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IL TWO BASIC RESULTS

Despite the title of this Chapter, there are probably three basic results in
the theory of Gaussian processes, that make this theory both manageable and
special. The first is the existence theorem that to any positive semi-definite
function R there corresponds a centered Gaussian process with covariance
function i?; an important, but not particularly exciting result.

The second is that the supremum of a Gaussian process behaves much
like a single Gaussian variable with variance equal to the largest variance
achieved by the entire process. In the way that we shall present it, this is
Borell's inequality, and is the key to all results about Gaussian continuity,
boundedness, and suprema.

The third is that if two centered processes have identical variances (i.e.
EX? — EY2 for all t 6 Γ), but one process is more "correlated" than
the other (i.e. if EXtX9 > EYtY9 for all s,ί G Γ) then the more cor-
related process has the stochastically smaller maximum, in the sense that
P{supX t > λ} < P{supF t > λ} for all λ > 0. This is Slepian's inequal-
ity, and without this result many of the most basic results in the theory of
Gaussian processes would have no proof.

Both Borell's and Slepian's inequality are very special in that analagous
results for non-Gaussian processes are extremely rare. (We shall see some
exceptions to this rule later). The fact that even for Gaussian processes the
sup Xt in Slepian's inequality cannot be replaced by as simple a variant as
sup|X t | is also indicative how very lucky we are that a result of this kind
holds at all.

1. Borell's Inequality.

Let X be a centered Gaussian random variable with variance σ2. Then
choosing

Φ(λ) = {2π)~>

to denote the standard Gaussian distribution function, straightforward ap-
proximations give that for all λ > 0

(1 - σ2λ-'Xσ/v^μ-1 e" *λ'/<τ' <P{X>\)
(2.1) = Φ(λ/σ)

< (

One immediate consequence of (2.1) is that

(2.2) lim λ~2 l o g P { X > λ } = -{2a2)-1.



II . 1 BORELL'S INEQUALITY 43

There is a classical result of Landau and Shepp (1970) and Marcus and Shepp
(1971) that gives a result closely related to (2.2), but for the supremum of a
general centered Gaussian process. If we assume that {Xt}teτ has bounded
sample paths with probability one, then they showed that

2 \- l(2.3) lim λ"2 logP{supXt > λ} = -(2σJ)
λ-^oo t e τ

where
σ% := s u p £ Xt

2

t€T

is a notation that will remain with us for the remainder of these notes. An
immediate consequence of (2.3) is that for all e > 0 and large enough λ

(2.4) P { s u p X t > λ } < e

eχ2->χ2/σ*.
teT

Since e > 0 is arbitrary, comparing (2.4) and (2.1) we reach the conclusion
described above that the supremum of a centered, bounded Gaussian process
behaves much like a single Gaussian variable with a suitably chosen variance.

In Chapter 5 we shall investigate (2.4) in considerable detail, and show

how to close the gap between (2.4) and (2.1) (i.e. between λ" 1 and β€λ ).
Most proofs of results like (2.3) rely on geometrical arguments and the

so-called Brunn-Minkowski inequality for Gauss space (λ -dimensional Eu-
clidean space with a λ -dimensional Gaussian measure). The strongest form
is due to Borell (1975) in a highly abstract setting and with a difficult proof.
Maurey and Pisier (Pisier (1986)) recently found a very short proof of a ver-
sion of BorelΓs inequality, which avoids the need to appeal to areas outside
of probability theory. This is, in essence, the proof that we shall give. It
has the advantage of being more self-contained for a probabilistic audience,
and the disadvantage that it cannot reach all the cases that proofs based on
isoperimetric inequalities can. Nevertheless, it is my favourite application
of Itό's formula, for who would have expected to be able to use stochastic
analysis to prove results in Gaussian processes? (By the way - the stochastic
analysis/Gaussian process interface is now a two way street. See Chapter 6
for details on this.) The result is:

2.1 THEOREM. Let {Xt}teτ be a centered Gaussian process with sample
paths bounded a.s. Let \\X\\ — sup f G Γ X t. Then E\\X\\ < oo, and for all
λ > 0

(2.5) P{ | | |X | | -£ | |X | | | > λ} < 2e'iχΊfσ'.

An immediate consequence of (2.5) is that for all λ >

(2.6) P{||X|| > λ} < 2e-^ λ
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Thus (2.3) and (2.4) are easily seen to be consequences of Borell's inequality.
Indeed, a far stronger result is true, for (2.4) can be replaced by

(2.7) P{supX t >λ} < e α λ - ϊ λ 2 / σ %
teT

where C is a constant depending on
Of course, the sharper forms (2.5) and (2.6) will only be useful if we can

manage to calculate -EΊ|X||. This, in fact, is one of the main tasks facing us,
and we shall see that this single expectation is the key to a Pandora's box
of other results.

