CHAPTER 6, THE DUAL TO THE MAXIMUIM LIKELIHOOD ESTIMATOR

KULLBACK-LEIBLER INFORMATION (ENTROPY)

Before turning to the dual of the maximum Tikelihood estimator we
define the Kullback-Leibler information, and prove a few of its simple
properties. The goal of this detour is to provide a natural probabilistic

interpretation for this dual as the minimum entropy expectation parameter.

6.1 Definitions

Suppose F, G are two probability distributions with densities f, g
relative to some dominating o-finite measure v. The Kullback-Leibler

information of G at F is
(1) K(F, 6) = E-(In(f(x)/9(x)))

with the convention that « « 0 = 0, 0/0 =1, and y/0 == for y > 0. K is als
referred to as the entropy of G at F.

It can easily be verified that K(F, G) is independent of the
choice of dominating measure v. The existence of K will be established in
Lerma 6.2 where it is shown that 0 < K < =.

In exponential families it is convenient to write

(2) K(eo, el) = K(Peo, Pel) s eO’ 91 €N
For S = N let

(3) K(S, el) = inf{K(eO, el): by € S} >
etc.

174



THE DUAL TO THE MLE 175

K(+,+) as defined in (2) has domain NxN. It is convenient to
also transfer this definition to the expectation parameter space. Accordingly,

define E(go, 51) by
(4) K(ggs £,) = K(8(Ey), 8(E}))

for (go,gl) € £(N°) x g(N°). If the family is steep this definition is valid
on K° x K°,

It is also sometimes convenient to extend the
definition of E(-, &1) to all of RX, by lower semicontinuity. Accordingly,
for a minimal steep family, and for £, € K - K°, £, € K°, define

Tim inf(K(E, §)): £ €K% ||€ - g| < €}

(5) K(E» E.)
0 1 ev0

For £ £ K, 51 € K° define

(6) K(E, g)) = =

It is to be emphasized that this is a formal, analytic extension of
the definition. k(go, 51) for EO £ K° does not necessarily have a
probabilistic interpretation 1ike (1). (Sections 6.18+ give a probabilistic
interpretation of E, valid under some auxiliary conditions.)

K is often called the Kullback-Leibler "distance" from 8o to 61>
but it is not a metric in the topological sense. In particular, it is -- in
general -- not symmetric. There is, however, one very important special case
where K is symmetric and (K)!5 is a metric: the normal location family,

{Pe} = {¢9,Z: 8 € Rk , forms a standard exponential family with canonical

statistic z'lx (see Example 1.14), and has
= ] -1 -

The following proposition has already been mentioned above.
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6.2 Proposition

For any two distributions K(F, G) exists and satisfies
(1) 0 < K(F, G) < =
K(F, G) = 0 if and only if F = G.

Proof. Ep(In(f(X)/9(X))) = E-(-1n(g(X)/f(X)))

v

~Tn Eg(g(X)/F(X)

s-Inl = 0
by Jensen's inequality, with equality if and only if f = g a.e.(v). ||

For exponential families K has an especially simple and appealing

form.

6.3 Proposition
' Let {pe} be a standard exponential family. If 8y € N°, 6, € N

then

(1) K(6g» 81) = (8y - 87) + &(6g) - (wley) - wley))

Tog (py (£(69))/pg (£(60)))

(Remark. Suppose {pe} is steep and 8y € N - N°, el € N°. Then

K(6., 68,) =@ = 1im K(n, 6,) for {n.} = N° by steepness. Since the only
0’ "1 n:+0 1 i
iV

sensible interpretation for (60 - 91) . g(eo) is « here, (1) may be considered

valid for all 60 € N for regular or steep families.)
Proof. Note that
In(pg (x)/pg (x)) = (87 - 8g) + x - (u(6y) - ¥(8y))

i

and Eeo(X) = g(eo). ||
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6.4 Remark
The second part of 6.3(1) shows how the Kullback-Leibler informa-

tion is related to maximum likelihood estimation. For S = N let

(1) K(eo, S) = inf{K(eo, el): 6, €S}

1

Then, by 6.3(1), if 89 € N°

(2) K(6gs S) = K(By, 6)
for 8 €S if and only if 6 € as(g(eo)).

In other words, for steep families, for © = S, and for an
observation x € K° the maximum likelihood estimator is the closest point in S
to 6(x) in the Kullback-Leibler sense. (For observations x € K - K° such
an interpretation requires an extension of the definition of K like that to

be provided in Sections 6.18+.)

Note also that
(3) K(eos el) = JZ'(eos g(eo)) - 2(613 E(eo))

The fact that the quantity on the right is positive (for eo € N°, el # 60)
has already been used in 5.8(3) and 5.12(3).

6.5 Theorem
Let {pe} be a standard exponential family. Then K(.,.) is

infinitely differentiable on N° x N°. On N°

(1) vK(6gs +) = &(+) - &(8g)

(2) DZK(GO’ *) = D2W(') = Z(-) , eo € N°
If {pe} is minimal and steep then on K°

(3) (e, £) = e(+) - e(Ey)
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~ ol .
Consequently, given & € K° and € > 0 there is an €, > 0 such that

(5) K(E, &) > eylle - g)[|  whenever  [le- £)[| > ¢

If S = K° is compact then a value €, > 0 can be chosen so that (5) is valid

uniformly for all El € S.

Proof. Formulae (1) - (3) are straightforward from 6.3(1). (Note also
that (1), (2) are merely a restatement of 5.3(1), (2).) (4) follows from (3)
by the inverse function theorem since 6(+) = g'l(-) and VE(+) = z(-).
Formula (5) follows from (3), (4) as did the analogous conclusion 5.3(3), and
5.3(5) of Lemma 5.3 follow from 5.3(1), (2). The asserted uniformity of (5)
over g, € S is easy to check in that proof. ||

(Note: if Pg is not minimal 6.5(3) is still valid and 6.5(4) is

valid with Z'l interpreted as a generalized inverse.)

