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Some recent developments in sequential statistics
are reviewed which are connected with the law of the
iterated logarithm. On the one hand optimal properties
of sequential tests with parabolic boundaries are
discussed, on the other hand approximations to curved
boundary crossing distributions of Brownian motion. The
connection of both topics is also indicated

1 Introduction.

H. Robbins was one of the first who noted that the law of the iterated

logarithm (LIL) has some statistical meaning. In his 1952 paper he observed

that the repeated significance test (RST) gives false alarm eventually with

probability one. He further asked for the operating characteristics of the RST

if it is truncated

Later Robbins found a way to correct the misbehavior of the RST. He

discovered the positive side of the LIL. His idea was that, to control the

error probabilities over all sample sizes, one has just to make the boundaries a

little bit wider than /n. However this meant the construction of tests of power

one (cf. Robbins, (1970)).

Together with Darling and Siegmund, Robbins studied the error

probabilities and expected sample sizes of these tests. His students
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Lai, Siegmund and others went further, and also studied the operating

characteristics of the truncated RST Their main tool was an extension of a

classical technique of sequential analysis, viz., working with the martingale

property of mixtures of likelihood-ratios.

I wish to offer some complementary views of the subject. In the first

part I shall discuss optimality properties of tests of power one and repeated

significance tests. It will turn out that, if one lets the sampling cost depend

on the underlying parameter in a natural way, the theory of these procedures

fits naturally in the classical sequential testing framework.

In the second part of the paper I shall discuss the tool with which I

found the results originally, namely the tangent approximation to first exit

distributions of Brownian motion over curved boundaries. Many of the results of

Robbins and his colleagues can be derived with this approximation device; in

this way they become better understood from the viewpoint of classical

fluctuation theory. Finally this excursion through sequential analysis will

lead to some interesting new perspectives of the LIL, in particular a new way of

proof, and tail probabilities of first exit distributions of Brownian motion

over lower class functions (e.g. (2t log log t) ' ) as t •*• °°.

2. Optimality of sequential tests with parabolic and nearly parabolic

boundaries .

Bayes tests of power one. We discuss the testing problem of whether

the drift is different from zero. Let W(t) denote Brownian motion with unknown

drift θ t R and P
Q
 the associated measure. Let F be a prior on R given by

2

F = γό + (1-γ) / φ(/r~θ)/rdθ with 0 < γ < 1 and φ(x) = -^z e"~
X
 , consisting of

0
 * /2π

a point mass at {θ =0} and a smooth normal part on {θ Φ 0}. Let the sampling

2
cost be cθ , with c > 0 for the observation of W per unit time when the

underlying measure is P
fi
 We assume a loss function which is equal to 1

if θ = 0 and we decide in favour of "θ ^ 0" and which is identically 0 if

θ Φ 0. A statistical test consists of a stopping time T of Brownian motion

where stopping means a decision in favour of "θ * 0". The Bayes risk for this
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problem is then given by

(1) R(T) = γP
Q
(T < «) + (l-γ)c / θ

2
E

θ
Tφ(/r"θ)/rdθ.

The issue is to determine the stopping rule T which minimizes R(T). For the

•k

cost c sufficiently small, T is a test of power one for the decision problem

H : θ = 0 versus H. : θ * 0 (the definition of a test of power one can be found
o l

in the paper of Robbins (1970)).

2
The statistical meaning of the sampling cost "cθ " becomes apparent by

the following consideration. Let us consider two testing problems of the simple

hypotheses:

1) H : θ = 0 versus H. : θ - θ,,

o 1 1

2) H : θ - 0 versus H. : θ = θ
o

o 1 2

with θ > 0, 1=1,2. Let t
i
, 1=1,2 denote the sample sizes. Then the level-α

2 2
Neyman-Pearson tests have the same power if and only if θ t. =

 θ
?

t
2 '

 T h u S tlie

2
factor θ standardizes the sample sizes in such a way that the testing problems

are equivalent

There is also a basic mathematical reason for letting the sampling

costs depend on θ. The Bayes risk (1) with a constant or |θ| instead of θ

would be infinite for all nontrivial stopping times For more details see

Lerche (1985a) .