Theorem 2.1 is true in much more generality than we have indicated,
and can also be formulated somewhat differently. Borell's original result, for
example, used the median of ||X|| instead of the mean 2£||X|| in (2.5). In this
formulation, the process X can be allowed to take values in a quite general
Banach space, and || || is then the norm of the Banach space. (In fact, since
the passage from the inequality with the median to that with the mean, or
vice versa, is far from immediate, it is really not quite precise to refer to
(2.5) as "Borell's" inequality. Nevertheless, we shall not let a minor point
like this change our nomenclature.)

Similar results, involving Banach space valued processes, using both the
natural norm and its expectation, are also available, but with a constant
other than \ in the exponent in (2.5). (For details see Pisier (1986, 1989).)

Throughout these notes you should always remember that || || = sup is
not a true norm, and that very often one needs bounds on the tail of suρt \Xt \
rather than ||X|| = sup tX t. However, a symmetry argument immediately
gives one that

P { s u p | X t | > λ } < 2 P { s u p X t > λ } ,
t t

so that Borell's inequality helps out here as well.
For more on the relation between stochastic analysis and isoperimetric

inequalities, see, for example, Ledoux (1988) and Pisier (1986, 1989). •

The following lemma forms the main step in the proof of Borell's in-
equality, and is also of considerable independent interest. (As usual, we shall
also denote the usual Euclidean norm by || ||, hopefully without creating too
much confusion.)

2.2 LEMMA. Let f:dtk —> 3i have derivatives of up to second order,
bounded pointwise by AeB^x^ for some A,B < oo, and let X be a k-
dimensional, centered, Gaussian variable with covariance matrix V. If \f(x) —
f{y)\ < \\x ~ 2/|| for all x,y <Ξ 5Rfc, then for all λ > 0

(2.8)
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where
σ2 = sup V{i,i)= sup EX*.

REMARK: It may seem strange at first that the upper bound depends nei-
ther on the function / nor the covariance structure of the X{ (other than via
the variances). If one rewrites the result in the form of (2.6), however, the
fact that Ef(X) now appears in the bound, and the fact that this expecta-
tion depends explicitly on / and implicitly on the full covariance structure
of the X», shows that all is in heuristic order.

PROOF: Let {Bt}t>0 = {J3*, ...,J3*}t>o be a A -dimensional Brownian mo-
tion; i.e. the Bx are i.i.d. standard, real-valued Brownian motions.

We can link the vector X to Bt by noting that Xλ,..., Xk is distributed
exactly like V* Bl9 where V* satisfies V = V* - ( 7 a ) ' , and exists by virtue
of the positive semi-definiteness of V. Before we can fully utilise this fact,
however, we need to make two excursions into stochastic analysis.

The first starts by noting that if G: ΐftk —> $tk is continuous and coordi-
natewise bounded, and if ( , ) is the usual Euclidean inner product then

expί f (G{B.),dB.)-\ f \\G{B,)\\* dt)
^ Jo Jo

is an (exponential) martingale with initial value, and so constant mean,
1. (For information on exponential martingales, or, indeed, on any of the
stochastic analysis arguments that follow, Karatzas and Shreve (1988) is a
very accessible reference. In this case, the requisite result is on page 199.)
Taking expectations, and setting

a = sup

we obtain that for all real θ

A standard Chebycheff type argument gives us that

p{\J\G{B.),dB.)\ > λ}

= P{jl (G{B.),dB.) > λ} +p{|1(G(Bί),rfB,) < -λ}

(2.9) < 2e-ΘX

= 2e
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the factor of two in the first inequality coming from symmetry considerations
and the last inequality being a consequence of setting θ = λ/α2.

Our second excursion involves Itό's formula for real valued functions
of vector valued Brownian motion. (Karatzas and Shreve (1988), page 153.)
The form we shall need states that for a sufficiently smooth F = F(x, t): 3ϊfc X

F{Bt,t)-F{B9,s) = ί (VxF{Bu,u),dBu)

(2.10) + ί (±AxxF{Bu,u) + Ft{Bu,u))du,
J s

where V^ and Axx denote derivatives of F(x,t) with respect to x, and
Ft(x,t) = dF(x,t)/dt. We shall also need {Pt}t>o, the Markov semi-group
associated with £?, determined by the fact that for smooth g: 3ifc —> 8ϊ

(Ptg)(x) = E*g(Bt)

where Ex denotes expectation with respect to the Brownian motion B start-
ing at the point x G 5Rfc at time zero.