_CONVEX_DUALITY

6.6 Definition

Let ¢: Rk - (-c0,0] be convex. The convex dual of ¢ is the function

dy: RK & [-eo, @] defined by

(1) d¢(x) = sup{r, (8, x): 6 € Rk}

¢
(Recall, 2¢(e, Xx) =8« x - ¢(8).)

We will be interested in the situation when ¢ is regularly
strictly convex and steep. (See Definition 5.2.) Then if x € R = g(N;),

2(+, x) is strictly concave on Nq> and va(-, X)Ie(x) =0 . Thus
(2) d¢(x) = £¢(e(x), x) for X €ER = E(N;)

(In such cases, and somewhat more generally, the pair (d¢, R ) is called the
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Legendre transform of (¢, N¢). It is easy to check from (2) and Theorem 6.5
that

(3) dd¢(e) = ¢(0) for 6 € N°

k

It can be shown that (3) actually holds for all 6 € R°, but we do not need

this fact in what follows.)

Suppose ¥ is the cumulant generating function of a steep

exponential family. Then

~

(4) dw(xo) = K(xo, Xl) + e(xl) * Xy - w(e(xl)) s Xp € K°
If the coordinate system and dominating measure are chosen so that

w(0) = 0 = £(0) then (4) becomes

(4") dw(XO) = K(XO’ 0) x € K°

This provides a probabilistic interpretation for d(x) on K°. It will be
seen later that d(-) is the maximal Tower semicontinuous extension of

(d(x): x € K°) to all of R, and (4) is valid for all Xy € rK.

Lemmas 6.7 and 6.8 and Theorem 6.9 present some important basic
facts about convex duality. They are just the tip of a rich theory. We will
not further develop this theory as an abstract unit; although other important
features of the theory are implict in results we state elsewhere (e.g.
Theorem 5.5). A unified presentation of the theory appears in Rockafeller
(1970), and many elements of it are in Barndorff-Nielsen (1978, especially

Chapters 5 and 9).

6.7 Lemma

The convex dual d is a lower semicontinuous convex function.
Hence,Nd is convex. Suppose ¢ is regularly strictly convex. Then d is

strictly convex and twice differentiable on R. 0On R
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(1) vd(x) = o(x) ,

and

(2) D,d(x) = (Dy8)7" (8(x))

Proof. Since d is the supremum of linear functions it is Tower semi-

continuous and convex.

For x € R, d(x) = x » 6(x) - y(e(x)). Hence (1), (2) hold, by
the same computation that yielded 6.5(3), (4). d is strictly convex on R
since Dzd is positive definite. (It is possible to also directly establish

strict convexity without requiring that ¢ be twice differentiable.) [

It is now convenient to consider
md(x, ) = x -+ 06 - d(x)

Under the conditions of Lemma 6.7 vd(x) = 6(x) so that for 6 € N°
Ed(-, 8) is uniquely maximized at the value x for which 6(x) = 6. This value
is precisely &£(8). This interpretation is developed further below, especially

in Definition 6.10.

The following equivalent expression for steepness is a fundamental

building block in the proof of Theorem 6.9, and has other uses.

6.8 Lemma

Let ¢ be regularly strictly convex. Then ¢ is steep if and only if
(1) (6,3 = N°, 6, >0 €N - N°)
implies

(2) lvs(e)]] ~ =
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Proof. Assume (1) implies (2). Let g € N°, B, EN - N°,

1
ep = 60 + p(e1 - eo). Then

(3) -24(8(8), 6) d(£(e,)) - &(6)) - 6

E(8,) + (8, - 0g) = a(s,)

d is strictly convex and twice differentiable on the open set R with (Dzd)

nonsingular on R. Hence

(4) lim  24(x, 8) = -
L IX] [0

for every 8 € 8(R) = N° by Lemma 5.3(3). Since l|€(9p)|| + », by (2), we have
(5) E(Gp) . (9p - 6y) - ¢(ep) = -ld(E(ep), Bg) > =

Since 6, € N, 1lim ¢(ep) = ¢(el) is finite. This implies
p>1

- 90)/p > o as o+ 1

(6) £6,) * (8, - 89) = () + (o

By definition, ¢ is steep.

Conversely, suppose there is a sequence satisfying (1) for which

(2) fails. The sequence can be chosen so that
sup 11vo(0;)11 = B < =

This means that g(ei) = v¢(ei), i=1,... is a bounded sequence, thus,
without loss of generality, the original sequence {ei} can be assumed to
have been chosen to satisfy g(ei) - x*.

Hence, for any 6' € Rk
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(7) B« x* - ¢(6) Tim (6, - £(6;) - ¢(6;))

|v

Tim sup (6' - £(6;) - ¢(6"))
= 8' - x* - ¢(8')

It follows that

(8) d(x*) 6« x* - ¢(0) <

This means that 6 ¢ N° satisfies 6 € é(x*). By Theorem 5.5 this is

impossible if ¢ is steep. Hence ¢ is not steep. [

Proof of Proposition 3.3. It is now easy to prove the converse assertion

in Proposition 3.3, namely that a minimal exponential family satisfying
(9) Ee(|{xll) = o  for 6 EN-N°

is steep.

By Fatou's lemma if {ei} satisfies (1) then
Tim ||Vw(ei)l| = lim ||Eei(x)|l > lim Eei([|x{|) = ®

Hence (2) is satisfied. Thus ¥ is steep, which is the desired result. ||

6.9 Theorem
Assume ¢ is steep and regularly strictly convex. Then d¢ is
also, and
(1) G, T R T e
Proof. Let X € R, Vv E Rk. Let py = inf {p > 0: Xg * oV £ R} .

Note that oy > 0 since R is open. Assume py < and let X; = X, + pyY

and Xo = %g * p(x1 - xo). Note that Xq £ R.

