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The fully nonparametric formulation of the
empirical Bayes estimation problem considers m
populations characterized by conditional (sampling)
distributions chosen indpendently by some unspecified
random mechanism. No parametric constraints are imposed
on the family of possible sampling distributions or on
the prior mechanism which selects them The quantity to
be estimated subject to squared-error loss for each
population is defined by a functional T(F) where F is
the population sampling cdf The empirical Bayes
estimator is based on n iid observations from each
population where n > 1 Asymptotically optimal
procedures for this problem typically employ consistent
nonparametric estimators of certain nonlinear
conditional expectation functions. In this study a
particular projection pursuit algorithm is used for this
purpose The proposed method is applied to the
estimation of population means for several simulated
sets and one familiar real world data set. Certain
possible extensions are discussed.

1 Introduction.

The purpose of this paper is to show how an old idea may be

effectively implemented using new technology. The old idea is the notion of

fully nonparametric empirical Bayes estimation, which was introduced by the

author in a paper (Johns, 1957) directly inspired by the fundamental paper of
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Robbins (1955). The new technique is computer based projection pursuit

regression analysis.

The fully nonparametric appproach to empirical Bayes estimation

differs from the original Robbins formulation in that it does not require the

specification of a parametric family for the conditional (sampling)

distributions of the independent component populations. Neither formulation

makes parametric assumptions about the prior distribution of the quantity being

estimated. This is in contrast to the case of "parametric" empirical Bayes

estimation (see e.g., Efron-Morris, 1975) where parametric models are specified

for both the conditional and prior distributions, and the "restricted" case

where the estimators are constrained to have a particular simple form (see

Robbins 1983) It should be noted that the fully nonparametric version of the

problem requires that at least two observations be obtained from each component

population.

When the empirical Bayes approach was first introduced, and for some

time thereafter, it seemed that application of the methods to real world data

would not often be feasible because of computational difficulties and the

possibility that a very large number of component populations might be needed

before approximately optimal results could be obtained. Indeed, one advantage

of the parametric approach, or the restriction to linear forms of estimation, is

the increased capacity to deal with real data sets of modest size at the cost of

some potential loss of asymptotic efficiency. The original version of the fully

nonparametric methodology (Johns, 1957) with which this paper is principally

concerned, was of little practical use in a world where large scale digital

computers had barely appeared on the scene. Fortunately, the present widespread

availability of computational power and the development of sophisticated

statistical software has opened up new possibilities

One of the central requirements for dealing with the fully

nonparametric empirical Bayes problem is the estimation of a conditional

expectation function of unknown form involving several variables In the

original paper (Johns, 1957) a pointwise consistent estimator was proposed based
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on successive refinements of a partition of d-dimensional space A convergence

result (Lemma 5), which in a later incarnation has become known as the

generalized Lebesgue dominated convergence theorem, was then used to show

convergence to the Bayes optimal risk for the proposed empirical Bayes

estimator. Some of these results could be regarded as primitive precursors of

the more recent work of Stone (1977). In the last few years several other

sophisticated methods for the nonparametric estimation of conditional

expectation (regression) have been proposed. These include kernal smoothers,

nearest neighbor estimates, recursive partitioning and notably, projection

pursuit regression as proposed by Friedman and Stuetzle (1981). A comprehensive

discussion of projection pursuit methods may be found in Huber (1985) where it

is noted that, almost alone among multivariate procedures, they avoid many of

the difficulties associated with high dimensionality and the presence of

uninformative observations

In the present study the regression aspect of the fully nonparametric

empirical Bayes estimation procedure has been dealt with by substituting a

projection pursuit regression scheme for the original conditional expectation

estimator. The particular algorithm used is called The Smooth Multiple Additive

Regression Technique (SMART) and is detailed in Friedman (1984). In section 2

the problem and the proposed solution are described more formally. In section 3

the proposed method is applied to several data sets generated by computer

simulation and the results are discussed The method is also applied to the

famous Efron-Morris baseball data. Section 4 contains concluding remarks and

acknowledgements.

2. The Problem and the Proposed Method.

We consider m populations from each of which n observations are

obtained Let these observations be given by

X^. =• the i-th observation from the j-th population,
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i=l, 2, ,n; j=l,2, ,m

We assume that for each j the X-f̂ 's are i.i.d. with common random cdf F., where

Fj,F2» ,F
m
 are assumed to be selected independently according to some unknown

prior probability measure over all cdf's Let T(F) = a real-valued functional

defined on all cdf
f
s which represents the "parameter" to be estimated for each

population subject to squared-error loss, i.e., Θ. = T(F.), for any estimator

2
Θ. the loss incurred is (Θ. - Θ.) . If Θ * (Θ,,Θ

O
,.. ,Θ ) then the average loss

3 3 3 12m

for the m component populations is

(1) L(Θ,Θ) - (Θ - Θ)(Θ - Θ)'/m.