We can now put the above two parts together to prove our Lemma.
Let f:dtk —> 3?1 satisfy the differentiability requirements of the / of the

lemma, and assume \f(x) — f{y)\ < σ\\x — y|| Setting F(x,t) — (P1_tf)(x)^
the conditions of the lemma imply that F is sufficiently smooth for Itό's
formula to hold. With t = 1, s = 0, (2.10) yields

(2.11) f{B1)-Ef{B1) = ί
Jo

The last expression in the Itό formula disappears due to the specific form of
the semi-group Pt. If you are not familiar with this (it is the heat equation
that makes everything work) you should do the algebra to convince yourself
that everything works as claimed.

Since Pt is a contraction semi-group, the fact that \f(x) — f[y)\ < σ\\x —
y\\ immediately implies that Ptf satisfies the same inequality for every t > 0,
and so ||VP t/(x)|| < σ for almost every x. It then easily follows from (2.9)
that

To complete the proof note simply that f(X) = /(V^Bx), so that (2.7)
follows from (2.11) with /(x) = f(V*x). The function / then satisfies all
the requirements placed on it. •
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PROOF OF THEOREM 2.1 : We have two things to prove. Firstly, Theorem
2.1 would follow immediately from Lemma 2.2 in the case of finite T if
only sup(.) were a sufficiently smooth function. Unfortunately, it is not,
being non-differentiable on the diagonal in 9ίfc. Fortunately, however, it is
approximable by smooth functions. Any standard approximation procedure
(such as convolution with C°° functions) will work, and so this part of the
proof is left to you.

The second part of the proof involves lifting the result from finite to
general T. This is, almost, an easy exercise in approximation.

For each n > 0 let Tn be a finite subset of T such that Tn C Γn + 1 and
Tn increases to a dense subset of Γ. By separability,

sup Xt

 a-̂ > sup Xt,
teτn

and, since the convergence is monotone, we also have that

E sup Xt -> E sup Xt.
teτn ter

Since σ ^ —> σ\ < oo, (again monotonely) this would be enough to prove
the general version of Borell's inequality from the finite T version if only
we knew that the one worrisome term, E sup τ Xt, were definitely finite, as
claimed in the statement of the Theorem. Thus if we now that the assumed
a.s. finiteness of ||X|| implies also the finiteness of its mean, we shall have a
complete proof to both parts of the Theorem.

We proceed by contradiction. Thus, assume i£||X|| = oo, and choose
λo > 0 such that

e-*l/*l < I, P{supXt < λo} > f.
ter

Now choose n > 1 such that .E||X||Trv > 2λo, possible since £ Ί | X | | Γ Λ ->
J5"||X||r = oo. Borell's inequality on the finite space Tn then gives

2 —

> P{\\\X\\Tn-E\\X\\Tn\ > λ o }

- ll
λ o }

This provides the required contradiction, and so we are done. •

I cannot overemphasise how important a result Borell's inequality is.
For example, an almost immediate consequence of Borell's inequality is that
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the a.s. finiteness of ||X|| implies that it also has all regular, and some expo-
nential, moments, (c.f. Theorem 3.2.) In later chapters, especially Chapter
5, we shall see how one can apply Borell's inequality a number of times, with
almost no other tools, to obtain even sharper bounds on tail probabilities for
suprema.

Now, however, we turn to the second, and equally central, result about
Gaussian processes.

2. Slepian's Inequality.

There are a variety of different ways to present Slepian-like inequalities
today. We choose the following formulation, (from Joag-Dev, Perlman and
Pitt (1983)) which actually includes a number of interesting side results.

2.3 THEOREM. Let -XΊ,...,Xfc be centered Gaussian variables with covari-
ance matrix R — (rtJ )^ y = 1 , rfJ = EXiXj. Leth: $tk —> dt be C2, and assume

that, together with its derivatives, it satisfies a O(||x||^) growth condition
at inήnity for some ήnite N. Let

(2.12) X{R) = Eh(X1,...,Xk).

and assume that for a pair (i,i), 1 <i < j < k

(2.13) | - ^ 1 > o for all x.
σXi oXj

Then # (R) is an increasing function of rtJ .

Note that the theorem is actually true without the growth conditions on
/ι, if one is prepared to attribute veracity to the result if )i is identically infi-
nite. The proof is reasonably straightforward, and, in its important details,
goes back to Slepian (1962).