The problem corresponding to (1) for simple hypotheses has an exact

solution. Its Bayes risk is given by

(2) R(T) = γP (T < ~) + (l-γ)cθ
2
 E

A
T.

o σ

The stopping rule T which minimizes (2) can be calculated directly by using the

following result due to Darling and Robbins (1967). It states that for every

stopping rule with P (T < ») < 1,
o
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(3) E
A
T > 2 log b/θ

2
, where b = P (T < oo)"

1
.

Equality in (3) holds for the stopping rule

* dP

(4) T = infίt > 0 I jf^- > b},
o,t

dP
θ t

where , ' denotes the likelihood ratio of P with respect to P given the path

o,t

W(μ), 0 < y < t; it is given by

d P
θ t 1 ?

^ p
2
^ - exp(ΘW(t) - \ θ

Z
t).

o,t

PROPOSITION 1.

(5) min R(T) = R(T*) = 2(l-γ)c [1 + log b(c)]

T

where T is given by (4) with the constant b(c) = γ[2(l-γ)c] . The minimum is

taken over all stopping times T > 0

R(T ) does not depend on θ. This suggests that T can also be

expressed in a form independent of θ. In a Bayes formulation this is in fact

possible.

Let F + denote the posterior with respect to the prior
x, t

F = γδ + (l-γ)δ
fl
 given that W(t) = x. Then F = γ(x,t)δ + (l-γ(x,t))δ

o σ ^p x,t o Ό

with γ(x,t) = F ({0}) = [1 + —~
 AΊy

θft
 (x)]"

1
. A little calculation shows

x,t γ d F
o > t

that

T* = inf{t>0

We call such a stopping rule a simple Bayes rule.

We turn now to the case of composite hypothesis with the risk (1).

Since by our choice of the sampling cost the simple testing problem (2) has a
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solution which does not explicitly depend on θ, one might guess that a simple

Bayes rule will also be nearly optimal for the risk (1). In fact this is the

next result

Let F now denote the posterior with respect to the prior
x, t

F = γδ + (1-γ) / φ(/rθ)/rdθ given that W(t) = x. It is given by
o

Ύ(x,t) 6 + (l-γ(x,t))G where

O Λ)L

G
x,t -

 N
 l^F ΐfe

] and

γ(x,t) = F
v
 ({0}) = [i + irϊ / — i * £ φ(/rθ)/rdθ]"

1

x > t Ύ
 o,t

Let T denote the simple Bayes rule

(6)

*

and T the optimal stopping rule for the risk (1)

THEOREM 1.

(7) R(T ) = R(T ) + o(c) as c -• 0.

(8) R(T
c
) = 2(l-γ)c [log b + 1 + ± log(2 log b) - A + o(l)]

00

as c •• 0. Here b - γ[2( l-γ)^""
1
 and A - 2 / log x φ(x) dx.

o

Equation (7) states that the risks of the stopping rules T and T

differ only by a o(c)-term. The risk of T
c
 is given by equation (8) up to a

o(c)-term A comparison of the equations (5) and (8) shows that the term

2(l-γ)c [1/2 log(2 log b) - A + o(l)] is the increase of the risk due to the

ignorance of the parameter θ Φ 0
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We note that the stopping rule (6) can also be expressed
dP

T c = inf {t > 0 I / ~ ^ - φ(/r~θ)/r~dθ > b}
o,t

= inf{t > 0 |w(t)| > Λt^)(log(~) + 2 log b)}

which is a familiar mixture stopping rule of the work of Robbins et al. We also

note that the nearly optimal stopping boundary contains only a single log-term

and not an iterated one as one might have expected from the LIL. For more

details and for proofs see Lerche (1985 and 1986a).