Suppose it were true that
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(2) Tim inf [|6(x_)|] < o
ptl P

Then there would be a sequence ¥ + 1 with e(xpi) + 6%, say. 6* £ N° since

X £ R =¢g(N°). But then, since ¢ is steep, this would imply

lxp 11 = T1e(elxg NI > =

by Lemma 6.8, which is a contradiction since x,. - X1 Hence (2) is false;

Pi
so that actually
(3) Tim [|6(x )[]| = = .
ptl P
The argument in the first part of the proof of Lemma 6.8 applies

to yield the dual to 6.8(6), namely
(4) e(xp) * (xyp - xg) > = as p 41

(Technically, the lemma as stated cannot be directly quoted since we have not
yet established that R = Nd so that d is regularly strictly convex. But, d has
the desired convexity and differentiability properties on R © Nd by Lemma 6.7.
It is then easy to check that the first part of Lemma 6.8 indeed applies since
{xp-} C R and yields (4) as the dual of 6.8 (6).)

i
d is therefore a convex function with

d
(5) @ d(x0 + p(x1 - xo)) > as o411
This implies that
(6) d(x0 + p(x1 - xo)) = ® for op>1
Since the above argument applies for all v € Rk, it yields that
(7) d(x) = o for x g R

Thus R o N This yields (1) since, also, R = N, because

e
d(x) = 6(x) » x - ¢(6(x)) <= on R.
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It now follows that d is regularly strictly convex since it has
the desired smoothness properties, etc., on R = N; by Lemma 6.7. And, finally,

d is steep since (5) applies to any Xy € R, X € R -R. |

Remark. Since d is convex, lower semicontinuous, and d(x) = o for x £ R

it must be that d(-) on Rk is the maximal lower semicontinuous extension of

k

d(x): x € R (= K°) to all of R". That is, for X; € R-1R

d(x;) = liminf {d(x): x €R, ||x - x 1] < €}
€40

It follows that if {pe} is a steep exponential family. The relation 6.6(4)

~ . s k o
between d(xo) and K(xo, xl) is valid for all X9 €R", x; € Ke.

MINIMUM ENTROPY PARAMETER

The path has been prepared for the definition of the dual to
maximum Tikelihood estimation, and for the basic existence and construction

theorems.

6.10 Definition

Let d: Rk - (-0, ] be convex and lower semicontinuous.

Let S < Rk. Define
(1) Es(e) = {g €s:ay(e, 0) = 24(S> 8) = inf {g,(x, €): x €S}} .

Obviously ES is related to 2, in the same fashion as 8, the maximum Tikelihood

d
estimator for an exponential family, is related to the log likelihood function
Lw. (It would therefore seem logical to adopt the notation ES rather than gs.
However for reasons of convenience and tradition we wish to reserve the
notation ES for the set of maximum likelihood estimates of expectation
parameters. That is, Es(x) = g(as(X)) .)

The function ES has been given a variety of fairly inconvenient

appelations. For example, values in Es(e) can be called minimum entropy
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(expectation) parameters relative to the set S < K°. Barndorff-Nielsen (1978)
refers to values 6S(X) = e(gs(e(x))), X € K°, as maximum likelihood predictors.
(Note however that Es(e) n (K - K°) # ¢ is possible even if {pe} is regular as
long as S is not convex (see Theorem 6.13). Hence values in é need not always
be expectation parameters.)

Another interpretation is provided by the Kullback-Leibler
information. Consider a steep minimal exponential family. If £ € Es(e) n K°

then

K(E, £(8)) = inf {K(x, £(8)): x €S n K°}

Thus, 6 € e(Es(el)) is a parameter in 8(S) whose Kullback-

Leibler distance to 6, is a minimum over all parameters in 6(S).

1
Suppose {pe} is a minimal, steep standard exponential family.

Then Theorem 6.9 establishes that d, is steep and regularly strictly convex

"
with R = £(N°) = K°. Consequently £ possesses the properties established for

g in Chapter 5. The main properties are formally stated below; their proofs

consist only of reference to the appropriate results in Chapter 5.

Convention. In the following statements {pe} is a minimal steep standard

exponential family. Note that R = K~ < Ny < K.

6.11 Theorem
If 6 € N° then

(1) gl0) = (g(0)} <= k°
If 8 € N - N° then EN(e) is empty.

Proof. This is the dual statement to Theorem 5.5. ||

Note that
(2) 8(Ey(8(x))) = By(x) , etc.

In other words, for a full exponential family the maximum likelihood predictor
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is the same as the maximum 1ikelihood estimator. However (2) does not extend

to non-full families.

6.12 Theorem

Let S c:Nd be a non-empty, relatively closed subset of Nd' Suppose
© € N°. Then £(8) is non-empty.

Suppose 6 € N - N° and there are values ei € N°, i=1,...,1I and

constants Bi < o such that

I
(1) S « U H(8-6,,8)
i=1 v
Then E(e) is non-empty.
For any £ € Es(e) n K°
(2) 6-0(E) € vg(e)
Proof. Invoke Theorem 5.7 and Theorem 5.12. ||

6.13 Theorem
Suppose SN Nd is a relatively closed convex subset of Nd with

S N K° non-empty. Then Es(e) is non-empty if and only if 6 € N® or & € N - N°and
(1) S < H(6 -6y B)

for some 61 € N°, Bl € R.

If Es(e) is non-empty then it consists of the unique point & € SNK°

satisfying
(2) (6-6())-(E-8 >0 v £es
Proof. Invoke Theorem 5.8. ||

6.14 Construction

Theorems 6.12(2) and 6.13 have a geometrical interpretation which

Tooks exactly like that of their counterparts in Chapter 5. For example,
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suppose S = H N K with H the hyperplane H(a, o), and H n K° is non-empty. Then in
order to find Es(e) one need only search for the unique point &* € H for
which 6 - 6(&*) = pa for some p € R. The process can be pictured from two
different perspectives. Both of these are shown in Figure 6.14(1).

(i) One may proceed from &£(8) along the curve {£(6 + pa): p € R}
until the unique point at which (8 + pa) € H.

(ii) Alternatively one may map S N K° back into © as 6(S n K°)
and then proceed along the line {8 + pa: p € R} until the unique point at

which 8 + pa € 6(S n K°).