PROOF: We have to show that

dri}

whenever d2h/dxidxj > 0.
To make our lives a little easier we assume that R is non-singular, so

that it makes sense to write φ{x) = φR (x) for the centered Gaussian density
on 9ifc with covariance matrix R. Then some algebra (dating back at least
to Plackett (1954)) shows that

ox\
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(The algebra of this calculation is almost identical to that needed to jus-
tify (2.11) in the proof of BorelΓs inequality!) Apply this result and our
assumptions on h to justify two integrations by parts to obtain

^Tij J9tκ *"ij

= ί

(If the integrations by parts bother you, see Berman (1987).) This completes
the proof for the case of non-singular R. The general case can be handled
by approximating a singular R via a sequence of non-singular covariance
matrices. •

Here are some of the consequences of Theorem 2.3:

2.4 COROLLARY (SLEPIAN'S INEQUALITY). IfX and Y are a.s. bounded,
centered Gaussian processes on T such that EX? = EY2 for all t G T and

(2.15) E{Xt-X9)
2 < E{Yt-Y9)

2 foralls9teT,

then for all real X

(2.16) P{supX t > λ} < P{supY; > λ}
teT

PROOF: By separability, and the final argument in the proof of Borell's
inequality, it suffices to prove (2.16) for T finite. Note that since EX? = EYt

2

for all t β Γ, (2.15) implies that EX9Xt > EY9Yt for all θ,ί e T. Let
M x) = Πt=i ft{χi)i where each f{ is a positive non-increasing, C2 function
satisfying the growth conditions placed on h in the statement of Theorem
2.3 and k is the number of points in Γ. Note that, for i φ j

since both // and /J. are non-positive. It therefore follows from the theorem
that

t = l t = l

Now take {//n }^=1 to be a sequence of positive, non-increasing, C2 approx-
imations to the indicator function of the interval (—oo,λ], to derive that

λ} > P{| |Γ| | < λ}.
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That is,

teT teT

λ} < P{\\Y\\ > λ},

which is what we had to prove. •

Slepian's inequality will form one the basic building blocks of the results
of Chapter 4. In general, it is written with the condition EX9Xt > EYsYt

rather than (2.15), since this more clearly indicates the difference between
the dependence structures of the two processes.

It is immediate from symmetry considerations that a similar result holds
for infima rather than suprema, as it does for the range of X t5 but, as we
shall soon see by example, no such result holds for supt |Xt|.

Another consequence of Slepian's inequality is

2.5 COROLLARY. Under the conditions of Corollary 2.4

(2.17)

PROOF:

E\\X\\ = Γ P{\\X\\ > λ}rfλ - Γ P{||X|| < \}dλ
JO J - o o

< Γ P{\\Y\\>\}d\- f P{||Y||<λ}dλ
JO J -oo

= E\\Y\\.

This proves the result. •

The main problem with Slepian's inequality is that it requires that Xt

and Yt have identical variances. To compare processes with differing vari-
ances it turns out that we have to concentrate on inequalities of the form
(2.17) rather that (2.16). Our first result in this regard is the almost trivial

2.6 OBSERVATION. If X is an a.s. bounded, centered Gaussian process on
T and Y a centered Gaussian variable (not necessarily independent of
then

(2.18) ( )
teT

As trite as this observation is, it ceases to be valid if, for example,
we investigate supt |X t | rather than supt Xt. It has surprisingly important
implications. For example, it allows us to prove
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2.7 LEMMA. Let X and Y be two centered Gaussian random variables.
Then

(2.19) Emax(X,Y) =

PROOF: Set σ2 = E(X - Y)2. By Observation 2.6

Emax(X,Y) = E maxpf - Y, Y - Y)

= Emax(X-Y,O)
1 Γ°°

V 2πσ JoV 2πσ Jo
σ

as required. •

A useful inequality that follows from this lemma is that for any a.s.
bounded, centered X,

(2.20)
teT

What is more important, however, is that Observation 2.6 will allow us
to prove

2.8 THEOREM. If X and Y are a.s. bounded, centered Gaussian processes
on T such that

(2.21) E{Xt-X9f < E{Yt-Y9f

then

(2.22)

Note that the important difference between Lemma 2.5 and Theorem
2.8 is not so much the additional factor of 2 on the right hand side, but the
fact that we no longer require that X and Y have identical variances.

PROOF: Fix a point to G Γ and set α 2 = s u p t e τ E(Yt - Yto)
2. Furthermore,

set

Xt — Xt — Xto ? Yt = Yt — Yto ?
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and let η and η* be two standard Gaussian variables, independent of one
another and the two processes Xt and Yt. Now define

Xt = Xt + ηa,

where
g2 (t) := a2 - E(Yt - Yto f + E(Xt - Xto )

2 .