Repeated significance tests . We consider the problem of testing the

sign of the drift of Brownian motion W(t) . The parameter sets of H and Hi are

2
given by 0 = {θ < 0} and 0 = {θ > 0} . The observation cost is again cθ where

c is a positive constant. On the parameter set {θ Φ 0} we put the normal prior

G(dθ) = φ(/r~θ)/Fdθ. The Bayes risk for a decision procedure (T,δ), consisting

of a stopping time T of W(t) and a terminal decision rule δ, is given by

(9)

R(T,δ) = / (PQ{H rejected (δ)} + cθ 2 E.T)G(dθ)
1 σ O 0

+ / (P
ft
{H. rejected (δ)} + cθ

2
E

fi
T)G(dθ),

1 0 1 σ

* *

The objective is to find a decision procedure (T ,δ ) with minimal Bayes risk.

Let G
v
 ^ denote the posterior of θ with respect to the prior G given
x, t

x 1 *
that W(t) = x. G =

 N
("E+~' 7+~) '

 L e t T b e a n ar
^itrary stopping time, δ

denotes the terminal decision rule after stopping at time T, which rejects the

hypothesis H
Q
 if and only if G

w ( τ ) T
( Θ

Q
) < G

w ( τ ) T
O

X
) . It is well known that

R(T,δ ) < R(T,δ) for all decision rules δ.

For λ > 0 the simple Bayes rule is defined as

T. = inf{t > 0 I min G
 ( Λ

 Λ®
A
) <

 φ
("

λ
)} where φ denotes the standard normal

i=0,l
 w u ; > t 1

distribution function. It can also be expressed as

T. = inf{t > 0 ||W(t)| > λ/t+r}, which is the stopping time of the repeated
λ

significance test. The following result states that the repeated significance
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test is an exact Bayes test for the risk (9).

THEOREM 2. Let 0 < c < ». Let λ(c) denote the solution of the equation

φ(λ)/λ = 2c and let T = T
w
 . . Then min R(T,δ) - R(T ,δ ).

λ ( c )
 (T,δ)

There is a well-known analogous result for simple hypothesis which

determines the sequential probability-ratio test (SPRT) as a Bayes test. In our

2
setup - with observation cost "cθ " - the repeated significance test turns out

as an adaptive version of Wald's SPRT. For more details on this topic and for

the proof of Theorem 2 see Lerche (1985 and 1986b).

The following heuristic argument was what originally led us to Theorem

1. First rewrite the Bayes risk (1) as an integral with respect to the measure

of Brownian motion without drift: R(T) = / h(|W(T)|,T)dP . Since the original

problem is symmetric, the stopping times

(10) T = inf{t > 0 ||W(t)| > ψ(t)}

are the relevant competitors. For a fixed T given by (10), let ρ.(t) denote the

Ψ
density of T under the measure P

Q
. Then

R(T) = / h(ψ(t),t) P
ψ
(t)dt.

Since explicit formulas for p are unavailable for every ψ, we try to work

instead of p with a good approximation to p . As will be explained in the next

section the tangent approximation is such a useful approximation. With it and a

variational argument over ψ we found that the optimal stopping boundary ψ

asymptotically grows like (t log t) ' as t + °°. For the details (see Lerche

(1985)).

3 The tangent approximation.

Let W(t) denote the standard Brownian motion starting from zero at
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time zero. Let ψ(t) be a continuously differentiable, positive function on

R - (O,
00
) which belongs to the upper class at zero. Let

T = inf{t > 0 I W(t) > ψ(t)} denote the first exit time of W over ψ. By a

result of Strassen (1967) the distribution of T has a continuous density p.

However this is explicitly known only for few boundaries. For ψ(t) = Λ + bt,

the Bachelier-Levy formula states that

(ii)

Several authors (Daniels (1974), Lorden (1973), Strassen (1967)) had

the idea of the tangent approximation, viz. to approximate p(t) by the first

exit density at t of Brownian motion over the tangent to the curve at ψ. The

tangent approximation (TA) is given by ""TTT Φ ( )> where

Λ(t) = ψ(t) - tψ
f
(t) denotes the intercept of the tangent to the curve ψ at t

on the space-axis

Strassen (1967) proved that the TA holds as t + 0, i.e.,

(12) p(t)

He used (12) to give an intuitive geometric proof of the difficult part of the

Kolmogorov-Petrovski-Erdδs test, which is a generalization of the LIL. (A

geometric proof of the easy half is given on ρ 33 of Ito-McKean (1974)).