6+p2

*R

6(s)

Figure 6.14(1): Construction of Es(e) when S = H(a, a) n K

There is an important statistical difference between the situation
pictured here and the dual situation.displayed in 5.9.

In Construction 5.9 © = H n N and the problem considered was to
find 39. In that case one could proceed via the geometrical dual to Figure
6.14(1). See Figures 5.9(1) and 5.9(2). However, one could also reduce by
sufficiency to a minimal exponential family with parameter space ©. 69 could

then be found by applying Theorem 5.5 to this minimal family. A corresponding
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statistical interpretation is not available for the dual problem of finding
Shnk

Furthermore, if © = HN Nand S = £(@) the maximum likelihood
predictor relative to S cannot legally be found by first reducing by
sufficiency. This very undesirable property of a statistical estimator is

displayed in the following example.

6.15 Example

Consider the Hardy-Weinberg problem discussed earlier in
Examples 1.8 and 5.10. Let S = £(0) and consider the problem of finding ES.
Rather than provide a general formula for E (a messy exercise) we discuss a
special case, and some implications.

Suppose N = 18 and x = (3,6,9). We have already seen that

P - Eflzg_fi = 1. Thus E(x) = 18(3 g» §) = (2,8,8), and
(1) 8(£(x)) = 8(x) = {p(1,1,1) + (In 1, In 4, 1n 4)}
= {81(1,1,1) - (In 2)(2,1,0) + (0, In 2, 0)} <= o
Note also that
(2) 8(x) = {p(1,1,1) + (In 1, In 2, 1n 3)}

0f course 6(x) N 9 = ¢.

. 2
since £(p) = (p%, 2pq, a%) = (p?, 2p(1-p), (1-p)?) the tangent
space to S = {&(p): 0 < p < 1} can be found by taking %5 g(P). Evaluated at

ﬁ = % this tangent space, T, is spanned by the vector

(2p, 2 -4p, -2+ 2p)

~
i

2 2 4
(:'3’ §9 '§)

By definition VS(E) ={v: v+ 1=0}
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Now, from (1) and (2)

8(x) - 6(£) = {p'(1,1,1) + (0, In 2 -1n 4, 1In 3 - 1n4): o' €R}

Thus

(3) (6(x) - 8(E)) + T = (2/3) Tn (1/2) - (4/3)In (3/4) # O©

The implication of (3) is that 6(x) - G(E) [3 Vs(é). It follows
from Theorem 6.12(2) that

(4) 6(x) N 8(x) = ¢
or, in other words,
(4") E(x) # E(x)

Finally, suppose instead that the sample point is x* = (2,8,8).

Note that x* = E(x) with x = (3,6,9), as above. In this case E(x*) = x*

and hence

(5') E(x*) = E(x*) = x*
and

(5) o(x*) = o(x*) = 8(x*)

Recall from the discussion in Example 5.10 that,over the domain
K®, E(x) coincides with the minimal sufficient statistic. Thus, from (4) and
(5) (or (4') and (5')) it can be seen that here the "estimator"
5(x) = e(E(e(x))) 18 not a function of the minimal sufficient statistic. This
is a very undesirable property for a statistical estimator. Indeed, we
emphasize, the primary statistical use of 5 does not Tie in its use as a
statistical estimator, but rather in its use in the theory of large deviations.

See, for example, 7.5 and Exercises 7.5.1 - 7.5.6.
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ENTROPY

6.16 Discussion

In statistical mechanics and elsewhere the term entropy appears
and has a definition whose connection with the quantity K(eo, 61) for
exponential families is not at first obvious. See E11is (1984a; 1984b).

Let F be a probability distribution on Rk. Let x € Rk and define

the entropy of x under F as
(1) EF(x) = inf {K(G, F): EG(X) = x}

There is, as yet, no exponential family apparent in this definition.
However, there is indeed an intimate connection between £ and k, as revealed
in the following theorem. The theorem is proved only for the case where F
satisfies certain mild assumptions and x € K; or x £ KF. We leave it to the
reader to develop the appropriate results when F does not satisfy these
assumptions. The situation where x € K - K° can sometimes be treated using

the methods at the end of this chapter.

6.17 Theorem
Suppose the exponential family generated by F is a steep minimal
family with 0 € int N. Let £ = £(0) = E-(X). Let K denote the usual

Kullback-Leibler function, 6.1(4), for this exponential family. Then
(1) E(y) = Ky, £)

ifyek®. Ify¢gKk

(2) © = =
Proof. Suppose y € K°, it is obviously true that
(3) E(y) < Kly, &)

since the distribution G(dx) = pe(y)(x)F(dx) = Pe(y)(dx) satisfies EG(X) =y
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and K(G, F) = K(y, £y)- Suppose K(6, F) < « and

(4) 0 =y = B (X)

Po(y)

It must be that G == F, for otherwise K(G, F) = w. Let g = 90
and p = pe(y). Then

(5) K(G, F) - K(Pe(y)’ F} = Jslg(x) Tn g(x) - p(x) Tn p(x)] F(dx)

Jg(x)(1n g(x) - In p(x))F(dx)
+ [(g(x) - p(x))(In p(x))F(dx)
K(G, Pe(y)) > 0

since /(g(x) - p(x))(In p(x))F(dx) = s(g(x) - p(x))(68 + x - w(8))F(dx) = 0
by (4). It follows from (3) and (5) that (1) holds. (Also, note that

G = Fe(y) is the unique distribution satisfying (4) and yielding

K(6, F) = E(y) .)
If y £ K then EG(X) =y implies G <<F and hence
K(G, F) = o = K(y, go). I

AGGREGATE EXPONENTIAL FAMILIES

If {pe} is a full canonical exponential family and x € 3K
then 8(x) = ¢. (See Theorem 5.5.) If v(3K) > O then this means that with
positive probability the maximum 1ikelihood estimator fails to exist. This
occurs most commonly when v has countable support. In most such
cases the family of distributions {pez 6 € N} can be augmented in a natural
way so that the maximum likelihood estimator is always defined over this new,
larger family of distributions. The augmented family will be called an

aggregate exponential family.
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Aggregate exponential families can also be satisfactorily defined
in a few special cases where v does not have countable support, but v(3K) > 0
nevertheless. However, such situations are rare in applications and the
general theory involves difficulties not present in the countable case; hence
we do not treat such situations below. For similar reasons of convenience we
avoid non-regular exponential families.

