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I. INTRODUCTION

1. The Basic Ideas.

It is my aim in these notes to treat two basic and closely related problems
in the theory of Gaussian processes: the question of sample path continuity
and the distribution of the supremum of a Gaussian process over a fixed set
in its parameter space.

The basic approach will follow the modern attitude that the precise
geometrical structure of the parameter space of a Gaussian process is of rel-
atively little importance in determining sample path properties. Of more
importance is establishing the "size" of the parameter space when measured
in terms of a metric based on the covariance function of the process. There
are various ways to measure this size, the best known, and easiest to handle,
being via the notion of metric entropy. The most recent, and most power-
ful tool however is the notion of mesure majorante, or majorising measure,
introduced by Preston (1972), (albeit not under this name), developed by
Fernique in a series of papers starting with Fernique (1974), and recently
shown by Talagrand (1987) to be the only tool currently available that pro-
vides necessary, as well as sufficient, conditions for the a.s. continuity of a
general Gaussian process.

In between regular metric entropy and majorising measures lie some
other notions, retaining the ease of application of metric entropy while giving
stronger results. We shall consider two of these as well, once in studying
continuity, and once while looking at suprema distributions.

Before we can start anything, however, we need to settle on terminology
and notation.

(Ω,/,P) will be a complete probability space that will remain fixed
throughout the notes. A Gaussian random variable X with mean μ G 5R and
variance σ2 G 9ϊ+ is a real valued random variable such that for each λ G 3t

Eeixx = eiμX~ kσ2χ2

or, equivalently, the law of X has density σ~1φ((x — μ)/σ)9 where

φ(x) := (2π)-ϊexp(-:r2/2).

If μ = 0 we call X centered, and if we also have σ = 1, then X is called stan-
dard normal. Since the transition from centered to non-centered Gaussians
is via the easy addition of a constant we shall treat, almost exclusively, only
centered Gaussian variables.

A (centered) Gaussian process is a family {Xt}teτ of random variables,
indexed by a parameter set Γ, such that each linear combination Y^atXt

is (centered) Gaussian. Whereas the use of the letters t and T seem to
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denote that the parameter is "time", the entire thrust of the modern theory
of Gaussian processes is that T should be very general and neither theorems
nor proofs should assume any particular structure for T. (In general we shall
require only that T be a metric space, and that it be totally bounded - to
be defined in a moment - in its metric.) For example, we shall consider
examples in which T is a subset of 9ifc, k > 1 ("multiparameter time"), or
the set of all squares within [0, l] f c, k > 1, or all convex sets in [0, ί\k, k > 1,
etc. In none of these examples is T either one-dimensional, or ordered.

If X is a centered Gaussian process, then the above definition implies
that the covariance function i?(θ,ί) = E(X9Xt) on T x Γ, which determines
E(Y^atXt)

2, also determines the law of the entire process. It is easy to
see that R must be positive semi-definite (i.e. Σ9 t e s a9 R(s,t)at > 0 for all
S C T and at £ 9i). It is a basic result on Gaussian processes, following from
the Kolmogorov extension theorem and the form of the multivariate Gaussian
distribution, that given any positive semi-definite R on T x T there exists a
centered Gaussian process on T with covariance function R.

Without further mention we shall always assume that T has a countable
dense subset (which we shall often explicitly exhibit as part of an entropy
calculation), and shall assume that X is a separable stochastic process. The
importance of this assumption is that questions of continuity and bounded-
ness of X over T then reduce to equivalent questions over the dense subset,
and the fact that this is countable often makes for somewhat easier argu-
ments.

This is all we need in the way of formalities. •

By way of an introduction to what awaits us, consider the two problems
of determining the a.s. continuity of X on Γ, and finding the distribution of
sup t G T Xt. Assume T is a metric space with metric r, and consider

(1.1) p2(u) = p2

T(u) = sup E{X9-Xtf.
τ(s,t)<u

If X is to be continuous, then it is obvious that we must have pτ (u) —> 0
as u —> 0. In fact, this is a trivial necessary and sufficient condition for
mean square continuity; c.f. Exercise 1.1. To obtain full, almost sure, sample
function continuity we shall require more, and, in particular, we shall have to
concentrate on the rate at which ρ{u) tends to zero. The function p cannot,
however, be of intrinsic importance, for we could change to an equivalent
metric on Γ, without affecting the continuity or otherwise of X, but changing
the specific behaviour of p.

Once we realise this fact, it is obvious that there is no good reason not
to choose a metric on T that is equivalent to the basic metric, but easier to
work with. An appropriate candidate is given via the covariance function of
l a s

(1.2) d(M) =
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in a notation that will henceforth remain fixed. Actually, d is only a pseudo-
metric, since d(s,t) = 0 does not necessarily imply that s = t. Nevertheless,
we shall call d the canonical metric for T and/or X. Since the question of
a.s. continuity makes little sense if we are not prepared to accept that X is
at least mean square continuous, which, as we have just noted, occurs if and
only if the covariance function is continuous over T x T, we shall henceforth
assume R continuous. In this case it is easy to see that if (Γ, r) is compact,
then r-continuity and d-continuity are equivalent. Since this fact is crucial
to our approach, we give a simple proof.

Firstly, note that since R is continuous, if X is d-continuous on T then it
is trivially r-continuous. The other direction is not immediate. The problem
comes from points that are distant in the r-metric, but close in the d-metric.
(For example, if we take perhaps the simplest of all non-trivial Gaussian
processes,

X(t) = Acos(t-φ), ίG[0,Γ],

with A a Rayleigh random variable with probability density αexp(—α2/2),
α > 0, and independent of φ uniform on [0,2π), then since X is periodic
d(s,t) = 0 whenever r(s,f) := |ί — s\ is a multiple of 2τr. Hence r-continuity
of X does not immediately imply d-continuity.)

Suppose, however, that X is r-continuous. For η > 0, let

A, = {{s,t)eTxT:d{s,t)<η}.

Since R is continuous, this is a r-closed subset of T x Γ. Furthermore,
f]η>0 Aη = AQ. Fix e > 0. Then, by the r-compactness of Γ, there is a finite
set B G Ao (the number of whose elements will in general depend on e) such
that

U ) e T x T: max(ψ,6'), r(ί,ί')) < e}

covers Aη for some η = η(e) > 0. That is, whenever (θ,ί) G Aη there is a
(s',*') G B with r(s,θ'), r(f,f) < e. Note that

Since (θ',ί;) G B C Ao, we have X(s') = X{t') a.s. Thus

sup \Xt — X81 < 2 sup \Xt — X91,
d(s,t)<η(e) τ(s,t)<η

so that the r-continuity of X implies its d-continuity. •

Thus, at least for a while, we can concentrate on questions of continuity
with respect to the canonical metric only, safe in the knowledge that if T is
compact this is not a restriction.
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It thus seems reasonable to now assume that continuity problems are
going to be associated with the incremental covariance function ρd{u) of
(1.1). Life, however, is not quite so simple. Assume for the moment that T
is continuous, in the sense that for all u < diam(Γ), where

diam(Γ) = D{T) = sup d(s,t),
s,t€T

we have that there exists at least one pair of points θ,ί G T such that
d(s,t) = u. Then it is immediate from the definition (1.1) that

Pd{u) = sup [E{X9-Xt)
2\ϊ = u.

Since this is independent of the covariance function it cannot be the correct
measure with which to study continuity. The information which used to be
in p has now somehow moved into the relationship between the canonical
metric d and the parameter space T, and, in fact, is tied up in the "size" of
T as measured in terms of d.

We denote by N(e) the smallest number of closed d-balls of radius e that
cover Γ, and set H(e) = logiV(e). The latter is called the metric entropy
function for T (or X). We shall refer to any condition or result based on N
or H as an entropy condition/result.

THROUGHOUT THESE NOTES WE SHALL ASSUME THAT THE FUNCTION

N(e) IS FINITE FOR ALL e > 0. THAT IS, WE ASSUME THAT T IS TOTALLY

BOUNDED IN THE CANONICAL METRIC.

This is a basic assumption, without which many of the most elementary
results following will not be true. However, it is so weak an assumption, that
it never need worry us from the point of view of restricting applications of
the general theory.

The first "general theory" result, is the following:

1.1 THEOREM. A sufficient condition for the a.s. continuity of X on T is

(1.3) / (logN{e)γ de < oo.
./o

(This theorem has a long history, with the first published versions due
to Dudley (1967) and Sudakov (1969). Dudley (1973) has a full historical
account of the various early versions with their various proofs, both correct
and "in doubt".)

Much more is actually true within the framework of Theorem 1.1 than
we have stated here. For example, the function ω(6) = f* (log Ne) * de, serves,
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up to a random multiplicative constant, as a modulus of continuity for X in
terms of the canonical metric d. Consequently, investigation of the integral
in (1.3) involves the study of a number of properties of X at once.

We shall see how to prove Theorem 1.1, along with a variety of related
results, in Chapter 4. Note now, however, that when e > diam(Γ) we have
Ne = 1, so that the upper bound on the integral in (1.3) is really diam(Γ).
Furthermore, since JV(e) is clearly a decreasing function of e, the issue of
finiteness in (1.3) is at zero.

We shall motivate the need for an entropy type condition with a variety
of examples in the following two sections.

Now, however, let us turn briefly to the question of the behaviour of
supΓ Xt. To be honest, we should point out that in general finding the
distribution of this supremum is an almost impossible problem. For example,
precise formulae for

(1.4) P(λ) = P{supXt > λ }
%eτ

are known for only six cases (i.e. six covariance functions) if X is required
to be stationary, and in each one of these T is a finite interval in 9Ϊ1. The
best one can hope to get here are reasonable formulae for the asymptotic (as
λ —> oo) behaviour of P(λ), and here there is a reasonably full theory.

It is easy to see (i.e. to guess) that the λ —> oo behaviour of P(λ) will
depend on two factors. The first, and most obvious, is any lack of homogene-
ity of X on Γ. If EX* is not constant over Γ, then it is reasonable to expect
that the supremum will be achieved somewhere in the neighbourhood of the
point (or points) of maximal variance. This is in fact the case.

