
ON THE PASSAGE OF A RANDOM WALK FROM GENERALIZED BALLS*

Sandor Csδrgβ

and

Lajos Horvath

Szeged University

We derive a strong approximation for the first
passage time of zero-mean random walks from generalized
balls in Euclidean spaces by the corresponding first
passage time of an appropriate vector valued Wiener
process as the radius of the ball goes to infinity. As
consequences we derive a weak invariance principle and
some strong laws for the passage time of the walk.
Multidimensional extensions of some limit theorems of
Robbins and Siegmund on boundary crossing probabilities
for sample sums are also formulated, including their
last-time result

1 Introduction.

Let d > 1 be a fixed integer and consider a sequence X,X
1
,X

2>
... of

independent and identically distributed random vectors with values in R
d
.

Introduce the corresponding partial sum process, or continuous-time random walk

it]
S(t) = Σ X , t > 0,

where [ .] denotes integer part and S(t) « 0 for 0 < t < 1, and let h:R -• R be a
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norm on R This means that we assume, throughout, that for

any x, y € Rd and λ € R, h(x) > 0, h(x) = 0 if and only if x = (0,...,0) C

h(x+y) < h(x) + h(y) and h(λx) = |λ|h(x). Set

M(u) - M^(u) = sup {h(S(t)): 0 < t < u}, u > 0.

One of our objectives in this paper is the study of the first passage time

N(t) = N, (t) = inf ίu: M(u) > t} - inf {u: h(S(u)) > t}
n

of the random walk S from the generalized h-ball of radius t > 0, centered at

the origin. The infimum of the empty set is meant as °°

In fact N is an extended or generalized renewal process, the

asymptotic behaviour of which, as t -• °°, has been investigated by several

authors under the assumption that h(EX) > 0 for the finite expectation

vector EX € Rd (see the references in Horvath (1984)). Recently Horvath (1984),

(1984a), (1984b) and (1986) derived a number of univariate (d=l) and

multivariate strong approximation results for N with several consequences and

applications, not necessarily assuming that h is a norm, but always assuming

that h(EX) > 0. In this case N, when appropriately centered, behaves as a

constant multiple of a scale-changed standard Brownian motion. While the

assumption h(EX) > 0 is the natural one in renewal theory, within the framework

of standard random walk theory, it is more natural to look at N under the

assumption that EX = (0,...,0). (The case d = 1 and h(x) = x was investigated

by Horvath (1985).

In what follows, together with the assumptions made in the first

paragraph, we assume that EX • (0,...,0). If Γ is a positive semidefinite

symmetric dxd matrix, then a univariate Revalued Gaussian process

W(t) - (W
χ
(t),...,W

d
(t)), t > 0, is said to be a d-dimensional Wiener process

with covariance matrix Γ if W(0) = (0,. .,0) and for any s, t > 0,

EW(t) - (0,...,0) and
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W
1
(s)W

1
(t) ... W

1
(s)W

d
(t)

W
d
(s)W(t) ... W

d
(s)W

d
(t)

Γ min(s,t) .

Given such a process, the corresponding analogue of the M process is

V(u) - V
h
(u) = sup {h(W(t)): 0 < t < u}, u > 0,

and the first passage time of our Wiener process W from the generalized h-ball

of radius t > 0 is

Z(t) - Z
h
(t) - inf ίu: V(u) > t} = inf {u: h(W(u)) > t} .

THEOREM 1. Let X,jX^,..* be a sequence of independent and identically

distributed random d-dimensional vectors, centered at expectations and such that

the (2 + δ)-th moments of each of their components are finite where 6 > 0.

Suppose that the covariance matrix Γ of X is nonsingular and that h is a norm on

R . Then without changing its distribution we can redefine the sequence

{X , n > 1} on a richer probability space (Ω, A, P) together with an R-valued
n

Wiener process W(t) with covariance matrix Γ and an almost surely finite random

variable t •
 t
c\^ such that whenever t > t ,

Z
h
(t-a

t
) < N

h
(t) < Z

h
(t

+
a

t
)

almost surely, where

L 2α
(log log t )

1 / 2 α
) as t

with
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δ 1 x
min(-^rτ, -577), in general

old old

. ^ , if the components of X are independent•

Now let D[0,l] be the Skorohod space of functions on [0,1] that are

right-continuous and have left-hand limits, endowed with the J^ topology. The

normalized first passage time

R
τ
(t) - N

h
(tT)/T

2
, 0 < t < 1,

is a random element of this space for each T > 0, together with the passage

time {Z (t), 0 < t < 1}. Our first corollary is a weak invariance principle.