Special cases of the theory are extremely familiar -- for example
the aggregate family of binomial distributions, which is just B(n, p),
0 < p < 1. The general theory for the case where v has finite support
appears in Barndorff-Nielsen (1978, p.154-158), along with some observations

about generalizations.

6.18 Definitions

Let v be a measure concentrated on the countable subset

X = {x)> Xp...} € RE. Thus
(1) v(ix}) > 0 i=1,2,... , v(x% = 0

Consider the closed convex set K = Kv' The faces of Kv are the non-empty sets

of the form
(2) F = Kn H(v, a) where K<H (v, a)

By convention the set K is itself a face of K (corresponding to v = 0, a = 0).
A face, F, is itself a closed convex subset, which has dimension

s, 0<s <k. (On1y the face F = K can have dimension k.) The relative

interior of F, denoted ri(F) is the interior of F considered as a subset of

RS.

An analytic characterization of ri(F) is that x € ri(F) if x € F and if
for every hyperplane H € Rk such that x € H but F ¢ H then both F n H+ £ ¢,
and F N H™ # ¢.

Let F be a face of K. If vw(F) > 0 then the restriction of v to F,
VIF is uniquely defined and non-zero. We use the notation KIF =Kv . Note

IF
that while it is usually true that KIF = F this need not always be the case.
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See Exercise 6.18.1.

The first main theorem involves the following structural assumption

on X:

(3 For every £ € X there is a face F of K such that KlF =F
) and £ € ri(F).

If X is finite then (3) is clearly satisfied. Another important
case where (3) is satisfied is when X = {0,1,...}k, as for example when
Xl""’xk are independent Poisson or independent negative binomial variables.
Assumption 6.22(1) provides an easily verified structural condition which

implies (3).

6.19 Definition (Aggregate family)

Let X and v be as in 6.18. Let {pe} be the canonical exponential
family of densities generated by v. Assume the family is regular. As shown
in Chapter 3 this family can be reparametrized by the expectation parameter

£ =¢(8). Let
(1) qg(e)(X) = pglx) 9 EN

Then, {qu £ € K°} = {pe: 0 € N} .
Now, for each face, F, of K with v(F) > 0 let wlF =y, _ and

|F
define the family of densities

exp(6 - x - wIF(e)) x €F

Pare(x)
olF 0 X £ F

relative to the measure v. This is an exponential family relative to the
measure Vife Assume this family is regular. Let €|F denote its expectation

parameter, and let

Thus & ranges over the set ri KIF as 6 ranges over NIF = NvIF' Note that the
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family {peIF: 8 € NIF} is not minimal. Hence the map 6 - ELF(e) is not 1 - 1.
However, qglIF = qulF if and only if 51 = &5, by virtue of Theorems 1.9 and
3.6.

Let

(3) F = {x: 3 face F of K 3 VIF # 0and x € ri(F)} .

Lemma 6.20, below, establishes that for each & € F there is a unique F such
that £ € ri(F) and a unique density U F corresponding to the pair &, F.

This density has

(4) (x) =

E
erF
We denote this density as qg. The aggregate family of densities

generated by v with parameter space F is the family

(5) {ag: £€R

Note that

(6) PE(X) = 1 VEEF
6.20 Lemma

Make the assumptions in 6.18 and 6.19. Then for each £ € F there
is a unique F such that £ € ri(F). The density 9 = A f satisfies 6.19(4).

It is, in fact, the unique density of the form qg'lF‘ having expectation g.

Proof. Suppose £ € ri(F) and also £ € F' = H(v', a') n K where

K< H (v', a'). Then either (i) F < H(v', o') or (ii) Fn H(v', o) # ¢
and Fn H (v', o') # ¢. In case (ii) H(v', a') is not a supporting hyper-
plane, a contradiction. Hence (i) holds, and so F' o F. Reversing the roles
of F, F' in the above now shows that £ € ri(F) and £ € ri(F') implies F = F'.

By Theorem 3.6, {E (x): e €N} = ri(KlF) = ri(F) by
Ge(o)IF VIF

6.18(3) since vIF generates a regular family. Thus qglF satisfying 6.19(4)
exists.
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For every £ € X the preceding shows that £ = Eq (X) € ri(F) where
13

F is the unique face of K with & € ri(F). Hence & = E (x) = E (X)
%eiF %erF

implies F = F', and thus, as previously noted, implies 9 = Qg [

Assumption 6.18(3) guarantees that F o X. If the conclusion of
6.18(3) holds for all £ € conhull X then F = conhull X. Otherwise it may
occur that Fgconhu]] X. Exercise 6.20.1 sketches an example. If Assumption

6.22(1) is satisfied then
(1) F = conhull X = K

Here is the first main theorem providing the extension of Theorem

5.5.

6.21 Theorem
Make the assumptions in 6.18 and 6.19. Then for x € F o X the

~

maximum likelihood estimator, £(x), is uniquely determined by the trivial

equation
(1) £(x) = x
Proof. Let x € ri(F) for some face F = H(v, a) n K of K. If &' € ri(F')

and x £ F' then qg.(x) = 0.