Note that a2 > g2 (t) > 0 for all t <E T, and that EX2 = EY2 for all t e T.
Furthermore, since

(2.23) E{Ϋt-Ϋ.γ = E[Ϋt-Ϋ,) + η'(g(t) - g(s))]

= E(Ϋt-Ϋ,γ + (g(t)-g(s)Y

> E(Yt-Y,)\

it follows that

< E(Ϋt-Ϋ,)2

< E(Yt-Y,)\

the first inequality following from (2.21) and the second from (2.23).
Observation 2.6 gives us that

E\\X\\ = E\\X\\ = E\\X\\,

and Corollary 2.5 gives us that

E\\X\\ < E\\Ϋ\\.

But,

= Esnp(Ϋt +η'g(t))
ter

< E\\Ϋ\\ + Esnpη'g(t)
teT

< E\\Ϋ\\ + E{snpη'g(t)lη,>0}

= E\\Ϋ\\ +supg(t)E{ηΊηl>0}
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the last line following from the definition of g and a standard Gaussian
integration. However, by (2.20), the last line here is less that 2J5||y|| =
22£||y||. This concludes the proof. •

There is, in fact, a stronger version of Theorem 2.8, in which the factor
of 2 in (2.22) does not appear. The proof is somewhat more involved than
that of Theorem 2.8, and relies on new calculations rather than a clever
application of previous results.

2.9 THEOREM ( S U D A K O V - F E R N I Q U E INEQUALITY). Under the condi-
tions of Theorem 2.8, (2.22) continues to hold if the factor of 2 is removed
from the right hand side of the inequality.

PROOF: Actually, I shall only show you how to start the proof, and shall
leave the last part, which involves considerable calculus, up to you. You can
find the details in Fernique (1975) or Jain and Marcus (1978).

The main trick of the proof lies in noting that it is sufficient to show
that

E sup \Xt - X91 < E sup \Yt - Y91.
ι,ter »,teτ

The result we seek will then follow since, for example,

E sup \Yt-Y,\ = E sup {Yt - Ys)

\ + suP(-rt)}
ter

= 2E\\Y\\.

As usual, we assume that T is finite with k points, and use separability
and the final argument in the proof of Borell's inequality to complete the
proof. Let X and Y denote the A -vectors of values of Xt and Yt on T. Put
copies of X and Y onto the same probability space, and assume they are
independent. For θ £ [0,1] set

Z(θ) = \ / l - 0 X + VθY,

and φ[θ) = £(sup.(Z(0))J. We need to show that ^(0) < φ{l), for which it
is sufficient to show that φ'{θ) > 0 for all θ G [0,1].

If R(0) is the covariance matrix of Z(0), then using Fourier transforms
we have that the A -dimensional density of Z(θ) is given by

pθ(z) = {2π)~k / exp{i(z,x) - j(R(0)x,x)} dx.

Since

φ(θ) = / ma,x{z1,...,zk}pθ(z)dz,
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we have

φ'(θ) = ί

If you now start differentiating, keeping (2.14) in mind, you will find that

What remains to complete the proof is to show that this expression is posi-
tive. This is left to you, with the help of the references given above. •

The Sudakov-Fernique inequality is a good place to look to see how far
one can generalize results of this kind. For example, the inequality cannot
work for sup|X t | To see this, let Z be a centered Gaussian variable, £ a
positive real number, and X a bounded Gaussian process. Let Y* be the
process defined by

y/ = ζz + xt, ter.

Then E{Y* - Y*)2 = E{X8 - Xt)
2 for all s,ί <Ξ T, but £ s u p t e Γ \Y* | -» oo

as f —> oo, while jE*supt6Γ \Xt\ is bounded.
To show that the original Slepian's inequality also fails for sup t 6 T |Xt|>

take T = {1,2}, with Xλ and X2 standard normal with correlation p. Writing
Pp(λ) for the probability under correlation p that max(X1?X2) > λ and Φ
cis usual for the right hand tail of the standard normal distribution function
we see that

P_x(λ) = P_ 1 {max(X 1 ,X 2 )>λ} - P{\X\ > λ} = 2Φ(λ)

P0(λ) = 2Φ(λ)-Φ 2 (λ)

p + 1 (λ) - P 1 {max(X 1 ,X 2 )>λ} = P{Xλ > λ} - Φ(λ)

Hence P_ i (λ) > Po (λ) > Pi (λ) as Slepian's inequality requires. But if Pp is
the probability that m a x d ^ , |X3|) > λ, then P_i(λ) = P+i(λ) = 2Φ(λ),
Po(λ) = 4[Φ(λ) - Φ2(λ)], so that for all λ > 0

P_ 1 (λ)<P 0 (λ) P 0 ( λ ) > P 1 ( λ ) ,

and the monotonicity required by Slepian breaks down. •

Here is a list of interesting variations of Slepian's inequality. You can
skip them without harming your understanding of the following chapters,
but it would be a shame.