The second factor will be the local smoothness, or lack thereof, of X.
Again, it is reasonable to expect that the rougher X is near a point of
maximal variance, the larger one can expect the supremum to be. Again
this idea can be made rigorous and precise estimates and results proven. We
shall return to this in detail in Chapter 5, after we have proven the rather
surprising result that if to G T is such that

EX2, = sup EX?
teT

then, at least for large λ, P(λ) is not very different from P{Xto > λ}. BorelPs
inequality, Chapter 2, is the formal theorem, and in many ways is one of the
building blocks of these notes. Some examples in Chapter 5 will show us
that λ need not really be all that large for this result to be true. In fact,
λ « 1.5sup fGT(i£X t

2)1/2 is often large enough!
Now, however, the time has come to look at some examples. We start

with a look at the continuity question for a specific family of centered Gaus-
sian processes, with the aim of convincing you that you should, once and
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for all, forget that in the prehistory of Gaussian processes "tw was indeed
time, and to show that it is neither T that is important, nor X, but rather
the relationship between them as measured by the canonical metric d. Not
surprisingly, the family that we shall take for our first class of examples is
based on what is perhaps the most important of all stochastic processes,
Gaussian or not - the Brownian motion. The family is composed of some of
the extensions of this process to parameter spaces richer and more complex
than the real line. This family of examples forms the content of the follow-
ing section, and is required reading, in terms of providing motivation for the
general theory.

2. The Brownian Family of Processes.

Let (JE7, £ ,f) be a σ-finite measure space. (Usually it will be a Euclidean
space with the Borel σ-algebra and Lebesgue measure). A Gaussian white
noise based on v is a random set function W on the sets A £ ί of finite
i/-measure such that

(1.5) W{A) is centered Gaussian and EW2{A) = u{A).

(1.6) If A n B = φ then W(A Uf l )= W(A) + W(B) a.s.

(1.7) If A Π B = φ then W(A) and W(B) are independent.

Property (1.6) encourages one to think of W as a random (signed) measure,
although it is not generally σ-finite. We describe (1.7) by saying that W has
independent increments.

To see that such a process exists, think of ί as a parameter space Γ,
with a covariance function on ί x ί given by

B) = EW(A)W(B) = v{AΓ)B).

Since for any A{ e £ and a{ e 3fc

u u
/

> o,

Rv is positive semi-definite. Thus W exists as a centered Gaussian process
on £. •
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To see what the canonical metric d is in this case, note that

d2(A,B) = E{W{A)-W{B)Y

= v{A) + v{B) - 2v{A n B)

= u{ABcUAcB)

= v{AAB)

where the symmetric difference AAB is made up of the points in either A
or JB, but not both.

We specialize to the case E = 1Rk+ = {(tx, . . . , ί f c ): t{ > 0}, £ = the Borel
σ-algebra on 8ΐ* and v — λ = Lebesgue measure. At the risk of occasional
confusion we denote a point (t±,... ,έfc) in 8ΐ* simply by t. Let (α, b] C 3ifc

be the "half open" Λ -dimensional interval Π*=1(αi,&i], (with open, closed,
and half-open from above intervals written and defined similarly), and set
Wt = W((Q,t]). Wt is called the Brownian sheet. Via this definition and the
above, W is the centered Gaussian process with covariance

EWsWt = ( s i Λ ί J x . - X ^ Λ ί f c ) .

When k = 1, W is the standard Brownian motion. When A: > 1, then
if we think of VK(A) as a measure, Wt is the corresponding "distribution
function". It vanishes on the axes, and if we fix k — 1 of the indices, it is a
scaled Brownian motion in the remaining free variable, (c.f. Exercise 2.1.)

The Brownian sheet holds roughly the same place in the theory of multi-
parameter stochastic processes and multivariate statistics that the standard
Brownian motion does in one dimension. It is a multi-parameter martingale
(Cairoli and Walsh (1975), Wong and Zakai (1976)) and forms the basis of
the multiparameter stochastic calculus. There is a nice review of its basic
properties in Walsh (1986), where you can also discover its central role in
the theory of stochastic partial differential equations, and in what sense it
is valid to describe the derivative dkW(t1,... ,ifc)/5ix ...dtk as Gaussian
white noise. Markovian properties, however, are somewhat missing, due to
the fact that the parameter space is not totally ordered. (But see Section 5.5
for one way to get around this, and keep your eyes open for a forthcoming
paper by John Walsh and Robert Dalang on this topic.) The lack of order
in 9ϊίj_ will not worry us, however, since from the Gaussian point of view we
have already agreed to forgo using the special structure of specific parameter
spaces.

The Brownian sheet arises in multivariate statistics in two main settings.
If Z* is the A -dimensional integer lattice in 3ϊίj_ and {Xχ}ieZk a collection

of centered, i.i.d. random variables with EX? = 1, then it is not too hard to

show that rΓkl2 Σien(t) X* converges weakly to Wt as n -> oo, t e [0,1]*,

where n(t) = {ι G Zk : 1 < ty < [nί,], j = l,...,fc}. ([x] is the "integer
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part" of x.) That is, Wt is basic to the fc-dimensional functional central limit
theorem.

Secondly, let Xλ, X2,..., be a sequence of i.i.d. random variables, with
common uniform distribution on [0, l] f c . Then the empirical distribution
function Fn (t) of the X> is defined as

n

Similarly, the empirical measure is defined as

(1.9) un{A) =
n

Then, as n —•> oo, the normalized empirical distribution function Gn(t) :=
y/n{Fn (ί) — F(t)} converges weakly to the so-called pinned Brownian sheet,
W, a version of which can be obtained as

(l.io) wt = wt - \t\wl9 ίe[o,i] fc,

where |t | = Π*=i *•• ^ w e restrict A to a small enough (in terms of entropy)
class of sets, then n*{vn(A) — X(A)} converges weakly to a process we shall
call the set indexed, pinned, Brownian sheet, a version of which is given by

W{A) = W{A) - λ(A)W([0,l]k).

(For details about the weak convergence, consult Dudley (1978a) and Pollard
(1984). For more properties of the limit processes, be patient.)

Our first result is

1.2 PROPOSITION. The Brownian sheet and pinned Brownian sheet are
continuous on [0, l ] f c .

PROOF: Clearly, we need only prove the proposition for W. The continuity
of W then follows from that of W and (1.10).

We shall use the entropy condition of Theorem 1.1, for which we must
calculate a bound for the minimal number of d-balls of radius e needed to
cover [0, l]k.

Fix t 6 [0, l]k, and let S(t,6) be the fc-dimensional cube with lower left
corner t and sides of length δ: i.e.

S(t,δ) = {s β [0,l]k : U < Si < tt + δ9 i = l,...,k}.

Then it is easy to see that

sup E{Wt -W9f - kδ.
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(Equality holds here if t + δ β [0, l]k.) Hence,

sup d(θ,ί) <
ses(tyδ)

and so one way to cover [0, l]k with d-balls of radius e is with the [fc(l + e~2)]fc

balls of radius e2 jk centered at the points t of the form (tΊ e2 /fc,..., ik e
2 /k),

ty = 0,1,..., [Jbe"2]. It thus follows that N{e) < kk (1 + e~2)k, and so the en-
tropy integral Jo°° (log JV(e)) a de is finite with room to spare. This completes
the proof. •

The natural question to ask now is whether or not continuity is preserved
when we look at Gaussian white noise indexed by more general classes of sets
than the positive orthants that gave us the Brownian sheet. The motivation
behind this question is that the weak convergence referred to above in the
context of empirical processes requires that the limit process be continuous,
and so the very raison d'etre of our interest in the Brownian sheet (at least
from this viewpoint) hinges on this question. The reason to look at more
general index sets lies in the fact that the power of Kolmogorov-Smirnov
tests based on statistics of the type

(1.11) Bupn-»|i/n(Λ)-λ(Λ)|
AβA

is substantially increased by taking richer classes of sets A other than merely
lower orthants, (Pyke (1984, 1985)).

We shall give a number of examples of interesting classes A in the fol-
lowing section, and later in these notes. Now, however, we shall consider an
example of a parameterising class of sets which is too rich to allow continuity.

Introduce a partial order on 9?fc by writing θ < (<) t if s{ < (<) t{ for
all i = 1,.., k. Then a set A in dtk is called a lower layer if s < t and t £ A
implies s G A. With some looseness of terminology, we shall refer to the
Gaussian white noise based on Lebesgue measure on a class of sets A as the
Brownian sheet on A.

1.3 PROPOSITION. The Brownian sheet on lower layers in [0,1]2 is discon-
tinuous and unbounded with probability one.

PROOF: We start by constructing some examples of lower layers. Write a
generic point in [0,1]2 as (θ,ί) and let T := T01 be the right triangle in
which s < 1 and t < 1 < s +1. Let COi be the square where | < s < 1 and

ϊ < ί < 1 .
For n = 1,2,..., and j = 1,..., 2n, let Tn3- be the right triangle defined by

s + t > 1, (i-l)2-n < s <j2-n,&ndl-j2-n < t < l-(y-l)2~n. Let Cnj

be the square filling the upper right corner of Tn}-, in which (2j —1)2" ("+ ̂  <
s < j2~n and 1 - (2j - l)2-<n+1> < t < 1 - (j - 1)2"".



10 INTRODUCTION

structures of Figure 1.1, where each step comes from the horizontal and
vertical sides of some Tnj with, perhaps, different n.

71 = 2

FIGURE 1.1. Construction of some lower layers.

Note that since the squares Cnj are disjoint for all n and j , the random
variables W(Cn3) are independent. Also λ(Cn j) = 4

Let D be the negative diagonal {(θ,ί) £ [0,1]2

D Π Tnj. For each n > 1, each point p = (s,i) 6 D
such interval A»,y(n,p) f°Γ some unique i(n,p).

For each p £ D and M < oo the events

for all n , j .
s + t = 1}, and Lnj =
belongs to exactly one

are independent for n = 0,1,2,..., and have the same positive probability.
(Since Wr(Cnj )/2~(n + 1 ) is standard normal for all n and j .) Thus, such an
event occurs with probability one. Let n(p) := n(p,ω) be the least such n,
defined and finite for almost all ω.

Since the events Enp(ω) are measurable jointly in p and ω, Fubini's
theorem implies that, with probability one, for almost all p £ D (with respect
to Lebesgue measure on D) some Enp occurs, and n(p) < oo. Let

= u
pβD

:= {(5

T,

\

» ( P ) .

):s

U

y(»(p).

+ ί <

p ) ,

I}UVL,

.J("(P) ,P)

pβD

Then Aω and jBω are lower layers. Furthermore, almost all p G D belong to
an interval of length 2^~n ( p ) which is the hypothenuse of a triangle with the
square Cp = Cn(P),y(n(p),P) in its upper right corner, for which 2W(CP) >

n(p) Consequently,

W{Aω)-W{Bω) >
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where the sum is over those p 6 D corresponding to distinct intervals
Ln(p)j(n{P),p) Since the union of the countably many such intervals is almost
all of the diagonal, the sum of ]Γ)2~n(p) is precisely 1.