COROLLARY 1. Under the conditions of Theorem 1 the processes Rj,( .) converge

weakly in D[0,l] to Z^( .) as T •> °°.

Clearly, Pr{Z (1) < u} = Pr {V
h
(u) > 1}, for any u > 0. Hence if the

distribution of V^(u) is known, then we also know the distribution of Z ^ l ) .

Precise knowledge about the distribution of V
Q
(u) is available if the components

of X and hence of W are independent and if h(x) - ||x|| - max( |x. | , . , |x, | ) ,

A 0

x - (x ,...,x ) £ R , is the maximum norm or h(x) - |x| « (|x,| + •••

+ |x,| ) is the Euclidean norm. In this case the distribution of V M . ι (u)

is known for any d > 1, while the distribution Vι .(u), the supremum of the

Bessel process, is given by Imhof (1984) for d = 3.

In order to formulate the strong laws following from the theorem, we

introduce the integrals

I(f
 ,O = / £i£2

 e x p {
-

C
 l-ψ.}

 d t

and
00

J(f ,C) = / - ~ — exp{-C - ^ — } dt,

1 f
Z
(t) f

Z
(t)

where f is a continuous function on [I,
00
) and C > 0 is a constant. Whenever f
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is strictly increasing, f will denote its inverse function.

COROLLARY 2. Suppose that the conditions of Theorem 1 hold.

(i) Let ψ be a positive continuous function on [I,
00
) strictly

2 -1

increasing to °° and such that ψ(t)/t is decreasing. If I(ψ ,C) < °° for some

C > 0, then

(1.1) lim inf N (t)/ψ(t) > 0 almost surely,

tH»

while if Kψ""
1
^) - °° for all C > 0, then

(1.2) lim inf N (t)/ψ(t) - 0 almost surely,
t+oo

(ii) Let Ψ be a positive continuous function on [I,
00
] such that

Ψ(t)/t
2
 is strictly increasing. If JίΨ"

1
^) < « for some C > 0, then

(1.3) lim sup N (t)/Ψ(t) < « almost surely,

t+oo

while if J(Ψ
 1
,C) - « for all C > 0, then

(1.4) lim sup N (t)/Ψ(t) = « almost surely.

The typical ψ function in (1.1) is ψ(t) « t /log log t and the typical

Ψ function in (1.3) is Ψ(t) = t
2
log log t. The interesting feature of (1.1)-

(1.4) is that ψ and Ψ do not depend on h. Of course, if we specialize the norm

then more precise statements can be made. Let, for example, h(x) = ||x|| the

2
maximum norm, and let T = max (

T
π) »

τ

d d
) be the maximal variance of the

components, where T , 1 < i, k < d, is the i-k entry of r. Then the proof of

Corollary 2 implies that ("i o " standing for "infinitely often")
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PrίN.i
 M

( t ) < ψ(t/T) i.o. as t + "} •

and

1, if I(ψ \ 1/2) - «,

0, if K ψ "
1
, 1/2) < «,

Pr{N.| ,,(t) > Ψ(t/T) i.o. as t + «}

1, if J(Ψ \ π
2
/8) = oe,

0, if J(ψ"~\ iτ
2
/8) < «,

where ψ and Ψ are as in Corollary 2. If we use the classical law of the

iterated logarithm and Chung's law of the iterated logarithm (Chung (1948) or

Csδrgδ and Rάvesz (1981) p. 48), then we obtain directly from the theorem that

and

lim inf (log log t) N.. ,.(t)/t
2
 = 1/(2T

2
)

II II

lim sup Nil ,|(t)/(t
2
log log t) - 8/(π

2
T

2
)

II N£-H»

almost surely

Now we turn to the limiting behaviour of probabilities that the walk

ever goes out of h-balls with radii determined by some upper class functions

The results here are rather straightforward generalizations of some deep results

of Robbins and Siegmund (1970).