The corresponding average risk is then

(2) R(Θ) = E{L(Θ,Θ)},

where the expectation operator E reflects the randomness in the selection of the

F.
 f
s as well as the X^.'s. Initially, we consider functionals of the form

(3) T(F) = E
p
{h(X)},

where h( •) is a specified function and X has cdf F. For example, if the

quantity we wish to estimate is the mean of F we would set

00

T(F) - / x dF(x).
—00

In section 4 we indicate a method for dealing with more general functionals.

We observe that for each j, the Bayes optimal estimate of Θ. = T(F.)

under squared-error loss is

Θ. = E{Θ. |x
r
 , 1 < i < n}.



168 JOHNS

If the observation Xj. is omitted from the data for the j-th population for some

k, 1 < k < n, then the corresponding Bayes estimator for Θ. is

Θ.(k) = EίΘ^ |X_ 1 ^ i ^ n, i * k},

- E{E{h(X
k j
)| 1 ~ i = n, i Φ k},

(4)

= E{h(X,,)|x.., 1 < i < n, i Φ k},

def
<KX

±j
> 1 < i < n, i Φ k),

where φ is a fixed symmetric function of n - 1 arguments independent of j and

k. Since φ is a conditional expectation function, it may be estimated using any

suitable nonparametric regression method applied to the data from all m

populations. To make maximum use of the information available for the

estimation of φ, we may organize the mn observations as follows:

"Dependent" "Independent"

h(Xj^)
 X

21* ^3i> » ̂ tii
X
21

 X
ll* ^3i» > ^χιi

.
(5)
 ί^nlj *11> ̂ 21 Vl.l

^ 1 2 ' 22*
 Λ
32> > ^ 2

•
h ( X

n m
) X

lm»
 X
2 m

) # #
" ^-l.m

Because of the symmetry of the function φ we should increase this list by

including all permutations of the "independent" values, but this may be avoided

by first ordering the observations from each population so that

X
±
. < X

2
. < ... < X

n
. for each j. This, of course, leads to a different

(nonsymmetric) regression function, say ψ, which is defined only for ordered

arguments but contains the same information as φ Henceforth, we shall assume

that the X-M
 f
s are ordered in this fashion. If ψ represents a suitableX

J m

nonparametric regression estimate of ψ based on the available data, then the
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proposed empirical Bayes estimator of Θ. is

, n
 Λ

(6)
 Θ

j n
 Σ ψ

m
( X
i j '

for j = l,2, .. ,m. The averaging over n values of ψ indicated in (6) results in a

slight improvement in the performance of the estimator (see (2.47), p.656 of

Johns, 1957).

The original formulation of the fully nonparametric empirical Bayes

estimation problem considered the component problems in sequence and

concentrated on the risk for the m-th problem using the estimated conditional

expectation based on the data from the previous m-1 problems Strictly

speaking, the original asymptotic optimality result applies to the present case

only if we modify the procedure indicated above so that for each j the estimate

of ψ involves only data from the other m-1 component problems. Then, for the

modified procedure and the original partition estimate of ψ, if we

let Θ.'s given by (6) the following result holds:

THEOREM (Johns, 1957) If E{h
2
(X)} < «, then

(7) R* < lim R (Θ) < R* ,
n n n-1

m*
00

where R - the Bayes optimal risk for a component problem with sample size n,

and R (Θ) is the average risk using the empirical Bayes estimator Θ where the

sample size is n for each component problem.

The modified procedure is too cumbersome for application to actual

data since it entails repeated estimation of the function ψ It seems plausible

that (7) will hold for the unmodified procedure based on any well behaved

estimator of the function ψ for which the pointwise convergence in probabiliity

to ψ as m becomes large is asymptoticaly unaffected by the values of the
 X

J H
? S

for any fixed j
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In applications, if n is large and m is not very large, the estimate

of ψ may be unstable and it may be desirable to substitute a summary statistic

of lower dimension for the n-1 arguments of ψ. If this summary statistic is

well chosen the resulting loss of asymptotic efficiency may be slight One

possibility would be to replace the conditioning X-H'S by a two dimensional

statistic consisting of robust estimators of location and scale. In some of the

examples considered in the present paper, a less drastic reduction in dimension

has been obtained by replacing the n-1 ordered X̂ -s's by d averages of s

successive ordered values where ds = n-1 It may be shown (see, e.g., Johns

(1974)) that such averages of blocks of order statistics retain most of the

sample information about the underlying distribution.

