
CHAPTER 5. MAXIMUM LIKELIHOOD ESTIMATION

5.1 Definition

Let φ : R
k
 -> [0, «>] be convex. Define % : R

k
 x R

k
 -• [-o°,«>] by

(1) A(θ, x) = £
φ
(θ, x) = θ x - φ(θ)

For S c N let

(2) £(S, x) = sup U ( θ , x) : θ € S}

and let

(3) θ
s
(x) = {θ e S : £(θ, x) = A(S, x)}

Note that according to this definition θ~ is a subset of S. We will often

abuse the notation slightly by letting θ also denote an element of this set.

If φ = ψ is the cumulant generating function for an exponential

family then

£
φ
(θ, x) = log p

θ
(x) θ € H

is the log likelihood function on N. (Of course, A.(θ, x) = -«> for θ I N

in accordance with the natural convention that ψ(θ) = ~ for θ f. N .)

θ € θς(x) is then called a maximum likelihood estimate at x relative to

S c W , A function 6 : K + Θ for which δ(x) € Θ
0
(x) a.e.(v) is called the

(a) maximum likelihood estimator. This terminology is not always properly

used in the literature; and we will also abuse it, at least to the extent of

also referring to the set valued function θ (•) as the maximum likelihood

estimator.

144
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5.2 Assumptions ,

The main results of this section concern the existence and construc-

tion of maximum likelihood estimators, θ. The proofs of these results are

based on the fact that ψ is a convex function satisfying certain additional

properties, and not otherwise on the fact that ψ is a cumulant generating

function. In Chapter 6 we will want to apply these same existence and

construction results to convex functions, φ, which are not cumulant generating

functions. To prepare for this application we now make explicit the conditions

on φ which are needed in the proofs of the main results of this section.

Let φ : R •*(-<»,«>] be a lower semi continuous convex function.

Let N = W. = {θ : φ(θ) < »} . Such a function is called regularly strictly

convex if it is strictly convex and twice different!able on N% and

Φ
(1) Dpφ is positive definite on N°

In the following results we will assume φ is regularly strictly

convex. In some of the following we also assume φ is steep. Note that if

ψ is the cumulant generating function of a steep exponential family then it

satisfies these assumptions.

Here are some useful facts.

Let I = I be defined by 5.1(1), and let the mapping ξ : N -> R ,

be defined by ξ(θ) = Vφ(θ). Then, ζ is continuous and 1 - 1 since φ is

strictly convex. (1) says that the Hessian of ξ = vψ is positive definite.

Hence ξ(M°) is an open set; call it R, or R
φ
. ξ"

Ί
( ) is continuous on R.

Theorem 3.6 establishes that

(2) R = K°

when φ = ψ is the cumulant generating function of a minimal steep exponential

family. In particular, in this case

(3) R is convex
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It will be shown in Proposition 6.7 that (3) is always valid under

the above general assumptions on φ including steepness of ψ.

As previously, let θ( ) = ξ'^ ). i.e. ζ(θ(x)) = x.

(The assumption above of the existence of second derivatives and

of (1) is convenient, but can be dispensed with. The other assumptions are

required for the following development.)

We emphasize again: the following results about i, and maximum

likelihood estimation concern the general situation where φ is as assumed

above. These results therefore apply in particular to maximum likelihood

estimation from minimal steep standard exponential families.

5.3 Lemma

Assume φ is regularly strictly convex. Then, &( , x) is concave

k k
and upper semi continuous on R for all x € R . It is strictly concave on N .

If Θ
Q
 e N° then

(1) V£( , x ) ,
θ
 = x - ξ(θ

Q
)

(2) D
2
£( , x ) .

θ
 = -D

2
φ(θ

Q
) = -2(θ

0
)

where ( Z ί θ g ) ) ^ 39 9θ. φ ( θ Q ) 1 s P ° s i t i v e d e f i n i t e I f x € R (= K°) then
' J

(3) lim £(θ, x) = -«
IIΘIIHOQ

Proof. The first assertions are immediate from Assumption 5.2. Equations

(1) and (2) are a direct calculation. The positive definiteness of 2(ΘQ )

is a consequence of 5.2(1).

Assertion (3) has been proved in 3.6(4) for the case where φ = ψ

is the cumulant generating function of a minimal steep exponential family.

This proof was needed in order to show that R = K° in such a situation.

However we now want a proof valid for arbitrary convex functions, φ, satisfying



MAXIMUM LIKELIHOOD ESTIMATION 147

5.2(1). This is easi ly supplied.