ELLIPTICALLY CONTOURED DISTRIBUTIONS: If pΣ (x) is a density on dίk

of the form
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where Σ is an invertible, positive definite matrix and p: [0, oo) —> 9i+ is
assumed to satisfy /0°° Xk~1p(λ2) dλ < oo, we say that p is elliptically con-
toured. A version of Slepian's inequality holds for such densities, for writing
Σ = {<ri3')i<u<n and defining

with h satisfying the appropriate continuity and growth conditions (as in
Theorem 2.3), then Joag-Dev et al. have shown that #(Σ) is an increasing
function of σtJ. The proof is almost identical to that we gave for Theorem
2.3.

GORDON'S INEQUALITY: An interesting extension of Slepian's inequality,
which is a result about Gaussian maxima, is a result of Gordon's about the
min-max of a rectangular array of Gaussian variables. Let (X u ) j , {Y%j)i >
X = {(*"> j)' 1 — * ~ nJ 1 — J — r n } ^ e * w o collections of centered Gaussian
variables satisfying the following three conditions:

, = EY* (ij) € I,

EXi3Xik < EYijYik (i,j),(i,k)el,
EXi}Xίk > EYisYa, («,i),(ί,fc) el,iφ L

Then, for all real \i:j,

n TO n

{ Π I M ' > λ-i} ^ p{ Π
This implies, for example, that for any increasing function g on

(2.24) E{ min max ff(Xiy)} > E{ min max flf(l<y)},
l<*<nl<y<TO l<t<nl<i<m

and that for all λ > 0

(2.25) P{ min max Xi3 > λ} > P{ min max 3^y > λ}.
l<t<nl<j<TO l<t<nl<j<TO

This result has extensions from minmax to minmaxmin..., etc. and to ellip-
tically contoured distributions as well. It is a consequence of the following
theorem, whose proof is due to Kahane (1986).

2.10 THEOREM. Let X = (X{) and Y = (Yi), i = 1 , . . . , k be two collec-
tions of Gaussian variables, and I and J subsets of {1 , . . . , A:}2 such that

(2.26)

(2.27)

(2.28)

EXtXj

EXiX3

EXiX,

< EYiY,

> EY<Y3

= EY,Yd

(iJ)

(iJ)

el,
eJ,

i Ju J.
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Let h:$tk —> 3fc be C2, and assume that, together with its derivatives, it sat-
isGes a O(||x||^) growth condition at infinity for some unite N. Furthermore,
assume

<2 3 °>
then

(2.31) Eh{X) < Eh{Y).

Note that Theorem 2.3, and so Slepian's inequality and all that it im-
plied, are consequences of this result. Thus what follows is, in fact, an
alternative proof of Slepian's inequality.

PROOF: As in the proof of Theorem 2.9, put copies of X and Y onto the
same probability space, and assume they are independent. For t 6 [0,1] set

Z(θ) = Vl-ΘX. + VθY9

and ψ(θ) = Eh{Z{θ)). We need to show that ^(0) < τ/>(l), for which it is
sufficient to show that φ'(θ) > 0 for all θ e [0,1]. Writing h{ for dh{x)/dxi9

and allowing ourselves the luxury of interchanging the order of expectation
and differentiation, we have

(2.32) φ'(θ) =

Fix θ and j , and note that

E{Z{(Θ) Z'}.

It thus follows from (2.26)-(2.28) that if W^,... 9WN is a new sequence of
Gaussian variables, independent of both the X{ and Y{, then we can express
the Zi as follows:

(2.33) Zi{9) = ctiZ'^θ) + Wi,

where α< > 0 if (i,j) e I, α, < 0 if (i,j) € J, and α< = 0 if (i,j) $ I U j .
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With j still fixed, consider the behaviour of a typical summand in (2.33).
Then

(2.34)

X Φz'. {z'j)Φw (wi, . . , WN ) dzt

jdw1 . . . dwN ,

where φz> and φw are the obvious Gaussian densities.

To complete the argument, differentiate (2.34) with respect to each α t,
and note, that from the properties of the α, (c.f. the line following (2.33)) and
the inequalities (2.29) and (2.30), that the resulting expression is positive
if (t\j) -S i\ and negative if (ij) β J. That is, E{hj{Z{θ))Zl

j{θ)} is an
increasing function of αt for (i9j) £ I, and decreasing for (i9j) 6 J.