THEOREM 2. Let X
1
,X

2
,. . be a sequence of independent and identically

distributed random d-dimensional vectors, centered at expectations, such that Γ

is finite and let h be a norm on R . If g(t) is a continuous function for

t > min (l,τ), τ >0, such that t
- i
' g(t) is eventually non-decreasing as t->°°,

and I(g, 1/((2TC
2
)) < «», where O, - max{h(x): | |x| | = 1}, then

1/2
lim Pr {h(S(n)) > m g(n/m) for some

 n
 > τ m} = Pr{h(W(t)) > g(t) for some

m

t > τ}, where W(t) is an R -valued Wiener process with covariance matrix Γ.
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Of course, when h(x) = ||x||, then C
2
 » 1, and when h(x) = |x|, then

1 /2
C

2
 = d

x /
 When d = 1, Theorem 2 reduces to the two-sided version of part (i)

of Theorem 2 of Robbins and Siegmund (1970). The corresponding d-dimensional

extensions of the two-sided versions of part (ii) of their Theorem 2 and also of

their Remark (c) are also simple (cf. the proof in Section 2) and easily

formulated. Also, apart from the forms of the limiting distributions, it is

easy to formulate the d-dimensional extensions of the two-sided versions of the

formulae of Robbins and Siegmund (1970), ρ 1412, corresponding to g(t) - at+b,

a > 0 , -
o o

< b <
0 0

. For example, for any ε > 0 let

L
u
(ε) - sup {n:h(S(n)) > nε}
h

be the last time that the normalized walk S(n)/n, n=l,2,..., is out of an h-ball

of radius ε. Then l
 h
(

ε
) is almost surely finite and

2 1/2—1/2
lim Pr{ε L (ε) > a} = lim Pr{max h(S(n)/n) > a ' m ' }

ε-K) m-*-
00
 n>m

Pr{V
h
(l)

This is the d-dimensional extension of the two-sided version of the last-time

result first obtained by Robbins, Siegmund and Wendel (1968). Unfortunately,

the limiting distribution is known in the present generality only in the special

cases mentioned above This is of course all the more true for the limiting

distribution

Prίsup (h(W(t)) - g(t)) > 0} = Pr{ sup (h(W(t)) - tg(t *)) > 0}
t>τ 0<t<τ

arising in Theorem 2

The results of Robbins and Siegmund (1970), such as the one-

dimensional form of Theorem 2, were motivated by certain sequential statistical

procedures introduced and developed by Darling and Robbins in a series of papers
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and further developed by Robbins and Siegmund (see the references in Robbins

(1970)). Most of these procedures formally extend to the d-dimensional case.

For example, one can consider sequential power-one Darling-Robbins tests for

testing the hypothesis H
Q
: EX =* E(X

( 1 )
,...,X

( d )
) = (0,...,0). Since

d n .v

Pr{h(S ) > a for some n > m} < Σ Pr{C
2
| Σ X. | > a for some n > m}, where

a is any sequence used by Darling and Robbins for this problem, their iterated

logarithm inequalities can be used for controlling the probability of the error

of the first kind. However, little is known, for example, about the expected

sample size EN(h m) needed to reject HQ when it is not true, where N(h m) is the

first passage time N(h; m) = inf {n > m: h(S(n)) > a }

Under HQ, Theorem 1 and its corollaries hold true of course for the

modified first passage time N (t) = inf {u > m: h(S(u)) > t} with the obvious

modifications .

2. Proofs.

In what follows we use the symbol » to denote distributional equality

and Pr will denote convergence in probability.

We shall frequently use the well-known fact that there exist two

constants C p C2 > 0 such that

(2.1) c
L
 I |χ| I < h(x) < c

2
||χ||, x e R

d
.