As was mentioned in the introduction, the method used to estimate the

required conditional expectation in the present study is the SMART algorithm of

Friedman (1984). Given a number of i i.d observations of a dependent variable

Y and the correspondig values of "independent" variables X,jX^, ,X_, the

algorithm estimates E{γ|X ,X ,. ,X } nonparametrically by an expression of the

form

(8) Y + Σ 6
r
f

r
(aX'),

r=l

where X = (X
1
,X

2
,. .,X (and a

r
 = (a

l r
,a

2 r
,.. ,a ) The a

i r

f
s and the

functions f
r
() are suitably normalized to avoid identiflability difficulties.

For each r and each direction vector a
r
 the functions i

χ
 are obtained by a

smoother which fits a least squares line to the Y
f
s associated with a symmetric

set of nearest neighbors for each value of a X'. The resulting smoothed f-'s

are in turn chosen to minimize the sum of squared deviations of (8) from the

observed Y
f
s. The process proceeds stagewise starting with a maximum number R

of terms (= three in the present application) and reducing R until the sum of

squared residuals increases sharply. The convergence properties of projection

pursuit algorithms are discussed in e.g., Donoho, et al. (1985).
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3. Examples.

The proposed nonparametrie empirical Bayes estimation procedure

incorporating the SMART algorithm as implemented on a VAX11/750 computer was

applied to six sets of simulated data and one set of real data For each

example, the quantities being estimated (i.e., the Θ.
f
s) are the means of the

component populations. The simulated data sets consist in each case of either

50 or 100 component populations. These numbers are perhaps larger than would be

expected in some applications to real world data but were chosen to yield

reasonably stable and interpretable results The numerical results obtained

from the six simulations are summarized in Table 1 The conditional

distributions were either normal (cases (a)-(d)) or logistic (cases (e), (f)).

The prior distribution for the conditional means were either normal (cases (a)-

(c), and (e)) or the longtailed distribution having density

(9) g(Θ)

which has mean = 0 and standard deviation = 1. The normal priors all had

standard deviation = 2 and mean = 25, except for case (e) which had mean.= 0.

For cases (a) and (f) the scale parameter for the conditional distribution was

selected independently with equal prior probabilities from three values; 2 0,

4.0, and 6.0 for case (a) and 4.0, 5.0, and 6.0 for case (f). For cases (b),

(c), (d) and (e) the fixed values of the scale parameters were 4.0, 6.0, 2.0 and

3.0 respectively. The summary statistic on which the predicted values of Θ were

based was either the set of all n-1 available observations or, for cases (c) and

(f) for which n = 11, the set of five averages of two adjacent order statistics.
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Table 1

Summary of the Simulation Results

No. of
Pops .&

Case Conditional Prior Sample Bayes Asymptotic Observed Observed

Label Distr. Distr. Size Opt. Risk BLUE BLUE EB

(for Θ) (m,n) (Approx.) M.S.E. M.S.E. M.S.E.

(a) Normal Normal* (100,5) 1.67 3.73 4.29 1.98
(b) Normal Normal (100,5) 1.78 3.20 3.32 1.57

(c) Normal Normal (50,11) 1.80 3.27 3.38 2.58

(d) Normal Longtail (100,5) 0.44 0.80 0.69 0.45
(e) Logistic Normal (100,6) 2.12 4.50 4.50 2.69
(f) Logistic Longtail* (50,11) 0.86 7.00 6.98 3.40

* The values of sigma are selected randomly from among three values

The last column of Table 1 shows the actual mean squared error

(M.S.E.) produced by the fully nonparametric empirical Bayes procedure. For

comparison purposes both the average observed variances and the true

(asymptotic) variances for the best linear unbiased estimators (BLUE's) are

shown. For the normal cases, of course, the BLUE is simply the sample mean.

