
1. INTRODUCTION

1.1. MOTIVATION

Suppose we are interested in the density fn of some statistic Tn (xi, ,x π ) , where
xi, , x n are n independent identically distributed (iid) observations with the underlying
density / . Unless Tn and/or / have special forms, one cannot usually compute analytically
the distribution of Tn.

A first alternative is to rely on asymptotic theory. Very often one can "linearize" the
statistic Tn and prove that the linearized statistic is equivalent to Tn as n —• oo, that is
the difference goes to zero in probability. This leads through the central limit theorem to
many asymptotic normality proofs and the resulting asymptotic distribution can be used as
an approximation to the exact distribution of Tn. This is certainly a powerful tool from a
theoretical point of view as can be seen in some good books on the subject, e.g. Bhattacharya
and Rao (1976), Serfling (1980); cf. also the innovative article by Pollard (1985). But, in
spite of the fact that in some complex situations one does not have any viable alternatives,
very often the asymptotic distribution does not provide a good approximation unless the
sample size is (very) large. Moreover, these approximations tend to be inaccurate in the
tails of the distribution.

Many techniques have been devised to increase the accuracy of the approximation of
the exact density fn. A well known method is to use the first few terms of an Edgeworth
expansion (cf. for instance Feller, 1971, Chapter 16). This is an expansion in powers of n""1/2,
where the leading term is the normal density. It turns out in general that the Edgeworth
expansion provides a good approximation in the center of the density, but can be inaccurate
in the tails where it can even become negative. Thus, the Edgeworth expansion can be
unreliable for calculating tail probabilities (the values usually of interest) when the sample
size is moderate to small.

In a pioneering paper, H.E. Daniels in 1954 introduced a new type of idea into statistics
by applying saddlepoint techniques to derive a very accurate approximation to the distribu-
tion of the arithmetic mean of z\, , x n . The key idea is as follows. The density /„ can
be written as an integral on the complex plane by means of a Fourier transform. Since the
integrand is of the form exp(nw(z)), the major contribution to this integral for large n will
come from a neighborhood of the saddlepoint zo, a zero of w'(z). By means of the method
of steepest descent, one can then derive a complete expansion for fn with terms in powers of
n~*. Daniels (1954) also showed that this expansion is the same as that obtained using the
idea of the conjugate density (see Esscher, 1932; Cramer, 1938; Khinchin, 1949) which can
be summarized as follows. First, recenter the original underlying distribution / at the point
t where /„ is to be approximated; that is, define the conjugate (or associate) density of /,
ht. Then use the Edgeworth expansion locally at t with respect to ht and transform the
results back in terms of the original density /. Since t is the mean of the conjugate density
At, the Edgeworth expansion at t with respect to ht is in fact an expansion in powers of
n~ι and provides a good approximation locally at that point. Roughly speaking, a higher
order approximation around the center of the distribution is replaced by local low order
approximations around each point. The unusual characteristic of these expansions is that
the first few terms (or even just the leading term) often give very accurate approximations
in the far tails of the distribution even for very small sample sizes. Besides the theoretical
reasons, one empirical reason for the excellent small sample behaviour is that saddlepoint
approximations are density-like objects and do not show the polynomial-like waves exhibited
for instance by Edgeworth approximations.
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Another approximation closely related to the saddlepoint approximation was intro-
duced independently by F. Hampel in 1973 who aptly coined the expression small sample
asymptotics to indicate the spirit of these techniques. His approach is based on the idea of
recentering the original distribution combined with the expansion of the logarithmic deriva-
tive fή/fn rather than the density fn itself. Hampel argues convincingly that this is the
simplest and most natural quantity to expand. A side result of this is that the normal-
izing constant — that is, the constant that makes the total mass equal to 1 — must be
determined numerically. This proves to be an advantage since this rescaling improves the
approximation. In some cases it can even be showed that the renormalization catches the
term of order n " 1 leaving the approximation with a relative error of order 0(n~3/2) cf.
Remark 3.2, section 3.3.