Proof of Theorem 1. Komlόs, Major and Tusnady (Theorem 2.6.3 in Csδrgδ and

Revesz (1981)), in the special case when the components of X are independent,

and Berkes and Philipp (1979), in the general case, proved that under the

conditions of the theorem the sequence {X , n > 1} can be redefined without

changing its distribution on a richer probability space (Ω, A, P) together with

an R -valued Wiener process W(t) with covariance matrix Γ and an almost surely

finite random variable t = t (ω) such that

(2.2) Δ
χ
(T) = sup 1 ISCt) -W(t)|| < C r(T) if T > t

0<t<T
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where C3 > 0 is a finite constant and r(T) is a deterministic function such that

(2.3) r(T) - o(T
1 / 2 α

) as T > «,

with α as given in the formulation of the theorem. We shall work on this

probability space.

Applying the Minkowski inequality first for the supremum norm and then

for the h-norm, we obtain via the right side of (2.1) that

Δ (T) = sup |M(t) - V(t)| < C Δ (T),

and hence, with C^ = C2C3,

(2.4) Δ
2
(T) < C

4
 r(T) if

Next we claim that there exist a constant C^ > 0 and an almost surely

finite random variable t~ = t«(ω) such that

(2.5) min (V(T), M(T)) > b(T) = C
5
T

i / Z
 (log log T)

 i / Z
 if T >

Indeed, for any 0 < ε < 1 and 1 < k < d, by the left side of (2.1),

V(T) > C sup I|W(t)||

0<t<T

> C sup |W (t)|
x
o<t<τ

 k

> (1-ε) C
χ
 π(T

k k
/8)

1 / 2
T

1 / 2
(log log T ) "

1 / 2

* * *
whenever t > t^ - t^(ω), where

 t
 is some almost surely finite random

variable. This follows from Chung's (1948) law of the iterated logarithm (cf,

also Csδrgδ and Revesz (1981) p.48). Also,
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M(T) > C sup ||s(t)||

0<t<T

> C sup |W(t)| - Δ (T)

0<t<T

> (1-ε) C^(T
k k
/8)

1 / 2
T

1 / 2
(log log T)

 1 / 2
 - Δ

χ
(T)

whenever t > t~. Now (2.5) follows from the last two inequalities and (2.2).

Of course, t« > t. almost surely.

Now let ε > 0 be a fixed number and let t
3
 > 0 be a (deterministic)

threshold number such that

(2.6) b({(l+ε)/(φ t
2
 log log t) > t if t > t ^

Define t
Q
 = max (t2» tβ). Then, if t > t ,

N(t) = inf {u: M(u) > t}

« inf {u: M(u) > t, 0 < u < ̂ ~- Λ o g log t}

< inf {u:V(u) > t + C r (^| t
2
 log log t), 0 < u < ̂ | t

2
log log t}

S
 C

5

= inf {u: V(u) > t + C, r ( - ^ t log log t)}

C
5

= Z(t + C r(r— t
2
 log log t)),

C
5

where the first equality is by (2.5) and (2.6), the inequality is by (2.4), and

the next equality is again by (2.5) and (2.6). Similarly,

N(t) > Z(t-C
4
r(-i±| t

2
 log log t)) if t > t

Q
,

C
5

and in view of (2.3) the theorem follows.
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Proof of Corollary 1. Let p (.,.) denote the usual distance that metrizes

D[0,T]. (p^.,.) is denoted by d(.,.) in Billingsley (1968)). Since by the

scale transformation of the Wiener process

(2.7) {V(t)/T
1/2
: 0 < t < T} 2 {v(u): 0 < u < 1},

easy consideration shows that

(2.8) {Z(t)/T
2
: 0 < t < T} δ ίz(u): 0 < u < 1},

Therefore, it is sufficient to show that

(2.9) T"
2
p

T
(N(.), Z(.)) £ 0 as T

on the probability space (Ω, A, P) of Theorem 1.