On the other hand, it is clear that E{hj(Z(θ))Zf

j(θ)} = 0 if all the
(Xi = 0. Consequently, this expectation must always be non-negative. That
is, φ'(θ) > 0, which is what we had to prove. •

As one might expect, Gordon's inequality can be extended in much the
same way as Fernique's inequality can. For example, there is an analagous
result for elliptically contoured distributions. You can find further results,
as well as applications of Gordon's inequality, (which we shall return to in
the following section) in Gordon (1987, 1988a,b). Note also from the proof
of Theorem 2.10 that the restriction to twice differentiable h is unnecessarily
restrictive. It would have been enough, for example, to assume that the first
order derivatives hj are all absolutely continuous with positive generalised
derivatives.

INFINITELY DIVISIBLE PROCESSES: We consider only a simple example.
Let μ be a non-negative measure on 3?d and let Nμ be a Poisson point

process on $ld with intensity μ. Let Ax,..., An be Borel sets in Std and define
X{ = Nμ (Ai). Let Yi = Nu (A) be similarly defined with respect to a Poisson
process with intensity v. If, for all B C {1, ...,n}, B φ 0,

(2.35) μ(f| A) < u(() A), μ((J *)>»
i€B i€B iβB i€B

then for all λ > 0

(2.36) P{ max X< > λ} > P{ max Y{ > λ}.
l < t < n l<i<n

That is, a form of Slepian's inequality holds. Since Poisson processes are the
natural building blocks of infinitely divisible processes, it is not hard to see
that a result of this form must extend to a far more general situation. For
details, see Brown and Rinott (1988) and Ellis (1988).
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The primary interest in (2.36) is that it allows one to build multi-
dimensional Kolmogorov-Smirnov tests based on multivariate empirical dis-
tribution functions, which, unlike the examples discussed earlier, hold for
finite sample size. You can find details (and tables!) in Adler, Brown and
Lu (1988).

The fact that a Slepian-like inequality holds for these processes is some-
what surprising, since there is nothing Gaussian-like in their structure. Thus
it is not surprising that whereas the proofs of the basic Gaussian result, the
results for elliptically contained distributions, and the min-max result all look
basically the same, the proof of (2.36) under (2.35) is completely different.

STABLE PROCESSES: We have already discussed these processes in the pre-
vious Chapter. It has long been part of the folklore of stable processes that
no Slepian like inequality holds, and counter-examples have been constructed
to demonstrate this: e.g. Fernique (1983), and Linde (1986). In a certain
sense, however, this claim is not quite true. The examples given all show that
ordering two stable processes in terms of the covariation function, does not
imply stochastic ordering of the sample maxima. (The covariation function
is a stable analogue of the covariance function for Gaussian processes, and
is defined as

,ί) = J
where m is the spectral measure of (1.74).)

However, whereas covariance functions determine Gaussian processes,
the same is not true of covariation functions for stable processes. Thus, it
is not necessarily natural to try to base a stochastic majoration result on
comparison of covariation functions. Gennady Samorodnitsky has recently
shown me a Slepian type result for stable processes based on comparison of
spectral measures. Hopefully it will be written up sometime soon.

One factor to note, however, is that one of the reasons that Slepian's
inequality is so useful is that it is so very easy to state and apply. This is
not the case with Samorodnitsky's result for stable processes. Thus it still
seems that a "pure" Slepian inequality is basically a Gaussian result only,
and we are very lucky to have it.

DIFFUSIONS AND THEIR ILK: There is a substantial body of results in
the diffusion literature on stochastic domination problems. For example,
let Xi(t) and X2{t) be two diffusions on [0,oo) satisfying the stochastic
differential equations

(2.37) dX.it) = α<(X<(t))Λ + 6 ( ^ ( 0 ) ΛVi(t),

where the Wi(t) are standard Brownian motions. Note that the Xt have
different drift, but the same "speed" function. If a± (x) < α2 (x) for all re,
then

P{\\X1\\T>\} < P { | | X 2 | | τ > λ }
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for all λ and all T C [0, oo). Indeed, much more than this Slepian like
inequality is true, for one can build Xλ and X2 on the same sample space
in such a way that, with probability one, Xι{t) < X2{t) for all t G [0,oo).
The construction is easy. Just start the processes off in such a way that
- î(O) < ^2(0), and use the same Brownian motion in (2.37) to generate
each of the two processes. The fact that aλ (X) < a2 (X) will then ensure
that Xλ (ί) < X2 (t) for all t.

In the light of this result, it is natural to ask the following question:
Given two Gaussian processes satisfying the conditions of Slepian's inequal-
ity, can one construct them on the same sample space so that the maximum
of one a.s. dominates that of the other? Simple examples with two-point
parameter spaces show that this is not the case.