Hence W{Aω) - W{Bω) > M/2, implying that max{|W(A, )|, \W{BU )|}
> M/4. Sending M —> oo we see that W is unbounded and so, a fortiori,
discontinuous with probability one over lower layers in [0,1]2. •

The above argument is due to Dudley (1978b), and a similar argument
shows that W is unbounded over the convex subsets of [0,1]3. Entropy
arguments show that W is also unbounded over the convex subsets of [0, l]k

for all k > 4, and (just to make sure that you don't confuse sample path
properties with topological properties of the parameter space) that W is
continuous over convex subsets of the unit square.

To see how entropy enters into this example, let us consider one further
example, that is closely related to the above in terms of entropy, but is
geometrically less appealing than lower layers.

Let η be positive, and define the collection AΊ of subsets of 3t2 as fol-
lows: Given Ao = [0,l] 2,A l 9 . . .,A n_ 1, let An be the closed rectangle whose
left (vertical) side is the right side of An_λ, (so that it has height 1) and
with width 2 n ( 1 ~ 7 ) . Now divide each An into 2n equal horizontal slices
Anl,...,An2*. The area of each Ank is 2 " n 7 . The family Aη is defined as
the collection of all finite and countable unions of the sets {Ank}.

2-27

Λo

FIGURE 1.2. The partition used to create AΊ.

We start by claiming that the entropy function N(e) of AΊ satisfies, for
all η > 1

(1.12) α i e x p ^ e - 2 ^ - 1 * ) < N{e) < c

for suitable constants α^ftj. It thus follows from Theorem 1.1 that since

/ (logiV(e))' de < K ί
Jo Jo

the Brownian sheet will be continuous on AΊ as long as 1/(7 — 1) < 1, i.e. if
7 > 2. We shall prove half of (1.12) in a moment.
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for suitable constants α^δ,-. It thus follows from Theorem 1.1 that since

f (\ogN{e)γ de < K ί e-1/(Ί-1] de,
Jo Jo

the Brownian sheet will be continuous on AΊ as long as 1/(7 — 1) < 1, i.e. if
7 > 2. We shall prove half of (1.12) in a moment.

On the other hand, since for 1 < 7 < 2 it follows from the lower bound
in (1-12) that the entropy integral diverges, it would seem that in this case
the Brownian sheet on AΊ is discontinuous. That this is in fact the case
can be shown via an almost identical (but somewhat easier) proof to that
used above to show unboundedness on lower layers. The details are left to
Exercise 2.2.

The only case left undecided is 7 < 1. In this case (Jn>o ^n == [0?°°) x

[0, l], and so the collection of sets in AΊ is unbounded, and thus uninteresting.
We now establish the upper bound in (1-12), which is all we need to

prove continuity. (The lower bound requires considerably more work and is
derived in Samorodnitsky (1987a, 1990).)

Choose € = 2 " m , m > 1 and set Sη = 2Ί /(27 - 2) = λfljn, fc Ank) (since

7 > 1). Define

M = M(e) := 1 + [(2m + log2 SΊ)/{Ί - 1)].

Let CM be the set CM = U ~ = M U ί l i Ank Then

CO

E(W{CM))2 = ] Γ 2 n ( 1 " 7 ) < 2 " 2 m .
n=M

Thus it follows that the d-distance between CM and any subset of it composed
of unions of An f c, n > M(e), 1 < k < 2 n , is less than 2 " m = e, and so all of
these unions lie within a rf-ball of radius e of CM .

We still need to find rf-balls that cover all unions of Ank, n < M,
1 < k < 2 n . There are l + 2 + 2 2 + . - + 2 M - 1 = 2 M - l such sets Ank, and
so 22 ~ x possible unions. Take each one of these as the center of a d-ball.
Then

N{e) < 22" <a

for appropriate α 2 , b2. This is what we wanted to prove. •

To be certain that you understand this example, you should make certain
that you understand why making 7 larger makes Aη "smaller". (After all,
all AΊ 's can be trivially mapped on to one another.)

The aim of the examples of this section was to convince you that the
relationship between a Gaussian process and its parameter space is, as far
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as continuity and boundedness are concerned, an important subject. Note
that all the different types of Brownian process that we saw here, whether
they were simple Brownian motions defined on 5R+ or complicated set indexed
processes defined on a class of sets A, could be handled by a common analysis,
based on the covariance function and the canonical metric d. When the
parameter space was more complex, so was the analysis; but in principle
it remained the same. This would not have been so had we attempted to
analyse these processes via extensions of the simple Markovian properties
exhibited by Brownian motion on 3ϊ+ - these do not extend in any simple
fashion to more general parameter spaces.

We shall now look at a number of other examples, some of which will
seem at the outset to be qualitatively beyond the range of processes we have
set out to consider. That they can be handled within the framework of real
valued Gaussian processes on a totally bounded metric space is part of the
justification of the general approach that we take. At this stage you should
definitely work through the example of processes on 3Ϊ1, in order to have a
concrete example on which to hang the theory of the following chapters, and
that on generalised random fields, in order to have some idea why there is
a need to build a general theory that is independent of the structure of the
parameter space. Beyond that, the choice of how far to continue is up to you.
Some readers criticized early versions of these notes, because there were not
enough examples to enable one to appreciate how the general theory could be
applied. Other readers criticized later versions, because there were too many
examples, and working through them they lost sight of the forest because of
the trees. The choice as to how much you should read now is therefore up
to you.

3. A Collection of Examples.

1. PROCESSES ON 3?1: Returning from the generalisations of the previous
section and the abstraction of the first to "simple" processes on the real line,
it is natural to expect that conditions for continuity and boundedness will
become simple to both state and prove, and there will be little, if any, need
to talk about concepts such as entropy.

This expectation is both true and false. It turns out that avoiding
the notion of entropy does not make it any easier to establish continuity
theorems, and, indeed, reliance on the specific geometry of the parameter
space often confounds the basic issues. On the other hand, the following
important result is easy to state without specifically referring to any abstract
notions. To state it, let Xt be a centered Gaussian process on a finite interval
[0,Γ], and define

(1.13) p2{u) = sup E\X9-Xt\\
\s-t\<u
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i.e. p is identical with the function p of (1.1), except that we are now using
the usual Euclidean metric for the real line.

1.4 THEOREM. If, for any δ > 0,

rδ

(1.14) / (-log u)*dp(u) < oo,
Jθ

then X is continuous on [0, Γ] with probability one. Furthermore, a sufficient
condition for (1-14) to hold is for some 0 < C < oo and α, η > 0

(1.15) E\X9Xt\ <
log |3 — 1 | I

for all s,i with \s —1\ < η.

PROOF: The proof that (1.15) implies (1-14) (along with a similar, and
somewhat easier condition to work with) is left to the exercises. Here we shall
prove that the fact that (1.14) implies continuity is a trivial consequence of
the entropy condition (1.3).

Note first that since p(u) is obviously non-decreasing in u, the Riemann-
Stieljes integral (1.14) is well defined, as is the inverse function p~x(u) :=
sup{ί: p(t) < u}.

Note also the obvious fact that, for each e > 0, the interval [0,Γ] can
be covered by 1 + [(2p~λ (e))~ XΓ] intervals, each of which has radius e in the
canonical metric d, (c.f. (1.2) and (1.13)). Thus,

(logN{e)yde = / (\ogN{e)y de
Jo

(1.16) < Jf
fT/2 i

= J (log(l + Γ/(2tt))j dp(u).

The question of the divergence of the last integral hinges on its behaviour in
the neighbourhood of zero, and it is clear that (1.14) implies its convergence.
Thus, by Theorem 1.1, we have the a.s. continuity of X. •

Whereas the integral condition (1.14) is sharper than the inequality
(1.15), it is the latter, as one would expect, that is more commonly used.
(In Chapter 4 we shall investigate the sharpness of (1.14) itself.) It is also
condition (1.15) that captures, more clearly, the notion that the continuity
of the process is a consequence of the smoothness of the covariance function
at the origin.
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It is important to note, however, that in the move from an explicit
entropy condition like (1.3) to an implicit one of the form (1.14), we may
have lost something. For stationary Gaussian processes on S?1, this is not
the case (as we shall see later). In general however, if Xt is continuous (even
stationary) on T C dt1 and satisfies (1.14), then it can be transformed by
a homeomorphism f of T into a process Xf(t) which may no longer satisfy
(1.14) but will, of course, still be continuous. Such a transformation may not
preserve stationarity, and so does not contradict the claim of the previous
sentence. Furthermore, (as you should check for yourself - Exercise 3.1) a
transformation of this kind has no effect on the entropy of X, and so its
continuity can still be checked via entropy methods.

With the continuity question more or less settled, a natural question
to ask at this stage is how to construct discontinuous processes on 3?1. To
do this, let us impose the restriction that X be stationary. In this case the
function p(u) simplifies to give

(1.17) p2{u) = sup E\Xt-X0\
2 = 2 sup [J2(0) - J2(t)],

0<t<u 0<t<u

and the finiteness of the integral in (1.14) becomes a necessary, as well as
sufficient, condition for sample path continuity. (See Chapter 4 for details.)

It is a straightforward exercise, given the results of Chapter 4 (see Ex-
ercise 3.3), to show that if

for \t\ small enough, then X will be sample path continuous if α2 > 0 and
discontinuous if a± < 0.

For the sake of the reader who is familiar with the spectral theory of
stationary processes, the continuity /discontinuity dichotomy can be most
naturally stated in spectral terms.

Thus, let F(X) denote the spectral distribution function defined by

f°°
(1.19) R(t) = / cosίλdF(λ),

Jo

with spectral density /(λ) = F'(λ), when F is absolutely continuous.
Via a reasonably standard Tauberian theorem (e.g. Cramer and Lead-

better (1967) pp. 174-177) it follows from (1.18) that if the integrals

(1.20) Γ ( l o g ( l + λ))1 + αrfF(λ) =
Jo Jo

converge for some a > 0 then X is continuous, while if they diverge for some
a < 0 then X has discontinuous sample paths with probability one.
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Thus, if you are familiar with the spectral approach, it is now obvious
from (1.20) exactly how much "high frequency oscillation" is allowed before
a stationary Gaussian process on the line becomes discontinuous. If you are
not familiar with spectra, there is no need to worry. They will not appear
again.