Assume x e R, then θ(x) € A/°. Note using (1 ) , (2) that

VA(θ(x), x) = 0, and D2A(θ(x), x) is negative d e f i n i t e . Hence for some

6 > 0, ε > 0

( 4 ) £ ( θ , x ) = A ( θ ( x ) , x ) - ( θ - θ ( x ) ) 1 Z ( θ - θ ( x ) ) / 2 + o ( | | θ - θ ( x ) | | 2 )

< A ( θ ( x ) , x) - ε f o r I|θ - θ ( x ) | | = δ

I t f o l l o w s t h a t when ||θ - θ ( x ) 11 > δ

11θ - θ n | |
( 5 ) £ ( θ , x ) < A ( θ ( x ) , x ) - 5_ε

δ

by (4) since

A(θ(x) + (δ/(||θ - θ(x)||))(θ - θ(x))) < (1 - δ/||θ - θ(x)||)£(θ(x), x)

+ (δ/||θ -θ(x)||H(θ, x)

by convexity. (5) implies (3). ||

(We note that the positive definiteness of I is not really needed

to establish (3). It is only necessary that the conclusion of (4) be valid --

i.e. for some 6 > 0, ε > 0

(4
1
) Jt(θ, x) < λ(θ(x), x) - ε for ||θ - θ(x)|| = δ

This condition follows whenever λ( , x) is a strictly concave

function which assumes its maximum at θ(x).)

It is useful to now prove the following lemma. This result is

used in Theorem 5.5 to show that θ
0
 c W° when 0 is convex.

5.4 Lemma

Assume φ is steep and regularly strictly convex. Let

θ
χ
 € N - W°, Θ

Q
 € M°. Let θ = Θ

Q
 + p(θ

χ
 - Θ

Q
) , 0 < p < 1. Then
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(1) 11m ( |^ £(θ
p
, x))

Hence there is a p
1
 < 1 such that

(2) a(θ
p I
, x) > ϋ(Q

v
 x)

Proof. From 5.3(1)

| ^ A(θ p f x) = (ΘQ - θ χ ) (x - ξ ( θ p ) ) + - -

as p t 1 because ψ is steep. This proves (1) from which (2) is immediate.

(In case ψ is regular, i . e . N = W°, then l im Λ(θ , x) = -°° by upper semi-

c o n t i n u i t y , which can also be used to prove ( 2 ) . ) ||

FULL FAMILIES

Here is a fundamental result concerning maximum likelihood esti-

mation. It follows easily from the above.

5.5 Theorem

Let φ be steep and regularly s t r i c t l y convex. I f x € R then

(I) θw(x) = {θ(x)} c A/°

In other words, θ.,(x) consists of the unique point θ = θ(x) satisfying

N

(I
I
) ξ(θ) = x € R

I f x £ R then θ.,(x) is empty. (Recall that i f Φ = Ψ is the cumulant generating

function of a steep canonical exponential family then R = K°.)

Proof. For any x, {Qjχ)}c Λ/° by v i r t u e of Lemma 5.4. Any maximum

l ike l ihood estimator must thus be a local maxima of £( , x) and hence must

s a t i s f y
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V£( , x),~ = 0

This implies ( Γ ) by 5.3(1). Furthermore, the solution to (I
1
) is unique if

it exists, and it exists if and only if x £ R = ζ(W°). ||

Remarks. Maximum likelihood estimation is defined in statistical theory for

a general parametric family of densities {f
Q
 : θ € Θ} by

θ(x) = {θ € Θ : f
Ω
(x) = sup f (x)}. Note that this definition is invariant

θ
 α

 α

under reparametrization. Thus, if ξ = ξ(θ) is a 1 - 1 map on 0 the maximum

likelihood estimate of the parameter ξ € ξ(θ) is ξ(θ).

Accordingly, Theorem 5.5 says that for minimal steep exponential

families x = ξ(θ(x)) is the unique maximum likelihood estimator of the mean

value parameter ξ = ξ(θ) at x £ K°. To emphasize, in terms of the mean

value parametrization the maximum likelihood estimator is determined by the

trivial equation

(1") ξ(x) = x , x e r

For the present, (1") is valid if and only if x € K°. This set of course

contains almost every x(v) if and only if

(2) v(K - O = 0 .

Note that (2) is satisfied i f v is absolutely continuous with respect to

Lebesgue measure. I t is never satisfied i f v has f in i te support or,

more generally, has countable support and K ^ R . In the last part of Chapter 6

we expand such exponential families so that (1") usually remains valid for

a.e.x (v).

(Since ζ = EΩ(x) equation (1") also defines ζ(x) = x as the

classical method-of-moments estimator. Thus for the mean value parametrization

the maximum likelihood and method-of-moments estimators agree.)