Once again, to convince you that in spite of what we have just indicated
Slepian's inequality is a primarily Gaussian result, you should remember
that the diffusion result is heavily restricted to processes on the real line
only, and has no extension (as, in fact, can be said of diffusions themselves)
to unstructured parameter spaces.

3. Applications in Banach Spaces.

One of the most fruitful areas in the theory of probability over the past
decade has been the development of an active interface with the theory of
Banach spaces. Much of this activity has centered around the general theory
of Gaussian processes, and in this section I want to briefly describe two
closely related results in the local theory of Banach spaces and their proof
via Gaussian methods.

It is beyond the intended scope of these notes to enter into a detailed
treatment of these results. Nevertheless, I do want you to see them, if only
to show how useful the general theory of Gaussian processes is, even outside
the usual settings of probability and stochastic processes. For details you
should see the notes by Pisier (1986) and his brand new monograph Pisier
(1989), as well as the monographs by Milman and Schechtman (1986) and
Linde (1986). These cover not only results of the kind discussed below, but
also a wide variety of other applications of Gaussian processes to Banach
space theory.

We start by recalling some basic facts and definitions. Let £", F be
Banach spaces and let λ > 1. Then E and F are called λ-isomorphic if there
is an isomorphism Γ: E -> F such that | |Γ|| HΓ"11| < λ, where, as usual,

||Γ|| = sup \\T(x)\\F,
ll*l |B<i

and II | | β and || | |F and the norms on E and F. If E and F are λ-isomorphic

we write E ~ F.



60 TWO BASIC RESULTS II

This concept can be used to define a (Banach-Mazur) distance between
E and F by

p{E,F) = i n f { λ : £ ~ F } .

The importance of this distance function is that it is a good measure of
how close two Banach spaces are in terms of their local characteristics. To
provide an example of this, let ί^ denote the Euclidean space 3?Λ equipped

with the norm ||x||p = (ΣΓ=i 1̂ * | p ) 1 / p - Here is a result dating back, in
essence, to Dvoretzky (1961):

2.11 THEOREM. Let B be a Banach space, and e > 0. Then there exists a

n — n(e) such that B has a subspace F with F x~€ ££.

Here is a more precise result in a more specific setting.

2.12 THEOREM. Let e > 0 and n > 1. IfN > αexp(βne~2) is an integer
(where α,β > 0 are universal constants), then for every convex set B C $tN

which contains the origin in its interior, there is a subspace F of dimension
n and a constant α > 0, such that

(2.38) αSn C FΠB C

where Sn is the unit ball in 5Rn.

These two results are really versions of the same basic truth, Theorem
2.12 being the sharper of the two because of the additional information it
provides on n. The bound αexp(βne~2) that it gives can actually be shown
to be sharp.

Neither of these results looks like it has anything to do with Gaussian
processes, but here is the briefest of outlines of a proof that will show there
is a very strong connection indeed.

Recall firstly the comment made after the statement of Theorem 2.1
that BorelΓs inequality (2.5) holds also for Banach space valued Gaussian
processes in which the norm in (2.5) is the Banach norm.

To construct the subspace F of Theorem 2.11, let X be a B-valued
Gaussian variable, take n > 1, and let X l 5 . . . ,X n be independent copies
of X. Let M = E\\X\\. Then some reasonably simple calculations, put
together with the Banach space version of Borell's inequality, show that for
the right values of n there is a subset Ωo of our generic probability space,
with P{Ω0} > 0, such that for ω G Ωo the following is true for all x € 3Rn:

Taking the span of {Xλ (ω),. . . , Xn (ω)} for ω G Ωo provides an example of
F.
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This proves Theorem 2.11. Details can be found in Pisier (1986, 1989).
The proof of Theorem 2.12 follows the same principle; i.e. one uses random
Gaussian mappings satisfying certain conditions with positive probability to
provide proof that such mappings exist at all. The proof of Theorem 2.12,
however, is based on a very clever use of Gordon's inequality (2.24). The
proof is in Gordon (1988).

4. Exercises.

SECTION 2 . 1 :

1.1 By expanding the normal probability density in a power series, or
otherwise, establish the two sides of the basic inequality (2.1).

1.2 If you have not already done so, prove (2.11) by applying Itό's formula
(2.10) to F(z,i) = (P 1 _ t /)(x) . Note how very neatly various complicated
terms cancel out, and marvel in the beauty and speciality of the Gaussian
density which makes this happen.

SECTION 2.2:

2.1 Show by example on a two point parameter space that the a.s. domina-
tion of suprema that holds for diffusions does not hold for Gaussian processes.
Why does it not hold for Gaussian diffusions?