Exactly what happens when a Gaussian process is discontinuous is a
topic we shall return to in part below, in the example treating generalised
processes, and in both of the following chapters.

2. GAUSSIAN FOURIER SERIES: A problem studied in the 1930's by Paley
and Zygmund, and at first seemingly unrelated to Gaussian processes, is the
question of the uniform convergence of the random Fourier series

(1-21) ΣanYne
int, t€[0,2π],

n = 0

where the an are real numbers satisfying ]Γ)Γ=o α* = 1 and the Yn are a
sequence of independent Rademacher random variables; i.e. P{Yn = +1} =
P{Yn = — 1} = \ An equivalent (this requires some work to show) question
arises when the Yn of (1.21) are taken to be standard normal.

Both the Rademacher and Gaussian versions of this problem have a
number of interesting consequences in non-random harmonic analysis, and
it was for this reason that they were posed. Furthermore, the summands
in (1.21) can be treated in much greater generality, with the parameter t
ranging over a compact Abelian or non-Abelian group, and the non-random
an replaced by a product of random and non-random terms. You can read
about all of this in depth in the monograph of Marcus and Pisier (1981), but
for now we shall treat only the simple sum (1.21), and assume that the Yn

are standard normal.
Apart from being of independent mathematical interest, (1.21) is of

course interesting as a way to build a stationary Gaussian process on [0,2τr].
Looked at this way, it is not surprising that the results related to Gaussian
processes on the line have something to say about Paley and Zygmund's
problem.

Consider the following related version of the original problem, which is
a little easier to handle in the context of the reα/-valued Gaussian processes
that we are dealing with.

1.5 THEOREM. Let {Yn}n>i and {Yή}n>i be two independent, infinite
sequences of independent, standard normal random variables, and {αn}n>!
a non-increasing real sequence. Then the sum

oo

(1.22) Xt := Y2 αn(Yn cos nt + Yή sin nt), ί€[0,2τr],
n = 0
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converges uniformly on [0,2π] if, and only if, the following sum also converges:

°° α?Ϋ/2

(An identical result, for the sum (1.21), can also be shown to be true. Such
a result is actually more general than our formulation.)
PROOF: Actually, we shall only give a partial proof, as we shall only sketch
why (1.23) is sufficient for uniform convergence. After you have read Chapter
3 - in particular Theorem 3.8 - you will be able to complete this part of the
proof for yourself. (Exercise 2.5 of Chapter 3.) Despite the long wait, it is
interesting to see, already at this stage, what is needed. The necessity is
similar, but a little harder. You can find it in Marcus and Pisier (1981) or
whichever of the references there to earlier, less abstract, results that you
find most convenient.

Since we are assuming the convergence of (1.23), we have that the se-
quence {αn}n>1 is square summable. Thus, by the three series theorem, the
sum (1.22) converges for each fixed t G [0,2π], with probability one. Let it
do so on a countable dense subset of [0,2τr], which, by separability, defines
a limit process. The limit is clearly Gaussian, since the Yn and Y£ are both
Gaussian. What we now have to show is that this convergence is uniform
on the parameter space [0,2τr]. This would ordinarily require showing the
existence of a common uniform modulus of continuity for the partial sums
defining Xt. The results of Section 3.2, however, are rich in zero-one and
related laws that tell us that all we need check is that the limit process,
which we have just defined, is continuous. Uniform convergence then comes
for free.

To prove the requisite continuity, we start by noting that an easy cal-
culation shows the covariance function of the process Xt of the theorem to
be

iφ,ί) = R(t-s) =
n=0

The function p of (1.13) is thus given by

oo

(1.24) p2{u) = 2 sup V V ( l - c o s n ί ) = 4 sup

We now have to show that, with this formulation of p, the entropy
integral (1.14) converges when the sum (1.23) does. Using Exercise 3.2, it is
easy to see that the entropy integral converges if

n = 0
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Since sin2 x < max(l,x2) for all x, we have from (1.24) that

+ 5(2"),

where
m oo

A(n,m)= Σ ah B {n) = A(nt oo) = ]Γ a).

Using (|x| + \y\y'2 < |x|χ/2 + \y\x'2 we see that the sum in (1.25) will
converge if both

x <
n = 0 j = 0

and
0 0 , DfoM v 1-

\-^N f ΪJ\Δ ) \ 2
< CX).Σ

n
n=0

That (1.27) follows from the convergence of (1.23) is easy to check. It
is also true that (1.26) follows from (1.27), but here the proof relies on an
old inequality for series that takes a lot of time to prove and is of little
independent interest as far as Gaussian processes are concerned. Hence we
leave this out, and refer the reader to Marcus and Pisier (1981), once again,
for full details. •

Although we have perhaps left more unproven than proven, we now
leave this example and turn to some others to continue building motivation
for the general theory to come.

3. THE TALAGRAND EXPANSION: Whereas we initially posed the ques-
tion of the convergence of the random Fourier series of the previous example
as a natural problem in harmonic analysis, from the point of view of a prob-
abilist it is far more natural to view (1.22), for example, as an orthogonal
expansion of a Gaussian process on a finite interval. From this viewpoint,
a natural question to ask is whether or not orthogonal expansions exist in
general (i.e. when the parameter space Γ has no special structure). When Xt

is continuous over T the answer to this question is in the affirmative, as we
shall see in §3.2. Now, however, we consider a somewhat different expansion,
due to Talagrand (1987).

Let {Yn}n>o t>e a sequence of (possibly dependent) centered Gaussian
variables, with variances σ2(Yn) satisfying

(1.28) lim (lognγσ{Yn) - 0.
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Thus, like the i.i.d. Yn and Y^ of (1.22), our new variables become smaller,
stochastically, as n —> oo. (To be precise, in the previous examples the size
of the random summands was governed indirectly through the non-random
coefficients an.)

Let T be a compact metric space, and {αn}n>o a summable sequence
of positive functions on T such that

(1.29) an(t) > 0, £ > „ ( * ) < 1,
n = 0

for all t G T. Define the centered Gaussian process

(1.30) Xt =
n = 0

It is not too hard to show (Exercise 3.4) that, under the conditions we
have specified, Xt is sample path continuous. This is half of the following
theorem. What is rather surprising, however, is the converse, which is also
much harder to prove.

1.6 THEOREM. Let X be a centered Gaussian process on a compact metric
space T. Then X is continuous if, and only if, it has a continuous covariance
function, there exists a Gaussian sequence {Yn}n>0 satisfying (1.28), and, for
each t G Γ, Xt can be written in the form (1.30), where the series converges
in £2{P) and the αn satisfy (1.29).

The practical power of this result is that it gives us a very simple, and
very general, method for constructing continuous Gaussian processes, partic-
ularly in situations where it might be difficult to write down an orthonormal
basis for functions on Γ. Furthermore, it tells us that all continuous processes
can be built this way.

Two aspects of the theorem are of particular interest. Firstly, it is
important to note that the Yn need not be independent. This somewhat
limits the usefulness of the converse part of the result. Secondly, nowhere
have we made the (unnecessary) requirement that the an be continuous.
For more details, including how to prove the easy half of Theorem 1.6, see
Exercise 3.4.

4. GENERALISED RANDOM FIELDS:

The term "random field" is generally used to describe a stochastic pro-
cess whose parameter space is either a A -dimensional Euclidean space or a
A -dimensional lattice. Thus, a 1-dimensional random field is what is gener-
ally referred to as a "stochastic process". Problems related to the geometrical
structure of the sample paths of random fields (A: > 1) are often qualitatively



20 INTRODUCTION I

different, and substantially more difficult, than the corresponding problems
when k = l: c.f. Adler (1981). Problems related to continuity, however, are
generally dimension independent. For example, Theorem 1.4 remains true
if we merely replace the domain of X by a compact subset of 9ife, and the
definition (1.13) of the function p(u) by

(1.31) p2{u) = sup _ E\Xβ-Xt\\
\\*-t\\<Vku

where || || is the usual Euclidean norm (Exercise 3.5). Similar changes can
be made to (1.15) and (1.20): i.e. simply make ί or λ vectors and change
moduli signs to Euclidean norms where appropriate. Formula (1.17) changes
by taking the supremum over {ί: ||ί|| < y/ku}.

Our interest in this section, therefore, will be not with random fields
of the above kind, but rather with a class of Gaussian processes defined on
certain function spaces. Nevertheless, we shall use simple random fields to
provide an example of the processes that do interest us.

Thus, let Xt be a centered, Gaussian random field on 9ίfc, with covariance
function i2(θ,ί). Let 7 be a family of functions on 9ϊfc, and for φ G 7 define

(1.32) X(φ) = / φ(t)X{t)dt.

We thus obtain a centered Gaussian process indexed by functions in 7,
whose covariance function(al) is given by

(1.33) R{Φ,Φ) = EX{φ)X{φ) = ( f φ{s)R{s,t)ψ{t)dsdt.
Jχk Jχk

The main interest in (1.33) is that it often allows us to define function
indexed Gaussian processes with covariance functional of this form, even
when a point indexed process Xt with covariance function i2(θ,ί) does not
exist. The examples that we shall consider here arise when jR(ί,ί) = oo for
all ί, and the divergence near the diagonal is bounded as follows:

(1.34) R{s,t) < C , for all \\s-t\\<δ9

\\s ~~τ\\

for some C < oo and δ > 0.
The main questions of interest here are on what families 7 can a process

satisfying (1.33) be defined, and when is it continuous.
The answer to the first question is trivial: Given any positive definite

function i2, one can define a function indexed process on

(1.35) 7R = {φ: f ί φ{s)R{s,t)φ{t) dsdt < oo}.
Jdtk Jχk
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The answer to the second question involves a considerable amount of work,
but you should follow the argument carefully, because it is one of the few
places in these notes that we shall give an involved entropy calculation in a
reasonably complicated example in reasonably complete detail.

As to why we have chosen covariances satisfying (1.34), and how these
are related to wider classes of function (and measure) indexed functions,
see both the comments at the end of this collection of examples, and the
examples in the following subsection.