Theorem 1 implies that for any fixed 0 < ε < 1 there is a

T = T
Q
(ε) > 0 such that for any T > T

Q
,

P{Z(t-a
χ
) < N(t) < Z(t+a

τ
), T

Q
 < t < T}

On the other hand, it is easy to show that

T
 2
 sup N(t) - T"

2
 N(T ) + 0 and T

 2
 sup Z(t) - T

 2
Z(T ) •• 0

0<t<T
 U

 0<t<T

almost surely as T + «. Therefore it is enough to show that

T"
2
P

T
(U^(.), Z(.)) I 0 and τ"

2
p

τ
(U

τ
(.), Z( .)) I 0

as T + «, where U^(t) = Z(t+a
τ
) and U

τ
(t) = Z(t-a

τ
), which by (2.8) is

equivalent to

(2.10) P
χ
(Y^(.), Z(.)) I 0 and P^Y^.), Z(.)) 5 0 as T + «,
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where

Y*(t) - Z(t + T
 1
a
τ
) and U

τ
(t) - Z(t - T

To show (2.10) we need one more preliminary. We claim that at any

fixed 0 < t < 1 the process Z is stochastically left continuous. Indeed, for

any s > 1 and ε > 0,

P{Z(t*) - Z(t*/s) > ε} = P{Z(st*/s) - Z(t*/s) > ε}

Pis
 2
(Z(st*) - Z(t*)) > ε}

by (2.8), which by the almost sure right -continuity of Z goes to zero if

8+1.

Now let us introduce the following strictly increasing continuous

mapping of [0,1] onto itself:

λ (t)

t/2,

t-T"
1
a

T
,

if 0 < t < 2T""
1
a
T
,

if 2T"
1
a

T
 < t < 1 - T"

-1
(l+a

χ
)t - a

τ
, if 1-τ"

1
 < t < 1,

where, of course, we assume that T is so large as to make this definition

meaningful. We have

p (Y (.), Z(.)) < sup |λ (t) - t| + sup |z(λ (t)) -

0<t<l 0<t<l

T
 l
a + 2Z(T

 l
a ) + sup

0<t<l
)t-a ) - Z(t-τ"

1
a_))
L

< T"
1
a

χ
 + 2Z(T~

1
a

τ
) - Z(l-T ^ T
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for Z is a nondecreasing process . Since T a_ •* 0 as T + °°, the second term

here converges to Z(0) - 0 almost surely, while the third term converges to zero

in probability due to the stochastic left continuity of Z at one. Hence we have

shown that the second relation in (2.10) holds true. Introducing an appropriate

λ function, one shows similarly that the first relation in (2.10) also holds

true The corollary is proved

Proof of Corollary 2. First consider (1.1). As a first step we show that

if I(ψ" ,C) < , then

(2.11) lim inf Z(t)/ψ(t) > (2CC.T)""
1
 almost surely,

2
where Z - Z

h
, C

2
 is as in (2.1) and T = max (T ,...,T ), Set K = 2CC T and

introduce the function f (t) = ψ" (Kt). The condition that I(ψ" ,C) < °° implies
K.

that I(f__,(2C
o
T) ) < °°. The classical Erdδs- Feller-Kolmogorov-Petrovski upper

K 2.

class integral test then implies that there exists an almost surely finite

random variable u =
 u
r/

ω
^
 s u c n t t ι a t

 whenever u > u ,

V(u) < C sup ||W(s)|| < C
Z
0<s<u

 Z

This is the same as

(2.12) V(ψ(t)/K) < t whenever t > t^ - ψ(u
Q
)/K,

which implies

(2.13) Z(t) > ψ(t)/K whenever t > t ,

Hence we proved (2.11).
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Now we show that (2.11) and Theorem 1 imply (1.1) Let 0 < ε < 1 be

given and introduce Ψ
1
/(

1
_

ε
)(

t
>

 =
 Ψ(t/(l-ε)). Since ψ""j/(

1
_
ε
)(O " (l-OΨ^ίt)

Kψ'^C) < « implies that K f L ^ ) ,C/(l-ε)
2
) < . Hence by (2.11)

lim inf
 z
(

t
>/Ψ

1
/(

1
_

ε
)(

t
>
 >
 (l-ε)

2
(2CC

2
T)"

1
 almost surely.

t+oo

This means that there exist an almost surely finite random variable

t
5
 - t (ω) such that Z(t) > (l-ε)

2
(2CC

2
T)""

1
ψ

1/
 (t) whenever t > t

5
. Let

0 < t, < °° be such a number that a /t < ε whenever t > t
ci
 where a. is as in

D t D L

Theorem 1. Now if t ) max(t
n
, t,, t

c
/(l-ε)), then

U O 3

/, N2

N(t) > Z(t-a
t
) ^ ^

Ψ(t).