Now suppose &' € ri(F'), x € F', but F' # F. It follows (as in
Lemma 6.20) that F' o F. The argument now takes place in F'. Hence we can
assume for convenience, and without loss of generality, that F' = Rk n K
and £' € K°. We may further assume that x = 0, K < H'(el, 0), and 0 € ri(F)
with F = H(el, 0) n K. Then, &' = g(8') for some 8' € N° c Rk. Let

ep =06' + pel, p > 0. Then

(2) 9% (e )(0) = exp(-¥(6_))

and
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(3) e P = ee"X+pxlv(dx) + f d' X v(dx)

x1<0 xl-O

v e (ax) = v p(e")
x,=0

by the monotone convergence theorem and the definition of wIF‘ It follows from

(2) and (3) that
(4) q I(O) < q (0) < Qgu (0) s 0 < < o s
£ £(ey) g"IF e

where £" is the unique point in ri(F) defined by &" = glF(e').
Finally, if &"' € ri(F) then applying Theorem 5.5 to the measure
v|F yields

(5) G p(0) < ag,£(0)

with equality only if £"' = 0. Combining (4), (5), and the first comment

in the proof yields
(6) £(0) = 0
This verifies (1) when £ = 0 , and completes the proof. |

Remark. As noted in the remark preceding the theorem it is usually true

that F o conhull X. Assume so and assume the hypotheses of the theorem. Let
Xl""’xn be i.i.d. random variables with density qg, £ € F. As usual, let

n

Xn = I X/n. Then Xn € conhull X < F with probability one. The family of
i=1

distributions of the sufficient statistic Xn is then also an aggregate family

fitting the specifications of the theorem. Hence the maximum 1ikelihood

estimator of £ € F based on Xl""’xn satisfies the trivial equation

(6) E(xl,...,xn) = %

The preceding theorem yields the existence of maximum 1ikelihood
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estimates when the parameter space is F. In order to guarantee existence of
these estimates when the parameter space is a proper closed subset of K it
suffices to establish continuity in & of qg(x), x € X. This continuity is
useful for other purposes as well. Somewhat unfortunately, the assumptions of
Theorem 6.21 do not imply that qE(x) is continuous in £ (see Exercises 6.23.5-6)
and the following theorems demand stronger assumptions. Sufficient assumptions
are described below.

There is a further, aesthetic, reason for wanting to know that
qg(x) is continuous in £. The definition given in 6.19 of the aggregate
family {qE(x): ® € F} is structurally natural. But there is also an analy-
tically natural definition for the family of distributions generated from
{pe: 6 € N} -- namely, the set of all probability distributions on X which
are limits of sequences of distributions in {pe}. These two definitions

coincide when qE(x) is continuous in &.

6.22 Assumptions

K is called a polyhedral convex set if it can be written as the
intersection of a finite number of half spaces (see Rockafellar (1970)).
Assume that K is a polyhedral convex set and that for every one of the finite

number of faces, F, of K

(1) Fo= K

As previously noted in 6.20(1), this implies F = K = conhull X.
For any convex set S € Rk define the centered span of S to be
the subspace spanned by vectors of the form x - y, x,y € X. Denote this

subspace by csp S. Note that if X € ri S then
(2) csp S = span {x - Xpi X € S}
Assume that for every face F of K

(3) Proj Projcsp F(NIF)

csp F N
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Note that if X is finite then (1) is satisfied, and (3) is trivially
satisfied since NlF = Rk for all faces F (including F = K). If v is a product

measure then (1) and (3) are again satisfied. See Exercise 6.22.2.

6.23 Theorem
Make the assumptions in 6.18, 6.19, and 6.22. Then for every

x € K, qg(x) is continuous for & € K.

Proof. The proof involves an induction on the dimension, k. For k =1

the result is nearly obvious. Suppose 50 € 3K. Without loss of generality

assume K c (-oo, EO]. Then £~ & with &i # €o» i=1,... implies &i = g(ei),
- -1 _

8; » N> and 6, » . It follows that qgi(EO) = pei(EO) - v({gyh) © = qEO(EO),

and for x # 509 qg_l(x) -0 = qg (X)‘
0

For arbitrary k, including k=1, if 50 € K° then qg(x) = pe(g)(x)
is continous on a neighborhood of 60. This completes the proof for k = 1.
We now turn to the case k > 2. We need to prove continuity of qE
at EO € 9K. Let Ei - 50. We need consider only the case where {Ei} cF
with F some face of K, since K has only a finite number of faces. If this F
is a proper face of K then qEi - qEo by the induction hypothesis. Hence we
need consider only the case where each £ = g(ei), b; € N.

There is a unique face F, of K such that &, € ri F, = ri K, .
0 0 0 IFo

Without loss of generality assume £ 0, Kc ﬁ'(el, 0), -oe, € K° for some

>0, FO = H(el, 0) n K and csp F0 = {w € Rk: w=1(0, w, we€ RS},

(0 <s <k-1). LetS = csp Fo For w € Rk write w' = (wtl), wzz)) with
W(2) € RS. Further, assume 0 € NIFO’ wIFo(O) = 0, glFo(O) = 0. Note that
wlFo(e) is a function of 8(2) and so we will write wlFo(e(Z))’ where
convenient.

We have already assumed 0 € NIFO‘ Hence {8 €S: |[[8]] < 84} = NIFO
for some 8g > 0. It then follows from 6.22(3) that for each such & there is a

a(8), say, such that 6 + oe; €N, 6 >0(6). Since {6 €S: [le]] <8yt s
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compact, with {6 € S: |[[|6]] < 83> 6 +oe; €N} as a relatively open subset,
there must, further, exists a o > 0 such that & + oe, € N for all ¢ > gy,
6 €S, [[of] <6

For § < 63, 0 > g define

(1) Q = Qo, 8) = {6 €Rr: 1011 < 6.