Let Γc3ί* be bounded, q > 0, and p = [q]. Let Co,..., Cp and Cq be
finite, positive constants, and let 7(q) = 7(q) (Γ, C o , . . . , Cp, Cq) be the class
of functions on T whose partial derivatives of orders 1,... ,p are bounded
by C o , . . . , Cp, and for which the partial derivatives of order p satisfy Holder
conditions of order q — p with constant Cq. Thus for each φ G 7^ and

(1.36) φ(t + τ) =
nl

n = 0

where Φn (ί, r) is a homogeneous polynomial of degree n in r of the form

(1.37) Φn(t,τ) = Φn(f n,...,τk) = Σ Σ

and where

teT t}1
...dtJn

(1.38) sup J φ ^ < Cn and |Δ(ί,r)| < C f | |r |

Two things are obvious in the above setup, in which you should think of
the dimension k as fixed. Firstly, the larger the a in (1.34) the rougher the
process with this covariance will be. Secondly, the larger q is the smaller the
family 7^ will be, and thus the more likely that a Gaussian process defined
on 7^ will be continuous. Thus it seems reasonable to expect that a result
of the following kind should be true. (For a partial result in the converse
direction, see Example 3.6.)

1.7 THEOREM. A centered Gaussian process with covariance function satis-
fying (1.33) and (1.34) will be continuous on J ( < z ) (Γ,C 0 , . . . ,Cp,Cq) ifk > α
and if the following condition is satisfied:

1 + α-k
>

REMARKS: Note that since we have not specified any other metric on
the continuity claim of the Theorem is with relation to the topology induced
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by the canonical metric. There are, of course, more natural metrics on
but as long as we are interested in mere continuity and not in more detailed
information such as moduli of continuity we need not bother with them.

If, despite the advice given above, you want to let k vary in the condition
of the Theorem, while keeping α and q fixed, you will find that the larger k
is, the less derivatives we require of our test functions to ensure continuity
on 7^. While at first this seems counter-intuitive, you should remember
that as k increases the degree of the singularity in (1.34) decreases (for fixed
α) and so the result is, in fact, reasonable.

While the reason for the assumption k > ct should be obvious from the
proof, it is worthwhile noting already that it is precisely this condition that
gives us a process with finite variance, since, for φ £ 7^q>i with ||< |̂|oo < M

EX2{φ) = ί ί φ{s)R{s,t)φ{t)dsdt
JT JT

< M2 ί ί R(s,t)dsdt
JT JT

< CM2 ί ί \\t-s\\-αdsdt.
JT JT

Since Tc3ίfc is compact, a transformation to polar coordinates easily shows
that the last integral is finite only if k>α.

PROOF: To make life notationally easier, we shall assume throughout that
Γ = [0,l]\

The proof is, unfortunately, rather long. It will proceed via an entropy
argument. Thus what we need to show, in the light of Theorem 1.1, is that
the entropy of 7(q\ as measured in the canonical metric rf, where

{φ{s)-φ{s))R{s,t)(φ{t)-φ{t))dsdt,

is small enough for the entropy integral (1.3) to converge. We shall do this
by explicitly constructing, for each e > 0, a finite family 7^ of functions
that serve as an e-net for J ( α ) in the d metric.

We start by fixing € > 0 and defining

(1.39) δ = δ{e) =

Let Zδ d e n o t e t h e gr id of t h e (1 + [δ~ * })k p o i n t s in [0, l]k of t h e f o r m

(1.40) tη = ( f h * , . . . , i f o « ) , ηi=0,h...,[δ-1l * = l , . . . Λ

Define

δn = δn(e) = δq~n, n = 0 , . . . , p ,
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and for each φ G J(q) , n = 0, . . . ,p, and tη of the form (1.40) let A(

η

n) (φ)
denote the vector formed by taking the integer part of δ~x times the partial
derivatives of φ of order n evaluated at the point tη. (The index η here is,

of course, A -dimensional.) Thus, a typical element of Aη

n is of the form

n1 H + nk = n,

where we have written <£(ni' 'n*) for the derivative dnφ/dni . . . dnk, and the

index i runs from 1 to ( n ^ 7 1 )

Finally, for φe7(q\ let Aδ = Aδ(φ) denote the (A: + l)-dimensional
matrix, a generic element of which is the vector Aη

n , tη(ΞZδ, n — 0, . . . ,p,
(η is Λ -dimensional, n is one-dimensional) and let FA(δ^ denote the set of
φ G J^ with fixed matrix Aδ. Our first task will be to show that the d-
radius of FΛ^ is not greater than Ce, where C is a constant dependent only
on q and k. All that will then remain will be to calculate how many different
collections FΛ^δ) are required to cover ?(qK

Thus, take φ±,φ2 £ Aδ, and set

(1.42) φ = φλ - φ 2 .

Let || \\d be the norm induced on 7^ by the metric d, and || H^ the
usual sup norm. Thus,

11*112 = / / Φ(s)R(s,t)φ(t)dsdt, WΦW^ = sup \φ(t)\.
J[0,l]k ^ [ 0 , l ] f c [ 0 , l ] f c

We have to show that the φ of (1.42) has rf-norm less than Ce.
Note first, however, that in view of the definition of the matrix Aδ via

(1.41), we have that for each tη £Zδ and each partial derivative (£(n i" 'n*)
of such a φ of order nx + \- nk = n < p that

(Don't forget that the square brackets in (1.41) mean "integer part".)
Putting this inequality together with the Taylor expansion (1.36) and

(1.37), we find that for all t <Ξ [0, l] fc

\Φ(t)\ <

= C{k,p)δ
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the last line following from the definition of the δn and the fact that each
polynomial Φn of (1.37) has less than kn distinct terms.

Thus, for φ of the form (1.42),

(i.43) iμiμ < cδq.

We now turn to \\φ\\d With δ as above, set

Dt = {(s,t) C [0,l]fc x [0,l]fc : __max |β, - ί,| < δ}.

Then

11̂112 = J k kΦ{s)R{s,t)φ{t)dsdt

φ(s)R(s,t)φ(t) dsdt

(1.44) + / φ(s)R{s,t)φ{t)dsdt

Consider the first integral. Letting C change from line to line where
necessary, we have from (1.34) and (1.43) that

1,(6) < Cδ2q ί dsf f dt\\s-t\\~a

^ [ 0 , l ] Λ J JSi-6<ti<8i + 6

(1.45) < Cδ2q ί \\t dt

the last inequality coming from an evaluation via polar coordinates, and
requiring the condition k > a.

Similarly, again relying on the fact that k > α, it is easy to check that
J2 (δ) is also bounded above by C δ^q^k~ a). Substituting this fact and (1.45)
into (1.44), and applying (1.39), we finally obtain that for φ satisfying (1.42)

(1.46) \\φ\\d <Cδ>i2q+k-a) = Ce.

That is, the d-radius of each set A^ is no greater than a uniform constant
times e.

It remains to determine how many collections FA (δ) are required to cover

T^qK Since this is a calculation that is now independent of both Gaussian

processes in general, and the above covariance function in particular, we
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shall only outline how this is done. The details, which require somewhat
cumbersome notation, can be found in Kolmogorov and Tihomirov (1959).

Consider, for fixed 6, the (k + l)-dimensional matrix Aδ, parameterised,
as in (1.40), by η{ = 0,1, . . . , [δ'1], i = 1,...,A;, and n = 0,1,. . . ,p. Fix,
for the moment, η2 = = ηk = 0. It is clear from the restrictions (1.38),
(1.41), the definition of δnj and the fact that each vector Aηn) has no more
than ( n ^ ^ 1 ) distinct elements, that there are no more than

(for an appropriate and eventually unimportant f) ways to fill in the row of
Aδ corresponding to ( n x , . . . , nk) = (0,..., 0).

The main part of the proof is to now show that because of the rigid
continuity conditions on the functions in 7(q\ there exists an absolute con-
stant M = M(<7, C o , . . . , Cp, Cς), such that once this first row is determined,
there are no more than M ways to complete the row corresponding to
(ftx,... ,n*) = ( 1 , . . . ,0), and similarly no more than M2 ways to complete
the row corresponding to ( n x , . . . , nk) = (2,..., 0), etc. Thus, all told, there
are no more than

(1.47) O(δ-* .M* ( 1 + * " l j )

ways to fill the matrix Aδ, and thus we have a bound for the number of
different collections FA(δy

Modulo a constant, it now follows from (1.39), (1.46) and (1.47) that
the logarithm of the entropy function for our process is bounded above by

Substituting this into the entropy condition (1.3) (noting that it is really
only the last term above that is important) is all that is now required to
complete the proof of the theorem. •

Before leaving this example, there are a number of comments that are
worth making, that relate it to other problems both within and outside of
the theory of Gaussian processes.

Firstly, in most of the literature pertaining to generalised Gaussian fields
the parameter space used is the Schwartz space 5 of infinitely differentiate
functions decaying faster than any polynomial at infinity. Since this is a
very small class of functions (at least in comparison to the classes 7^ that
Theorem 1.7 deals with) continuity over S is automatically assured and there-
fore not often explicitly treated. However, considerations of continuity and
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smaller parameter spaces are of relevence in the treatment of infinite di-
mensional diffusions, and associated infinite dimensional stochastic partial
differential equations, in which solutions over very specific parameter spaces
are often sought. For more on this see, for example, Itό (1983) and Watanabe
(1984).

Secondly, some words on our choice of (1.34) as a condition on the co-
variance kernel R(s,t). When α = fc — 2, k>2 then the class of generalised
fields that we are considering here includes the so called "free field" of Eu-
clidean quantum field theory. (When k = 2 the free field has a covariance
kernel with a logarithmic singularity at 0, and when k = 1 the free field is
no longer generalised, but is the stationary Markov Gaussian process with
covariance function R(t) = e~βW, for some β>0.) This process, along with
a large number of related generalised fields whose covariance kernels satisfy
similar conditions, possesses a type of multi-dimensional Markov property.
For details on this see, for example, Dynkin (1980, 1984), Adler and Epstein
(1987), and references therein. For structural and renormalisation properties
of generalised fields of this kind, presented among a much wider class of ex-
amples, see Dobrushin (1979), who also treats a large variety of non-Gaussian
fields. We shall have a little more to say about some of these processes in
Chapter 6, where we shall discuss how they are related to S?d-valued Markov
processes on the real line.

