be estimated by maximum likelihood in a multiple

logistic regression model for the multinomial response. The exact specification

(β)
of the age dependence in ζ (g,A ) is not known as it depends on the unknown

s

prior H. However it seems reasonable for empirical work to use a Taylor

approximation of the form

(g)
 g

ζ (g,A ) α (g) + I γ (g) (A - A ).
s s is i 0

Further refinements are possible such as isotonizing the parameters

ζ (g,A ) in s for purposes of reducing the mean squared error of the

estimates
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