We state now some results about the TA as a global approximation

device when the boundaries recede to infinity.

Let {ψ a ζ R } denote a set of positive, monotone increasing,
a •

continuously differentiable functions on R
+
. Let

T = inf{t > 0 I W(t) > ψ (t)} and p the density of the distribution of T .
a a a 3

Let Λ (t) = ψ (t) - tψ
f
(t). The following theorem is very similar to Theorem 1

a a a

of Jennen-Lerche (1981).

THEOREM 3. Let 0 < t < °° and 0 < α < 1. Assume that
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(i) P(T < t ) •• 0 as a -• ~,
a l

(ii) ψ (t)/t is monotone decreasing in t for each a,
a

(iii) for every ε > 0 there exists a δ > 0 such that for all a,

i
ψ
a

( s ) / ψ
a

( t )
 ~ M <

 ε i f
 l

s
/t " 1| < θ for s,t € ( 0 , ^

Then

Λ (t) ψ (t)
(13) p (t) = . φ (———) (1 + o(l)) uniformly on (0,^) as a + °°.

a
 t /t

Integration yields the following corollary which resembles a result of Cuzick

(1981).

COROLLARY 1.

t Λ (u) ψ (u)
(14) P(T < t ) = / —τςηiς φ ( ) du( 1 + o ( l ) ) uniformly on ( 0 , t , ) as a + ».

a J 3/2 /— A

o u vu

We add several remarks to these results At first we note that the

tangent approximation is a purely local approximation. The quantity
A (t) φ (t)
~.~ φ ( ) is usually not a probability density (except for straight

lines)

Assumption (i) can easily be checked by using the inequality

t,ψ (t) φ (t)
M ~

o t
1
 /Γ

φ (
P(T < t ) <; / M — r φ (~ ) dt

which holds for monotone functions ψ
a

The case t = °° is included. Example (15) (below) is of this type.

The other examples satisfy the conditions of Theorem 3 on finite intervals:

(15) ψ (t) = /(t+l)(2a + log(t+l)),
a

(16) Φ (t) = at
α
, α < \,

a z
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(17) ψ (t) = /2(r+at), r > 0,

(18) ψ (t) = /aψ(t/a), ψ a fixed function.

The last example shows that Strassen's result on the tangent approximation

(Theorem 3.5 of Strassen (1967)) is contained as a special case of Theorem 3.

For the boundary (15) the formula (14) yields

(19) P(T < ») = \ e"
a
(l + o(D) and

a z

(20) P(T
a
< at

χ
) = e

 d
(l- Φ (/2/t^Xl + o(l)),

The first result agrees with a famous exact result of Robbins-Siegmund (1970)

for the two-sided case, the second one with an asymptotic result of Lai-Siegmund

(1977).

For the boundary (17) the formula (14) yields

i
 t 1 + 2 £

 _ A

(21) P(T < t.) - /I e"
a
 -± S - = e

 r
 ^ (1 + o(l))

1
 /π o /l+| *

r- -a 1 r°° -rθ
2
/2 dθ

 ίΛ
 ^

 / 1 X
.

= /a e — I e — (1 + o(l)),

ΛΓ /27iγ
 θ

which agrees with a well known result of Siegmund (1977) for the RST Also

Siegmund's second order result for the RST can be rederived by a refinement of

the TA due to Jennen (1985).

Now we try to explain the crucial idea of the proof of Theorem 3,

which is closely related to large deviation theory. First note that assumption

(i) implies

(
if
) inf ψ (t)//tΓ + « as a •* °°.