Finally, it is worth noting that much of what has been said above re-
garding generalised fields - i.e. function indexed processes - can be easily
extended to Gaussian processes indexed by a family of measures. For exam-
ple, if we consider the function φ in (1.32) to be the (positive) density of a
measure μ on 3ΐfc, then by analogy with (1.32) it makes sense to write

X(μ) = ί X(t)μ(dt),
Jχk

with the corresponding covariance functional

Λ(μ,ι/) = EX{μ)X(v) = ί ί μ{ds)R{s,t)v{dt).
Jxk Jfftk

Again, as was the case for generalised Gaussian fields, the process X(μ)
may be well defined even if the covariance kernel R diverges on the diagonal.
In fact, X{μ) will be well defined for all μ G MR , where

•MΛ = 0*: / / μ{ds)R{s,t)μ{dt) < oo}.
Jκk Jχk

Similar arguments to those used above to characterise the continuity
of a family of Gaussian fields on 7^ can be used to ascertain continuity
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of measure indexed processes on suitably smooth classes of measures. We
leave both the details and an attempt to formulate the appropriate results
to the interested reader. (Actually, to the best of my knowledge, this specific
example has never been treated in the literature, and so it would be a rather
interesting problem to work out how to optimally, and naturally, formulate
the requisite smoothness conditions. The general idea of how to proceed can
be gleaned from the treatment of the following example.)

5. SET INDEXED PROCESSES:

We have already met some set indexed processes in dealing with the
Brownian family of processes in the previous section. The motivation behind
studying those processes lay in the development of multivariate Kolmogorov-
Smirnov tests based on statistics of the type (1.11). Our aim now will be
merely to introduce two new families A of subsets of 3ϊfc that have proven
useful as parameter spaces for the Gaussian white noise W satisfying (1.5)-
(1.7), so that

(1.49) EW{A)W{B) = R^AiB) = ιs{AnB), A,BeA,

where v is a σ-finite measure on Uk.
Before we start in earnest, however, it is worthwhile taking a moment

to consider the particularly simple family of special cases obtained when we
take A to be a family of ra-sided polygons in 3ί2. (A similar argument will
apply to ra-sided polyhedra in higher dimensions.)

To simplify the notation, let A be the family of all rectangular subsets
of [0,1]2. A typical element of A is A = [θ,ί] x [u, v]. The geometry of W on
this A is non-trivial, and can be conceptually simplified by defining a new,
point indexed, random field X on the set

D = {(θ,t,u,t;) e [0,l]4: s<t9 u < v}

by the correspondence

X(s,ί,M = W([8,t]x[u,v]).

Thus, the questions of sample path continuity and boundedness of W on A
reduce to the same questions for the point indexed random field X o n P,
and we have already seen, at the beginning of the subsection on generalised
random fields, how to treat such cases.

However, as simple as this approach may sound, it is not always quite
so straightforward to implement. The main problem is that whereas the
covariance function of W on A x A is natural and easy to work with, the co-
variance of X on D X V has very little in the way of "geometric symmetry",
and specific calculations can often be difficult, depending on the structure
of v. A secondary problem is that some of the clever arguments that we
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shall encounter in Chapter 5 for similarly indexed Brownian sheets - argu-
ments that rely heavily on geometrical properties of A - break down on V.
Finally, of course, there is the problem that similar methods will not apply
when a parameter space of sets does not have as simple a finite dimensional
representation as do spaces of polyhedra.

It is to two such examples that we now turn.
The first family of sets is closely related to the family J^ of functions

we have just studied in detail, and is, essentially, composed of those sets in
5Rfc that have q times differentiable boundaries. It is developed as follows:

Let S*"1 be the unit sphere in 3ΐ*, so that

sk-χ = {te®k: \\t\\2 = 1}.

Recall the basic result from differential topology that we can cover Sk~x by
finitely many coordinate patches V3, each represented as a C°° isomorphism
F3 : B

k-λ -+ V3 of the open ball Bk~λ = {t e dtk~λ: \\t\\2 < 1}.
Adapting slightly the notation of the previous example, let 7^ (V},M)

be the set of all real valued functions φ on V3 such that φ o F3 G J ( ς )

{Bk-\M,...,M) (c.f. (1.36)-(1.38)). Furthermore, let J^{Sk~\M) de-
note the set of all real valued functions φ on Sk~x such that the restriction
of φ to V3 is in J^ (V3 ,M). Taking the A -fold Cartesian product of copies of
/(</) (sk~x ,M), we obtain a family of functions from Sk~1 to 3ίfc, which we
denote by D(fc,g,M), where the "£)" stands for "Dudley", who introduced
this family in Dudley (1974).

Each φ€JM defines a (A: — l)-dimensional surface in 3?*, and a simple
algebraic geometric construction enables one to "fill in" the interior of this
surface to obtain a set Iφ. We shall denote the family of sets obtained
in this fashion by /(fc,ήf,M), and call them the "Dudley sets with g-times
differentiable boundaries".

Now we specialise to the special case in which the measure v in (1.49) is
Lebesgue measure, so that the process W there becomes the Brownian sheet.
Calculations, whose nature we shall discuss in the proof outline below, then
show that the log-entropy function for the Brownian sheet on /(A;, 9, M) Π Γ,
where Γ c 3ifc is compact, satisfies
(1.50)

{ /I \

Cτ(-)

CT ( 7

(Equivalent lower bounds for the log-entropy are also available for certain
values of k and q.)

As an immediate conseqence of the above and Theorem 1.1 we have
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1.8 PROPOSITION. The Brownian sheet is continuous on a bounded col-
lection of Dudley sets in dtk with q times differentiate boundaries if q >
k -1>1. Ifk-l>l>q>Oorifk-l>q>l then the Brownian sheet
is unbounded with probability one.

OUTLINE OF PROOF: The proof of the unboundedness part of the result is
beyond us at the moment. As far as the proof of continuity is concerned, all
that really needs to be proven are the entropy inequalities above. These rely
the "simple algebraic geometric construction" noted above, and so we shall
not bring them in detail. The basic idea, however, requires little more than
noting that there are basically as many sets in /(A:, ?,M) as there are are
functions in Z?(A;,g,M), and we have already seen, in the previous example,
how to count the number of functions in JD(Λ;, g, M). You can find the details
in Dudley (1974), or try it for yourself in Example 3.7. •

The astute reader will have noticed that whereas both in §1.2 and above
we defined Gaussian white noise via any σ-finite measure v (c.f. (1.49)) up
until now we have only discussed the Brownian sheet based on Lebesgue
measure. If we wish to extend the discussion to more general measures, and
retain properties of continuity, we need to substantially restrict the class of
sets A under consideration as the parameter space.

The most common classes of sets that arise in this context are the so
called Vapnick-Cervonenkis, or VC, sets, due, not surprisingly, to Vapnick
and Cervonenkis (1971). Since the arguments involved in entropy calcula-
tions are of an essentially combinatoric nature, and so of a somewhat different
form to those we have met before, we shall now discuss them in some detail.
(For a much more substantial treatment, including the importance of VC
classes to the problem of finding "universal Donsker classes" in the theory
of empirical processes, see, for example, Dudley (1978a).)

Let £ be a subset of 8ΐ*, and v a probability measure on E. Given a
class C of subsets of E and a finite set FcE, let Δ c (F) be the number of
different sets C Π F for CeC. For n = 1,2,..., let

mc (n) := max{Δc (F): F has n elements}.

Clearly, mc (n) < 2n for all n. Also, set

J inf{n: mc (n) < 2n}, if mc (n) < 2n for some n.
I1-5 1) v { ) - I ^ .f mc(nj = 2n for a U n

The class C is called a Vapnik-Oervonenkis class if mc (n) < 2n for some
n; i.e. if V(C) < 00. The number V(C) is called the VC index of C.

Two extreme but easy examples which you can check for yourself are
E = 3ϊ and C all half lines, for which mc (n) = n + 1 and V(C) — 1, and
E = [0,1] with C all the open sets in [0, lj. Here mc (n) = 2n for all n and
so V(C) = 00 and C is not a VC class.
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A more instructive example, that also leads into the general theory we
are after, is E — 9ίfc and C is the collection of half-spaces of 5Rfc. Let Φ(A;, n)
be the maximal number of components into which it is possible to partition
dtk via n hyperplanes. Then, by definition, mc (n) = Φ(fc,n). It is not hard
to see that Φ must satisfy the following recurrence relation:

(1.52) Φ(fc,n) = Φ(ifc,n - 1) + Φ(jb - l , n - 1),

with the boundary conditions Φ(0, n) = Φ(λ;,0) = 1. (If $tk has already been
partitioned into Φ(fc,n — 1) subsets via n—1 ((fc — l)-dimensional) hyper-
planes, Hx,..., Hn-1, then adding one more hyperplane Hn will cut in half
as many of these subsets as intersect Hn. There can be no more such subsets,
however, than the maximal number of subsets formed on Hn by partitioning
with the n—1 (A:—2)-dimensional hyperplanes Hx Π Hn,..., Hn_ x Π Hn i.e.
Φ(fc - l , n - 1). Hence (1.52).)

Induction then shows that

if n > k,
(1.53) — x

if n < fc,

where we adopt the usual convention that (n) = 0 if n<j.

From either the above or (1.52) you can now check that

(1.54) Φ(k,n) < nk+l, for all k,n > 0.

It thus follows, from (1.51), that the half-spaces of 3?fc form a VC class
for all k. •

What is somewhat more surprising, however, is that an inequality akin
to (1.54), which we developed only for this special example, holds in general.

1.9 LEMMA. Let E be any set, C any collection of subsets ofE, and V(C) <
v. Then

(1.55) mc(n) < Φ(v,n) < nv + 1, for all n>v.

Since the proof of this result is combinatoric rather than probabilistic,
and will be of no further interest to us, you are referred to either Vapnick
and Cervonenkis (1971) or Dudley (1978a) for a proof.

The importance of Lemma 1.9 is that it enables us to obtain bounds on
the entropy function for the Gaussian white noise based on any probability
measure ι/, and that these bounds are independent of u.
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1.10 THEOREM. Let W be the Gaussian white noise based on a probability
measure v on some measure space (E, £ , i/). Let A be a Vapnik-Cervonenkis
class of sets in £ with V(A) = v. Then there exists a constant K = K(v)
(not depending on v) such that for 0 < e < ^, the entropy function for W
satisfies

N{A,e) < Ke-2v\\oge\v.

PROOF: We start with a little counting, and then turn to the entropy calcu-
lation proper. The counting argument is designed to tell us something about
the maximum number of A sets, that are a certain minimum distance from
one another, that can be packed into E.