Approximate values for the Bayes optimal risk are also given These are based

on linear Bayes estimators and asymptotic variances so they are only exact for

cases (b) and (c) where both the conditional and the prior distributions are

normal. It is encouraging to note that the empirical Bayes M.S.E. is

substantially smaller than the BLUE variance for each of the examples

Furthermore, the empirical Bayes M.S.E. is in the vicinity f the Bayes optimal

risk for all cases but one (example (f))

The actual regression functions produced by the SMART algorithm are

plotted in Figures 1 and 2. In all cases only a single function f, was required

in expression (8) for an adequate description of the data. When interpreting

the plots it should be borne in mind that a different direction vector a is

associated with each function. The vector X represents the appropriate set of

"independent" variables
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10 20 30 40 50 60

aX1

Figure 1. SMART Regression Functions

We observe that the plots are quite linear for all cases with normal

conditional distributions as one might expect, but distinctly nonlinear for the

logistic cases. It was thought that example (a) might yield a nonlinear

regression because of the random prior on σ A numerical calculation of the

actual conditional expectation of the mean given the sample mean and the sample

variance verified that the regression surface was in fact fairly linear
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Figure 2. SMART Regression Functions

An actual real world data set was also analyzed using the fully

nonparametric empirical Bayes scheme. The data was obtained from Efron-Morris

(1975) and consists of the batting averages for 18 major league baseball players

for their first 45 times at bat and their averages for the remainder of the

season which represent the 'true1 values one wishes to predict. Efron-Morris

first transform the data to approximate normality using the arcsine
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transformation. They then compute the Stein estimator (Stein, 1955) and their

own proposed estimator based on a linear empirical Bayes formula modified to

limit the maximum component risk. The results are then converted back to

proportions. For the present study the data was considered in this original

form as a set of Bernoulli observations (hits or non-hits) and the fully

nonparametric empirical Bayes method was applied. The results are shown in

Table 2. The third column gives the maximum likelihood estimate (MLE) which is

just the observed proportion of hits in the first 45 at bats. The nonparametric

empirical Bayes estimate is given in the fourth column and Stein's estimate in

the fifth. The Efron-Morris limited risk estimate with index .8 is given in the

last column. The corresponding mean squared errors of prediction are shown in

the last row.

Table 2
Batting Averages and their Estimates

i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

M.S.E.

"TRUE"
.346
.298
.276
.222
.273
.270
.263
.210
.269
.230
.264
.256
.303
.264
.226
.285
.316
.200

MLE
.400
.378
.356
.333
.311
.311
.289
.267
.244
.244
.222
.222
.222
.222
.222
.200
.178
.156
.00419

NP-EB
.306
.293
.281
.269
.256
.256
.247
.247
.254
.254
.258
.258
.258
.258
.258
.266
.274
.283
.00105

STEIN
.290
.286
.281
.277
.273
.273
.268
.264
.259
.259
.254
.254
.254
.254
.254
.249
.244
.239
.00120

EMEST(.8)
.351
.329
.308
.287
.273
.273
.268
.264
.259
.259
.254
.254
.254
.254
.254
.242
.218
.194
.00139

We observe that the procedure proposed in this study has the smallest

overall mean squared error of prediction and also does better than the Efron-

Morris estimator in three out of the five cases (i=l,2,3,17,18) where their

procedure limits the risk. The highly nonlinear regression function which SMART

produces for this case is plotted in Figure 3. The abscissa of this figure is a

linear function of the number of hits in 44 at bats
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Figure 3. SMART Regression Function

4. Concluding remarks.

The estimation procedures discussed here may be modified and

generalized in various ways. We may expect that ever more sophisticated

nonparametric regression methods will be developed. Such procedures may then be

substituted for the projection pursuit part of the scheme. The empirical Bayes

problem described here assumes equal sample sizes for all component populations.

The case of unequal sample sizes may be dealt with by various ad hoc methods

some of which are discussed in the original paper (Johns, 1957). The question

of the best way to proceed in such cases is still open.

In the preceding sections the quantities to be estimated were required

to be represented as functionals of the form (3). However, within this



ADAPTIVE STATISTICAL PROCEDURES 177

framework we may estimate the conditional cdf F(t) for any fixed t by letting

h(x) = the indicator function of the interval (-°°,t] . Since F(t) can be

recaptured, it should be possible to modify the procedure to permit the

estimation other functionals T(F) such as, e g , the median of F.

As is true of most empirical Bayes problems, the present one may be

reinterpreted as a compound decision problem by dropping the assumption of the

existence of a prior probability distribution, and replacing it with a suitable

empirical distribution of unknown quantities In the present case these

quantities are the component cdf's F^,F2, .. >
F
m Presumably results paralleling

the empirical Bayes results would be forthcoming here as in previously

considered problems. (See Robbins (1951) for the original formulation of the

key ideas and Gilliland (1968) and Johns (1967) for some further developments.)

Finally the author wishes to express his thanks to David J Pasta who

rendered invaluable assistance in the application of th SMART algorithm to the

data of this study.
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