9(1) ’X(l)f_‘oll)((l)'l v X€K}

Note that 81y = X(3) = 0@ * X(q) < (-0 + oo)llx(l)llg_O, VX €K.
Hence for 6 € Q
AMe) < Mogep) < =
as in 6.21(4). It follows that Q < A.
Now assume for convenience, and without loss of generality, that
9p = 0. Then for 6 € Q

) Ae) = [P X ud) < Je O ITT@X@) gy

®(2)"%(2)

ife “lFo(dx)

as o -+ «, uniformly for 6(2) 5_60. In particular

(3) sup {[¥(8)]: 6 €Qlo, 8)3 » wp (0) = 0

as 0 »», 6 >0. It follows that

(4) sup {lpe(x) - qO(x)|: 8€qQ(o, 8)} + O as o->o, §->0

for each x € K. [For x € F0 the convergence in (4) is uniform over compact
subsets of Fy; however if x £ Fy then as o >, § -0, p,(x) = 87 X0(8)  0-x
-0 = qo(x), but the convergence is not uniform over arbitrary compact subsets
of K. (It is uniform over bounded subsets of X if et x<-e< 0 for all

X €X - FO.)]
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It remains to show that for given o 20, 6 <4 there is an
o > 0 such that ||g|| <o, & € K>, implies 6(&) € Q(o, §). Once this has
been done it follows from (4), and the induction hypothesis, that qg(x) is
continuous in & € K for each x € K.

For convenience we show below only that there is an a > 0 such
that ||g|| < o implies 6(&) € Q(0, &). The proof for arbitrary o > 0,
in place of o = 0, requires only minor alterations of the constants appearing
in the proof. In the following o, € are generic positive constants whose
numerical value may decrease as the proof progresses. Since 0 € NIF there
is an a > 0 such that He(z)n >§ implies ‘*"lF,,(e(z)) > 26II6(2)||. Let
C < X be a finite subset of X such that C n F0 # oand Fn C# ¢ for every face
F of K which properly contains FO. The existence of C is guaranteed by
6.22(1).

Suppose ||6(2)|| > & and 6(1) T Xy 0 for some x € K. Then

max {6(1) T Xyt XE€ C} >0. If ||g]| <o and o is sufficiently small then

E(l) is in the convex hull of {x(l): x € C} U {0}. Hence there is ann € R

such that
(5) 6(1) . g(l) < no max {9(1) ° X(l) e X € C}
for all ||&]] < a. Let p = max {||x(2)||: x €C}, vy =min {v({x}): x €C}.
Then
206, €) = 8 & - u(o)
-gl16 Ll

= 9y " Bz~ BlIoy Il oqyy + gy - Infe T BT A
Now ,
(6) A(e) > N (6(2)) + vy exp (6(1) X(1) * 8z x(z))

|v

exp (23||e(2)||) + \)0 exp (e(l) . X p||9(2)||
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For notational simplicity let t = 6(1) . x(l) > 0. Then for a < B/2

(7) 2(e, &) < 9(2) . 5(2) - BHG(Z)H + nat - In (eBIIG(Z)H +

vo exp (t - pollop)[] - Bl[6(]])

| A

-e +nat - (B][85) ] V(t - (o +8)[[8(5)[] + Tn vp))

< -€

for a > 0 sufficiently small, since

Bt
sl|e(2)|| V(t - (o + B)[[0p)l1 - 38) 2 SHopwg

for ||9(2)|| > 6, azo.
If l[e(z)|| > § but 1) " X(1) < 0 for all x € K then

e(l) . E(l) < 0 and

0

A(e)
(8) (8, 8) < 8y * Erz) ~¥iF (O2)) * 8(1) * (1) - 1n<>‘”:o(e))

A

82) " B2) “ V£, (B(p)) < e

0

If ||e(2)l| < 8, but 8(1) * X(1) > 0 for some x € K then

e(l) . x(l) > 0 for some x € C; and

(9) 1(6! E) < 9(2) * g(z) = wlFo(e(Z)) + nae(l) . X(l)
®(1)"%(1)
/1 N voe )
Vie (0(p))
0
< - < 0
for oo > 0 and some € > 0 sufficiently small, since wIF (9(2)) > 0 but
0
sup {y ¢ (9(2))1 ||9(2)|| <8} <@ If [|E]] <aande £Q one of (7), (8),
0

or (9) apply so that
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(10) 2(6, £) < -e < 0

On the other hand, there is a o > 0 sufficiently large so that by (2) or (3),

(11) %(oe;, £) = oey - & - Yloe;) > oe; -+ £ - /3
> -2¢/3
for ||E]] < a 5_%5 . It follows from (10) and (11) that if ||&]|]| < a,

& € K°, then if 6 ¢ Q
2'(9: E) i -e < "25/3 i l(e(g)9 E)

Hence 6 # 6(&). It follows that 6(t) € Q.
We have thus proved that given o, § there is an o > 0 such that
[1&]] < @, & € K°, implies 8(£) € Q(o, &). As previously noted, this

completes the proof of the theorem. ||
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EXERCISES
6.6.1

Assume ¢ is regularly strictly convex. Verify 6.6(3).
6.7.1

For ¢ regularly strictly convex, when does d¢ = ¢?
6.9.1

Generalize Theorem 3.9 to apply to steep, regularly convex functions

¢ £ 8
¢ [i.e.; write ¢ = ( (1)) and consider the map 6 a( (1) . Show this map is
\w(Z) ¢(2)(0)

1 - 1 and continuous on N° with range E(l)(N°) x ¢(2)(N°) = K(l) x ¢(2)(N°)]-

6.18.1

(i) Show that Kl g # F in the following example:

X= (1, -1) u (((i% - V¥, 11i); i=1,2,...} , F=KnH((1, 0), 1).
(ii) Construct an example of the same phenomenon in R3 where X is
a discrete set (i.e. X has no accumulation points 1in R3). [Construct X so

that the set X in (i) is its projection on the space spanned by the first

two coordinate axes.]

6.19.1

Show that the following three families are aggregate exponential
families:

(i) Binomial (n, p), O0<p<1

(ii) Poisson (A), A >0 )

(i11) Multinomial (N, p), 0 < p;, iilpi =1
6.19.2
(i)

Suppose the distribution of X form an aggregate exponential

2)

family {qéi)}, i=1,2, and X(l), X( are independent. Show that the distribu-

tions of (X(l), X(z)) form a (k1 + k, parameter) aggregate exponential family.
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Construct an example in which 6.18(3) holds but F # conhull X.