Suppose A l 5...,.Am G A, m > 2, and u{AiAAj) > e for i φ j. We
need an upper bound on m. Sampling with replacement, select n points
at random from E. The ̂ /-probability that at least one of the sets
contains none of these n points is at most

(1.56) ('

Choose n = n(m, e) large enough so that this probability is less than 1. Then

P{all symmetric differences AiAAj are non-empty} > 0,

and so for at least one configuration of the n sample points the class A picks
out at least m distinct subsets. (Since, with positive probability, given any
two of the Ai there is at least one point not in both of them.) Thus, by
(1.55),

(1.57) m < mA(n) < nv = (n(m,e))\

Take now the smallest n for which (1.56) is less than 1. For this n we
have m 2 ( l - e) Λ " 1 > 2, so that

_ 2 log m - log 2
n

and n < (2logra)/e. Furthermore, by (1.57), m < (2logm)"e-".
For some m0 = mo(v) < oo, (2logra)" < m 1 / ( υ + 1 ) for m > m0, and

then m < e~ "~x, so log m < (v + 1) | log e|. Hence

(1.58) m < K{v)e-"\\oge\υ for 0 < e < \

iΐK(v) =max(m o,2 t ' + 1(ι; + l) t ').
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This concludes the counting part of the proof. We can now do the
entropy calculation. Recall that the canonical distance between on sets of ί
is given by du{A,B) = [ί/(AΔB)]t

Fix e > 0, and suppose that Ax,..., Am are sets in A for which the
union of e-neighbour hoods of the A{ (in the du metric) covers A. By judi-
cious trimming (see the construction of (4.15)-(4.16) for an example of the
details) of the intersections of these neighbourhoods, one can assume that
dι/{Ai,Aj) > e for all i,j. Thus, by (1.58), m < K(v)e2υ\2\oge\\ which
proves the theorem. •

An immediate consequence of the entropy bound of Theorem 1.10 is

1.11 COROLLARY. Let W be the Gaussian white noise based on a prob-
ability measure v on some measure space (E,£ ,z/). Then W is continuous
over any Vapnik-Cervonenkis class of sets in £.

With this we complete our two new examples of families of index sets
for Gaussian processes.

You can find a lot more material on Vapnik-Oervonenkis classes in the
lecture notes by Dudley (1984), and some material for exercising your com-
binatorial skills in Examples 3.8-3.10. (If you find your combinatorial skills
are not as sharp as you might like, look up Dudley's notes to find out how
to solve the exercises.)

6. VECTOR VALUED PROCESSES:

Whereas the general theory espoused in the first two sections, and the
examples we have looked at up until now, cover Gaussian processes on very
general parameter spaces, all of our effort has been concentrated on real
valued processes. It seems worthwhile to say at least a little about how
well these results extend to Gaussian processes taking values in more general
state spaces.

Thus, let X t = (X/,... ,X^) be a $tN-valued Gaussian process on a
metric space (Γ,r); i.e. each X* is a real valued Gaussian process on {T,τ).
The covariance function that has formed the basis of all our analysis up until
now must be replaced with a matrix valued function R(s,t) with generic
element i^y(θ,ί) = EX\X°t. We shall assume, as usual, that the X* have
zero mean.

Despite this complication, the question of the continuity of X is no
harder than before. Since X is continuous as a function from (Γ, τ) to
(3^,11 ||) if, and only if, each X\ is continuous as a real valued function
on (Γ,r), the global continuity question can be treated as N separate, real
valued, problems.

The problem of the behaviour of the supremum of X is not quite as
simple. If we concentrate our attention on the random variable

(1.59) llXll ((X?)a (JC) a)
ter ter
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then it is clear that we are treating here the supremum of the non-Gaussian
process ||X||. (If the N components of X are i.i.d. then ||X t | | has a χ2

N dis-
tribution. If they are independent but not identically distributed, then the
distribution of ||Xt|| is non-central χ 2 . In the general case, the distribution
of ||X t | | is algebraically complicated.) Thus there is no good reason to ex-
pect, a priori, that Gaussian techniques should work in handling supt ||Xt||
Nevertheless, the same general approach does to work (at least in the case
T = dtk and i.i.d. components - see, for example, the treatment of χ2 pro-
cesses in Leadbetter, Lindgren and Rootzen (1983) and of χ2 fields Adler
(1981)) but the extension is not trivial and involves considerable hard work.

One way to get results while remaining in a purely Gaussian framework
is to rewrite the Euclidean norm in (1.59) as an operator type norm: i.e.

(1.60) IIX.II : - s u p a X t ,

where SN = {a e 9tN : | |a|| = 1} is the unit sphere in » " .
If we now introduce a new, real valued Gaussian process X(a,ί) on

SN xT by the correspondence

(1.61) X(a,i) = a X t ,

then

(1.62) sup||X t | | = sup X(a,f).
t€T (a,t)65wxΓ

The righthand supremum here is of a real valued Gaussian process, albeit
over a somewhat involved parameter space, and so in principle is amenable
to the theory that we shall develop to handle such suprema in the following
chapters.

In fact, it is easy to relate the canonical metric of X(a,ί) to that of X t,
since

+(a-b) Xt)
2.

Consider the special case of i.i.d. components with σ2 = supΓ J5X2.
Then the above gives us

< ||a||2d2(M) + ||a-b||2σ2 + 2a (a - b)d{s,t)στ,
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by Cauchy-Schwartz. Note ||α|| = 1 to obtain

d((a,s),(b,ί)) < d{s,t) + | | a - b | | σ τ .

It now follows from simple geometry on the iV-dimensional sphere that
if we write Ns N T (e) for the entropy function of X(a,ί), a G SN , ί £ Γ , and
Nτ (e) for that of each of the i.i.d. components X\ on T then

Ns.tT{e) < θ((Nτ(ή/ήN).

In the light of (1.62) this is all we need in order to handle those aspects of
the distribution of sup t G Γ | |X t | | that are amenable to entropy methods. •

If the X\ are neither independent nor identically distributed then the
above calculation may not be quite as simple, and this approach not as
amenable. Nevertheless, this is often a good trick to remember. As we shall
see in the next example, it also generalises to much more complex situations.

However, before we leave vector valued processes, it is worthwhile to
note that a number of interesting questions arise for these processes, in-
volving delicate interplays between the dimension N of the state space, the
dimensionality of the parameter space, and measures of smoothness of the
covariance function, that either do not arise, or are trivial, in the context of
real valued processes.

For example, suppose the parameter space is 3ϊfc, the component pro-
cesses Xi are independent, and for each i = 1, . . . , iV,

(1.63) E\Xl - Xx

t | 2 x \\t - s\\2βi as \\t - s\\ -> 0,

where of necessity 0 < β4 < 1 for all i and we write f(t) x g(t) as t -» ί0 if
there exist finite constants c and C such that

(1.64) c < lim 4 τ < C

A process of this form is called a (fc, N) Gaussian field of index /? =

Let dim A denote the Hausdorff dimension of a Euclidean set A. Then,
rearranging indices, if necessary, so that 0 < βx < < βN < 1,

(1.65)

pN

(1.66)

dim(GrX) = min

(1.67)
N

dim(X"λ (u)) = max [o, k - ^ ft],
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where (1.65) and (1.66) hold with probability one, and (1.67) holds with
positive probability for each u G 3ϊ*.

For more details on results of this kind, including a formal definition of
Hausdorff dimension, see, for example, Chapter 8 of Adler (1981).

7. BANACH SPACE VALUED PROCESSES:

Banach space valued Gaussian processes arise in a number of different
contexts, the two most common being in the areas of empirical processes
and stochastic partial differential equations (SPDE's). Here I only want to
show you that the basic questions of continuity and boundedness of these
processes can be handled, if one so desires, in the framework of real valued
processes. The argument is much the same as that we just saw for vector
valued processes.

Thus, let B be a separable Banach space, and B* its topological dual. A
stochastic process Xt taking values in B is called Gaussian if for every n > 1,
and all collections tλ,..., tn G T and φx,..., φn £ B* the n-dimensional
random variable

has a multivariate Gaussian distribution. The covariance functional will be
of the form

(1.68) R.t{Φ,Ψ) = E(φ,X,)(ψ,Xt).

The continuity question for these processes is generally two-fold. Firstly,
it is generally required that for fixed t G Γ, Xt{>) be a continuous linear
functional on B*. Secondly, for fixed φ G 1?*, one wants that (φ,Xt) be
continuous in ί. Since both of these problems relate to real valued processes,
in the first case indexed by B* and in the second by Γ, both fall within the
realm of the general theory we have espoused so far.

If the continuity question is one of joint continuity in t and φ, then the
approach developed in the previous example suggests defining the new (real
valued) process

X(φ,t) = (φ,Xt),

with covariance function

and studying its continuity on B* x Γ.
This approach is of particular interest in the theory of SPDE's. There

one is often interested in an equation which has a solution only in an appro-
priate family of functions (i.e. Banach space B) which must be specified in
advance. In this case arguments of the kind used in the treatment of gener-
alised Gaussian fields above often help one to limit, or at least to guess, the
appropriate solution space in advance.
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To be fair we should note that the trick of simplifying the state space at
the cost of complicating the parameter space is not always easy to apply in
practice, since entropy or similar calculations have to be made over B* x T,
which will not generally be a nice space to work with. The most common
problem is that T and B* are very different kinds of spaces. An example of
the application of this idea can be found in the paper by Iscoe tt. al. (1989)
in which the continuity of I2-valued Ornstein-Uhlenbeck processes is treated.

Before leaving this family of examples, however, it is worth noting that
Banach space valued Gaussian processes are often not difficult to deal with
directly, and, much as in the way that the geometric structure of the param-
eter space T does not enter the general theory of Gaussian processes, neither
(usually) does the structure of the state space. Thus, many of the central
results of these notes hold, and are almost as easy to prove, for Banach space
instead of real valued processes. (There are, of course, too many annoying
exceptions to this rule.) I chose to work with the real valued case in general
- perhaps so that the "Introduction" part of the title of the notes will have
some validity. Three recent papers with vector-valued results are Fernique
(I987a,b, 1988).

8. NON-GAUSSIAN PROCESSES: A natural question to ask is whether or
not the results and methods presented in these notes extend naturally to non-
Gaussian stochastic processes. The answer, in general, must be somewhat
equivocal.

In some cases there is an immediate transfer of results. To take a triv-
ial but often useful example, for F: 8t -> 3i and Xt Gaussian, the process
Yt = F(Xt) is generally non-Gaussian, but continuity questions on Y are
clearly simple, given enough information on X and F] i.e. the continuity
question for the non-Gaussian Y can be reduced to a question on the Gaus-
sian X. There are some questions, however, that even in this setting have
surprising answers. For example, we shall see in the following chapter that a
basic inequality that plays a central role in the theory of Gaussian processes
(Slepian's inequality) fails to work for as simple a process as |X t |.