This can be seen from the following inequality
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Φ
Λ
(t)

I _
 φ
(_2 ) = p(w(t) ^ ψ (t)) ^ P(T £ t.) •* 0 as a -• « for all 0 < t £ t .

JF
 a a L

Now we consider instead of Brownian motion the Brownian bridge with

space-time endpoints (0,0) and (ψ (t),t). If for every 0 < ε < 1
a
ψ (
a

(22) P((l-ε)t < T
a
 < t|W(t) = φ

a
(t))

uniformly on (0,t.] as a •> °°, it is intuitively clear that the tangent

approximation will hold. But why does (22) hold? To indicate the answer

let ίϊ denote the Brownian bridge with endpoints (0,0) and (ψ (t),t). Then
o a

ίϊ (vt)
(23) sup I -T-TΓN 1 I -+ 0 uniformly on (0,t ] as a -• °°.

o<v<l V
t ; L

This can be seen as follows. Let W (vt) = W (vt) - vψ (t) . Then by
o o a

the scaling property of the Brownian bridge

W
Q
(vt)//tΓ ^ W

Q
(v)

sup I W (vt)/ψ (t) - v| = sup I I = sup I I
°
 a

 )//Fo<v<l °
 a

 0<v<l ψ (t)//F 0<v<l φ

But this expression converges to zero uniformly on (0,t.] as

a -• » by (i
f
).

Thus (23) describes the fact that, if the endpoint is high, the

Brownian bridge takes nearly the shortest way between (0,0) and (ψ (t),t), which

is along the ray •— ψ (t) . If the boundary ψ (u) for u < t is high relative to
t a a

the ray — ψ (t), then one might expect that (22) holds. Here height is measured

in units of the standard deviation of the Brownian bridge WQ In fact by

condition (i
1
) and (ii),

since ψ (u) > (-)% (t) by condition (ii)
a t a
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We now consider whether the TA for lower class boundaries at infinity

like (17) holds uniformly on R
+
. Formula (21) shows that this cannot be true

since the integral on its r.h.s. tends to infinity as t.+ °°. Nevertheless also

for (17) there exists a uniform approximation of the densities on R
+
.

THEOREM 4. Assume that

(i
1
) inf ψ (t)//t -• » as a + «,

o<t<»
 a

(ii
1
) there exists a constant 1/2 < α <1 such that ψ (t)/t

α
 is

a

decreasing,

(iii
1
) for every ε > 0 there exists a 6 > 0 such that for all a

|ψ
f
(s)/ψ

f
(t) - l| < ε if |s/t - 11 < 6,

a a

(iv
1
) there exists a γ > 0 such that P(T < γ) -»» 0 as a + ~.

Then

Λ (t) ψ (t)

p
a
(t) - P(T

a
 > t)

 3 / 2
 φ ( _ ) (1 + o(D) uniformly on R

+
 as a

Theorem 4 leads to a characterization of the uniform TA.

COROLLARY 2. Let the assumptions (i
f
) - (iv

1
) hold. Let {h

a
; a ε R

+
} denote a

function with lim h = °°. Then the TA uniformly holds on (0,h
a
) as a •> °° if and

only if P(T < h ) -• 0.
a a

For the boundary (17), P(T < h ) •• 0 holds for h = exp(e
a
a~

α
) with

a a a

α > 1/2.

There is a related result for a different type of asymptotic, where

one lets t •* °° for a fixed boundary ψ. For this case one naturally assumes that

P(T > t) > 0 for all t.

Under the condition that



52 LERCHE

(25) ψ(t)//F -»• « as t

and some further assumptions,

(26) p(t) = P(T > t) £ 0 1
 φ
 (Ψiίi

holds as t + °°.

Statement (26) leads to a new proof of the Kolmogorov-Petrovski-Erdδs

test by noting that (log P(T > t))
f
 = ?^>t) ?oτ a lower-class boundary which

satisfies (25), statement (26) also yields the tail probabilities

P(T > t) = exp(-/ £ ^ 1 Φί
1
^-) ds(l + o(l)) as t

o s /s"

For more details see Lerche (1984).
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