Hence we in fact obtained that I(ψ ,C) < °° implies that

lim inf N
h
(t)/ψ(t) > 1/{2CQ^) almost surely.

Now we consider (1.2). Again, as a first step we show that if

I(ψ"
1
,C) = °° for all C > 0, then

(2.14) lim inf Z(t)/ψ(t) - 0 almost surely.

Note that whenever ψ(t) + °° as t ••• °°, a routine application of Blumenthal^

zero-one law (Itδ and McKean (1965)) implies that the left side of (2.14) is

almost surely a constant in [0,°°]. Now if this left side is not less than

1/K > 0 with some K, then there exists an almost surely finite random variable

t, = t (ω) such that (2.13) and hence (2.12) holds, which in turn implies

C sup ||W(s)|| < V(u) < TT"
1
ψ"

1
(Ku) = ψ'^Ku)

0<s<u

whenever u > u
Q
 * ψ (Kt,). But then the Erdδs - Feller-Kolmogorov-Petrovski
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test implies that I(f ,(2C T)~ ) < °° which in turn implies that iCψ""
1
^) < «

K. 1

with C - K/(2C T ) . This proves (2.14).

We show now that the theorem and (2.14) imply (1.2). Let the same

arbitrary 0 < ε < 1 be given as above. If I(ψ ,C) = °° for all C > 0 then

I(ψ"
1

1 / ( 1 + ε )
,C) • « for all C > 0. Hence by (2.14),

lim inf Z(t)/ψ ... Λt) = 0 almost surely.
t-H»

This means that for any δ > 0 there exists a sequence t_.(ω) < t
o
(ω) < ... of

/ o

random variables converging to °° almost surely such that Z(t ) < δ i,,,
 N

(t )
n 1/^1+ε; n

almost surely for all large enough n. For all these n
f
s if t > max(t

Q
,t

6
),

then

N(t
n
) < Z(t

n
+a

t
 ) < Z(t

n
(l+ε)) < δ

n

t(t
n
),

and hence (1.2) follows.

The proof of (1.3) and (1.4) is completely analogous. The only

difference is that instead of the Erdδs- Feller-Kolmogorov-Petrovski test we use

Chung's (1948) test for the supremum of the modulus of a scalar-valued Wiener

process

Proof of Theorem 2. Following Robbins and Siegmund (1970), for any

0 < τ < C < ° ° w e have

p (τ,c) < Pr{h(S(n)) > in
 2
g(n/m) for some n > τ m} < p (τ,c) + q (c),

m m m

where

P (
τ
>c) = Pr{h(S(n)) > m g(n/m) for some τm < n < cm}

m
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and

1/2
q (c) = Pr{h(S(n)) > m q(n/m) for some n > cm},

By simple considerations,

-l I?
lim p (τ,c) - lim Prim ' max (h(S(n)) - g(n/m)) > 0}

m*
00
 m>°° mτ<n<cm

- lim Pr ίm" sup (h(S(mt)) - g(t)) > 0} .

m-*» τ<t<c

—1 /2
Since Donsker

f
s invariance principle easily implies that m ' h(S(m.)) converges

weakly in Skorohod's space D[τ,c] to h(W(.)), we obtain

lim p (τ,c) = Pr{h(W(t)) > g(t) for some τ < t < c}

m+
 m

exactly as in Robbins and Siegmund (1970). On the other hand, since

q (c) < PrίCj|S(n)|| > m
1
'

2
g(n/m) for some n > cm}

m ί

< Σ Pr{|s
( k )

| > m
111
 7 ^ g(n/m) for some n > cm} ,

k-1
 n T C

2

where

(k) _ \
 χ
(k)

/ χ
l/2 ._, ,

b - L A I ̂ Λ.Λ. > κ.-l,.. ,α,

it follows from the conditions on g and Lemma 5 of Robbins and Siegmund (1970)

(the difficult part of the proof of their Theorem 2) that

lim inf lim sup q (c) = 0 .

The theorem now follows by first letting m*
00
 and then letting C-H», as in Robbins

and Siegmund (1970).
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