A similar, but more interesting situation arises in the study of the
so-called χ2-processes. Given a sequence Xx ( ί ) , . . . , XN (ί) of independent
copies of a Gaussian process, the corresponding χ2-process is defined as

N

(1.69) Z(t) =

Again, it is clear that the continuity and boundedness questions for
the non-Gaussian Z are equivalent to those for the Gaussian Xt , and no
new methodolgy needs to be introduced. The comments of the preceeding
paragraph, however, indicate that, α fortiori, Slepian's inequality cannot hold
in this case either.



1.3 A COLLECTION OF EXAMPLES 37

What if the process X t, defined, as usual, on a metric space (Γ,r), has
no relationship whatsoever to a Gaussian process? (Note, that having left
the Gaussian framework, we have also left the canonical metric d out of the
picture.) Then Pisier (1980, 1981) and Fernique (1983) have various versions
the following result, for which you need to know that a function φ: 3? —> 3i
is called a Young function if it is even, continuous, convex, and satisfies

,• Φix) „ , Φix)
lim Zλ-J- = 0, lim ^ - ^ = oo.

x—• 0 X x—• oo X

1.12 THEOREM. Let Xt be a Banach space valued stochastic process, de-
fined on a metric space (Γ,r), and assume that the process \\Xt — X8\\ is
separable. Let Nτ be the metric entropy function for T with respect to the
metric r. If there exists an α G (0,1] and a Young function φ such that the
following two conditions are satisfied, then X is continuous with probability
one.

( , 7 0 )

(1.71) / φ-^Nr^du < oo
J
/ φ-^Nr

JNT(U)>1

The power of this result is clear. One immediate implication is that
much of the hard work that we have done in calculating entropy functions
for Gaussian processes can be used with little or no extra effort to study the
continuity properties of non-Gaussian processes as well. The only technical
difficulty lies in finding a φ satisfying both (1.70) and (1-71). We shall look at
only one, albeit very rich, class of examples - the so-called ^-radial processes
of Marcus (1987).

Recall that a symmetric, real valued, infinitely divisible random variable
£ is determined by a characteristic function of the form

(1.72) EeiX* = e

where

(1.73) Φ(|λ|) = / (cosλt-l)A/[t,oo),
./o

and v is a Levy measure; i.e. a positive measure on 3?+ \ {0} satisfying

(lΛί2)dί/[ί,oo) < oo.
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When Φ(|λ|) = |λ|α, then ζ is symmetric stable of index a e (0,2]. (The
case a = 2 is, of course, the Gaussian situation, and is somewhat different
to the other cases. Nevertheless, we are certainly not lacking for a theory in
this case.)

A real valued stochastic process Xt on T is called f-radial if there exists
a probability measure m on the space of real valued functions β(t) for which
sup t 6 T \β(t)\ = 1, equipped with the cylindrical σ-algebra, such that for all
measurable functions η(t)

(1.74) £{exp(5Xt)X(ί))} = exp{-
ter ter

These processes are strictly stationary (why?), and the measure m is
generally referred to as the spectral measure of X. Despite its name, however,
it should not be confused with the usual spectral measure of a stationary
stochastic process.

f-radial processes provide an interesting generalisation of Gaussian pro-
cesses, and have, in one form or another, been of considerable interest over
the past decade. In particular, while they are often highly non-Gaussian in
their sample path behaviour, they are nevertheless amenable to a similar
style of mathematical analysis. The stable case has been of particular inter-
est, and you can find a good survey of these processes in Weron (1984). The
forthcoming monograph of Samorodnitsky and Taqqu (199?) will provide
the most wide ranging survey, however, along with many interesting and
useful examples of stable processes beyond and including the f-radial case.
Two of the simplest examples are given by the stable moving averages and
harmonizable processes on 31, represent able, respectively, by integrals of the
form

(1.75) ί H{t - s) Z{ds), I eitx Z{dy),
Jyt J$t

where H is a nice function and Z a stable measure on 3?. (i.e. a stable process
with independent increments.)

In the stable case it is not too hard to obtain the following corollary of
Theorem 1.12. The proof (e.g. Fernique (1983)) relies, however, on various
inequalities for stable variables and processes that I do not really want to
develop here.

1.13 COROLLARY. Let Xt be a reai valued, symmetric stable process on
(Γ,r) of index α G (0,1], and for β G (0, α) let dβ be the distance function
on T deβned by

(1.76) dβ{s,t) = E\Xt-X9\r
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Let Nβ be the entropy function for (T,dβ). If, for some β G (0, a)

(1.77) / ( Λ X ^ J J ^ V - 1 * < oo,
J

then X has continuous sample paths on T with probability one.

The paper of Marcus and Pisier (1984) and the more technical mono-
graph of Marcus (1987) provide the deepest results on the general continuity
problem for strictly stationary stable processes, and I shall do no more now
than to refer you there to see not only how to improve on Theorem 1.12
for ^-radial processes, but also to see how to go part of the way towards
obtaining necessary, as well as sufficient, conditions for continuty.

It is worthwile noting at this stage, however, that whereas we shall soon
see that for Gaussian processes it is possible to develop general necessary and
sufficient conditions for sample path continuity, this is not a simple project
for f-radial processes. Talagrand (1988b, 1989) has provided some necessary
but not sufficient conditions for the boundedness and continuity of symmetric
stable processes - in terms of majorising measures (see Chapter 4) - but this
seems to be a problem whose solution is beyond our current means. (This is
primarily because of the lack of one very specific tool - Slepian's inequality
- that does not hold in the ^-radial case but is extremely important in the
necessity arguments in the Gaussian case.)

Finally, it is interesting to note that the discussion of Section 2 above,
on the Brownian family of processes defined via Gaussian white noise, can be
extended to function and set indexed processes defined via infinitely divisible
white noise. In this case the resulting processes are rarely continuous, but
often have cadlag versions (right continuous with left limits, in an appropriate
sense). As was the case for continuity, entropy arguments can also be used
to determine cadlaguity. For details see Adler and Feigin (1984) and Bass
and Pyke (1984).

4. Exercises.

SECTION l . i :

1.1 Show that any stochastic process has mean square continuous sample
paths if and only if its covariance function R is continuous on T x Γ. Check
that this is equivalent to l im u _ 0 p{u) — 0, where p is the function defined
by (1.1). Show also that if R is continuous at diagonal points (ί,ί), then it
is continuous everywhere.

SECTION 1.2:

2.1 Let W be a A -dimensional (A; > 1) Brownian sheet, and let (i1,..., z n),
n < A;, be a subset of (1,2, ...,&). Fix siι9...9sin9 Si. > 0 for all j , and let
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Z be the process on 5R̂ "~n defined by

Z(t t ) = Wit t s t t s- t . . . ίfc_ ) .

i.e. n of the k parameters of W are fixed by the θ^. Show that

is a (fc — n)-parameter Brownian sheet.

2.2 Let AΊ be the collection of subsets of 3ϊ2 described in §1.2 and whose
construction is illustrated in Figure 1.2. Using an argument similar to that
used to show that the Brownian sheet is unbounded on lower layers, show
that it is also unbounded on AΊ if 1 < 7 < 2.

SECTION 1.3:

3.1 Let X be a continuous Gaussian process on [0,1], / a homeomorphism
of [0,1], and Y a new process defined, also on [0,1], by Yt = Xf(t)- Show
that X and Y have identical entropy functions. Show, by example, that it
is possible for the covariance function of X to satisfy (1.14) while that of Y
does not.
3.2 Show that the question of convergence or divergence of the integral
(1.14) is equivalent to that of the integral

ί
JK

p(e

for arbitrary K > 0. Hence, or otherwise, show that (1.15) implies (1.14).

3.3 Assume for the moment that for a stationary Gaussian process on
Si1 (1.14) is both necessary and sufficient for sample path continuity. Using
the equivalence established in the previous exercise, show how the conti-
nuity/discontinuity question is answered by the relationship (1.18). The
assumption will be justified in Chapter 4.

3.4 Prove the easy half of Theorem 1.6 concerning the Talagrand expansion.
Let {Yn}n>o be a centered Gaussian sequence satisfying (1.28), and {an}n>o
a sequence of functions satisfying (1.29) on a compact metric space Γ.
(i) Show that the process Xt defined by (1.30) is bounded with probability
one. (You will need the inequality (2.1) for the proof, so use it freely for now.
If you want a hint, see the argument following Theorem 4.6, which shows
that entropy conditions don't always give tight conditions for continuity, and
which therefore motivates half of these notes.)
(ii) It follows from the calculations used to prove (i) and the results of
Chapter 4 that X is also continuous, but since we don't know these results
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yet, show that the a.s. continuity of X will follow if we assume, in addition
to the above, that the an(t) are continuous in ί.

3.5 Show that if Xt is a centered Gaussian field on a compact subset of
S?fc, Λ;>1, and p(u) is defined by (1.31), then the convergence of the entropy
integral at (1.14) is still a sufficient condition for the continuity of X. Note
that the proof for general k is really no different to that for k=l.

3.6 This is an exercise for the true lover of entropy methods: Theorem 1.7
gave sufficient conditions for the continuity of a Gaussian process indexed by
a family of functions. Show that if the inequality in (1.34) also holds in the
opposite direction (obviously with a different C) then the entropy calcula-
tions in the proof of Theorem 1.7 are sharp: i.e. the upper bound (1.48) also
serves (obviously with different constants) as a lower bound. While this does
not immediately imply that the conditions of the theorem are also necessary,
it will give us some nice results when we come to talking about extrema
distributions in Chapter 5.
(Hint: The route you will have to follow can be found on page 311 of Kol-
mogorov and Tihomirov (1959), which is the basic reference for all calcula-
tions of this kind.)

3.7 Complete the proof of Proposition 1.8.

3.8 Show that the finite union of Vapnik-ύervonenkis classes is again a
Vapnik-Cervonenkis class.

3.9 Let P(kJn) be the set of n-sided polygons in 9ffc. Show that P(k,n) is
a Vapnik-Oervonenkis class of sets, and find its VC index.

3.10 If 7 is a family of functions on a space E, then for each φ £ 7 set
pos(<£) = {t e E: φ(t) > 0} and pos(7) = {pos(φ): φ e 7}. If 7 is a k-
dimensional real vector space, such as polynomials of order < A;, show that
pos(7) is a Vapnik-Cervonenkis class with VC index k.