3

[Let X' be the set in 6.18.1(i) and define X € R by

X = {x: (xl, xz) € X', Xy = (1 - xz)} v (1,0,1) u (1,0,-1).]

Let X be the set defined in 6.20.1 with the additional point
(1,0,0). Show
(i) 6.18(3) fails at x = (1,0,0).
(i1) The maximum likelihood estimate for the aggregate family
{qu E € F} fails to exist (i.e. is the empty set) when X = (1,0,0),
which occurs with positive probability.
(iii) The failure in (ii) can be rectified in a natural way by
letting G = conhull {(1,0,-1), (1,0,1)} and adding the densities
%) 16 = Polg to the family {qE: g € F}.
(iv) Addition of the densities %G is "natural" in the sense that

for each £ € G there is a sequence b; € N° such that quG(x) = lim Po (x).
joo 7§

[This sequence cannot be chosen to be of the form 8; = 8' + iv for fixed v € Rk,

8' € N° as was the case in the proof of Theorem 6.21.]

6.21.2

Let v be linear measure on the perimeter 39S, of the unit square,
S. This measure does not have a countable supporting set. Nevertheless,
describe its "natural aggregate family", having parameter space S and

satisfying the conclusion of Theorem 6.21 for each x € S.

6.21.3

(i) Let v be uniform measure on the perimeter S, say, of the unit
circle S. Thus, {pe} is the family of Von-Mises distributions (Example 3.8).
Show there can be no possible way of constructing a family of densities {qg}

which contains {pe} such that the maximum 1ikelihood estimate for {qg} exists
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with probability one. [ 1im p,(x) =« for each x € 3S.]
(161140 8
(ii) Note that if Xn is the sample mean from a sample of size n,

n > 2, having the above distribution, then the maximum 1ikelihood estimate does
exist with probability one.

(ii1) Construct a measure v for which {pe} is a regular exponential
family but there does not exist an n for which it is possible to construct
an "aggregate family" of densities {qg}, containing the densities of Xn under
8, such that the maximum 1ikelihood estimator exists with probability one.
[There exists such a measure v having KV = {x € R3:

and v({0}) > 0.]

2 2 2
X5 + X3 5_x1, 0<x <1},

6.22.2

Show that 6.22(1) (including the polyhedral nature of K) implies
6.20(1). [The polyhedrality of K guarantees that for every x € 3K there is
a face F of K such that x € ri F.]

6.22.2

Prove that 6.22(1) and 6.22(3) are satisfied whenever v is a

k
product measure on a countable set X = 1 Xj, Xj € R. [The faces
j=1

F = H(v, o) n X of X are determined uniquely by (sgn Vise.esSQN V).l

6.22.3
(i) Prove that
- . 1
(1) Nip = Projgn p(Njg) x (csp )™, and
(2) Projcsp F(N) c Prcsp F(NIF)

(i1) Give an example in which X = {0,1,...}2,

F o= {(0, 0)s (1, 0)s... By N o= (-=,0)%

(3) Projegp p(N) = (==, 0) x 0 # Rx0 = Projeg, pNg)
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and

(4) g p((0,0)) = (1,0 €x.

(Thus 6.22(3) 1is not valid here.)
(ii) 1In the example (ii) show that qg((x], 0)), Xy = 0, 1,...,
is not continuous at ¢ = (g], 0), £y > 1. [If 8, is chosen so that 0,1 4 0

somewhat slowly and 059 + = then g(ei) -> (5], 0) but qg(ei)(x) -> q(]’o)(x).]

6.23.1

Prove versions of Theorems 5.7, 5.8 and 5.12 valid for aggregate

exponential families. [Make the assumptions in Theorem 6.23.]

6.23.2

Show that qg(x) is not jointly continuous in (£, x) at any point

with ¢ = x € 3K.

6.23.3

Are the analogs to Theorems 6.12 and 6.13 valid for aggregate

exponential families under the assumptions of Theorem 6.23?

6.23.4

Suppose X = (0, 0) U {x € RZ: X5 = 1,..., i = 1,2}. Note that

Assumption 6.22(1) is not satisfied. Show that, nonetheless, qg(x) is
continuous at every £ € conhull X = F, (If one defines qE(x) = qo(x) for

£ € K - conhull X then it is even true that q_(x) is continuous on K.)

6.23.5

Let X = (((i% - 1)3/i, 1/1): i=1,...3u (1, 0). For
1 .
x = ((i% - 1)1, 1/71) € K et v({x}) = 1/21, and let v({0}) = 1. Note that
6.22(1) is not satisfied. Show that qE((1,0)) is not continuous at ¢ = (1,0)

X

[q(l’o)((l,o)) =1. Let 0 <c < 1. For g sufficiently large let 8, = pyX,

with Py chosen so that Pq ((1,0)) = ¢ ({02} is a swiftly increasing
2
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sequence.) Then £(6,) » (1, 0) but q ((1, 0)) =c# 1.1 (In this

2 E(el)
example qg(o) is, however, upper semicontinuous; so that, for example, the
conclusion of Theorem 6.23 remains valid. Exercise 6.23.4 shows this need not

be the case.)

6.23.6

For x = x\9) = (G2 - 1%, Wi, 3), d=l,..., § = :1, let
w3y = @+ 350727 . For x = xU8) = (1, 0, §), §=-1, 0, +1 Tet

v({x}) =2 - |j]|. Otherwise v({x}) = 0.

Construct {62} in a manner similar to 6.23.5 with (62)3 = 0 so that

Po (x9): 3=0, £1}) + /3 and (£(s,)), » 1. Verify that &(o,) » (1, 0, 1/2)
L
(1), .

and p, (x("yy = pez(x('l))f 1/12, but q( (1) = p

2
(1/4)% < 1/12. Hence q

1,0,%) (1,0,5) X

E(x('l)) is not continuous at £ = (1, 0, 1/2) or even

upper semicontinuous. If E < K is the closed set {E(ez): 2=1,...} U (1, 0, 1/2)
then the maximum likelihood estimator over the family {qg: £ € E} fails to

(-1)

exist at the possible observation x