The aim of this monograph is to give an introduction into concepts, theory, and applica-
tions of small sample asymptotic techniques. As the title suggests, we want to include under
this heading all thoβe techniques which are similar in the spirit to those sketched above. To
be a little extreme, we want to consider uasymptotic techniques which work well for n = Γ
as it has been sometimes asked from a good asymptotic theory. A very simple example in
this direction is Stirling's approximation to n!. Exhibit 1.1 shows that the relative error of
Stirling's approximation is never greater than 4% even down to n = 2.

n n! Stirling approx. relative error (%)

1 1 0.92 8.0
2 2 1.92 14.0
3 6 5.84 2.7
4 24 23.51 2.0
5 120 118.02 1.6

Exhibit 1.1

Stirling approximation (= y/2πn(n/e)n) to n! and
relative error = | exact — approx. | / exact in %.

Note that Stirling's formula is just the leading term of a Laplacian expansion of the
gamma integral defining n!. The original approximation, that is

derived from

Δ log xl ~ — log(x + - ) !
ax I

is even more accurate, cf. Daniels (1955).
Both authors were introduced into the topic via the paper by Hampel (1973) whose

original idea was motivated by the application of these techniques in robust statistics. In
fact, since robust procedures are constructed to be stable in a neighborhood of a fixed statis-
tical model, their distribution theory is more complicated than that of classical procedures
like least squares estimators and F-test evaluated at the normal model. In particular, it is
almost impossible to compute the exact distribution of robust procedures for a finite sample
size. On the other hand, the approximations based on the asymptotic distribution are often
too crude to be used in practical statistical analysis. Thus, small sample asymptotics offer
the tools to compute good finite sample approximations for densities, tail areas, and confi-
dence regions based on robust statistics. The scope of there approximations is quite broad,
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and they have been successfully used for likelihood and conditional inference and nonpara-
metric statistics in addition to robust statistics. Examples and computations are provided
in the later chapters.

1.2. OUTLINE

The monograph is organized as follows.
In chapter 2 we review briefly the Edgeworth expansions. Although this monograph

does not focus directly on Edgeworth expansions, they nevertheless play an important role
as local approximations in small sample asymptotics. Therefore, we do not claim to cover
the large amount of literature in this area but we just review in this chapter the basic results
which will be used in the development of small sample asymptotic techniques. A reader
who is aleady familiar with Edgeworth expansions can skip this chapter and go directly to
chapter 3.

Chapter 3 introduces the basic idea behind saddlepoint approximations from two dif-
ferent points of view, namely through the method of steepest descent and integration on
the complex plane (sections 3.2 and 3.3) and through the method of conjugate distributions
(section 3.4). The technique is derived for a simple problem, namely the approximation of
the distribution of the mean of n iid random variables.

Chapter 4 shows that small sample asymptotic techniques are available for general
statistics. In particular, we discuss the approximation of the distribution of L-estimators
(section 4.4) and multivariate M-estimators (section 4.5) for an arbitrary underlying dis-
tribution of the observations. In each case the theoretical development is accompanied by
numerical examples which show the great accuracy of these approximations.

Chapter 5 emphasizes the relationship among a number of related techniques. First,
HampeΓs approach is discussed in detail in section 5.2. The relation between small sample
asymptotics and large deviations is presented in section 5.3. Moreover, we attempt to relate
the work by Durbin and Barndorff-Nielsen (see the review paper by Reid (1988) and the
references thereof) in the case of sufficient and/or exponential families to the techniques
discussed so far.

In chapter 6 we present tail areas approximations and the computation of confidence
intervals for multiparameter problems, especially regression. A connection to the bootstrap
and a nonparametric version of small sample asymptotics obtained by replacing the under-
lying distribution with the empirical distribution are also discussed.

Finally, chapter 7 is devoted to some miscellaneous aspects. In section 7.1 we discuss
the computational issues. In fact, it is the availability of cheap computing which makes
feasible the use of small sample asymptotic techniques for complex problems. A low order,
simple approximation requiring non-trivial computations is carried out at a number of points
and this is the type of problem ideally suited to computers. Section 7.2 presents a potential
application of small sample asymptotics as a smoothing procedure leading to nonparametric
density estimation. Some applications to robust statistics are developed in section 7.3.
Finally, in the remaining sections we discuss the applications of these techniques to several
different problems, including the considerable amount of work in the engineering literature.