Suppose that X-,...,X are independent identically distributed

random variables from the exponential family {p θ ) . Then, as noted in 1.11(2),
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-1
the distributions of the sufficient statistic X = n Σ X also form an

exponential family with natural parameter α = nθ and cumulant generating

function nψ(α/n). It follows that α(x) = nθ(x). So, the maximum likelihood

estimator of α based on X is nθ(X ) and the maximum likelihood estimator

θ/ i of θ = α/n based on X is

(3) θ
( n )

 = Sc/n = θ(x
n
) .

5.6 Examples (Beta Distribution)

For a variety of common full families the above remarks lead to

easy calculation of the maximum likelihood estimator. These are situations

such as those mentioned in 3.8 where the mean value parametrization has a

convenient form. For example if Y,, Y2> >Y
n
 are i.i.d. multivariate normal

(μ, %) random variables then the maximum likelihood estimators for μ and
-in Ί n

μμ
1
 + t are, respectively, Y = n Σ Y, and n Σ Y.Y! . This leads to the

i=l
 Ί
 i=l

 Ί Ί

conventional maximum likelihood estimates

(1)

t = S = n"
1
 Σ(Y

i
 - Ϋ)(Y. - Y)

1

For the Fisher - Von Mises distributions the result of Theorem 5.5

is not so easy to implement. See 3.8. Another not so convenient, but

important, family is the beta family, which will now be discussed.

Consider the family of densities

(2) f Ay) = B'^α, β)y
a
'

l
(l - y )

3
"

1
, 0 < x < 1, α > 0, 3 > 0 .

ot,p

realtive to Lebesgue measure on (0, 1), where B = B(α, β) denotes the beta

function,

(3) B(α. 3) =
 T

-
Γ(α + β)
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This is a two parameter exponential family with canonical parameters

(α, 3) e N = (0, °°) x (0, °°). The corresponding canonical statistics are

(4) x
χ
 = log y x

2
 = log (1 - y)

In this case the canonical parameters themselves have a convenient

statistical interpretation since

(5) E(Y) = α / ( α + β ) , E(l - Y) = β/(α + β)

Var(Y) = αβ/(α + 3)
2
(α + β + 1) = Var (1 - Y) .

The mean value parameters are somewhat less convenient. One has

(6) ξ
2
(β. α) = ξ,(α, β) = B"

1
^, .β) /(In y)y

a
'

l
(l - y)*'

l
dy

ά ι
 0

= Γ'(α) Γ'(α + 3)
T- (In B(α, g j
3 α
 Γ(α) Γ(α + β)

BM - -ΐ i w i
k
=

0
 α+3+k;

 k
:

Q
 (α+k)(

α
+3+k)

and

3-1 ,

(7) ξ
Ί
(α, 3) = - Σ -ir- if 3 = 1,2,...

1 α+κ

(See e.g. Courant and Hubert (1953, p.499)).

Suppose Y-,...,Y are i.i.d. beta variables, and X.., X^^ are

defined from Y. through (3), i=l,...,n . Then the maximum likelihood

estimates of (α, 3) can be found numerically by solving

(8) ζj(α, 3) = Xj i = 1. 2

1
 n

from (6), where X. = n~ Σ X... An exact solution appears to be unavailable,

J i=l
 J1

except when α,3 turn out to be integers so that (7) applies.

According to Theorem 5.5, the solution to (8) exists if and only if

X € K°. Now,
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K = conhull ίln y, In (1 - y) : y e (0, «)}

Since {In y, In (1 - y) : y € (0, 1)} is strictly convex in R this solution

n 2
therefore exists if and only if n > 2 and Σ (Y. - Ϋ) > 0. The event

2 "
 1 = 1

Σ (Y. - Y) = 0 occurs with zero probability when n >_ 2; hence the maximum
i = l

 Ί

likelihood estimate exists with probability one when n >_ 2.

NON-FULL FAMILIES

We now proceed to discuss the existence and construction of

maximum likelihood estimators when Θ
 c
 W. Here is an existence theorem.

5.7 Theorem

Let φ be steep and regularly strictly convex. Let 0 c N be a non-

empty relatively closed subset of A/. Suppose x e R. Then θ
Q
(x) is non-empty.

Suppose x € R - R. Suppose there are values x. e R, i=l,...,I,

and constants β. < °° such that

I
(1) Θ c y H~((X - x.), β ^ .

Then Θ
0
(x) is non-empty.

Remark. See Exercises 5.7.1-2, 7.9.1-3, and Theorem 5.8 for more infor-

mation about the theorem. In particular, (1) implies x (. (ζ(Θ))~. See

Figure 5.7(1) for an illustration of 5.7(1).

Proof. Let x e R. £( , x) is upper semi-continuous and satisfies 5.3(3).

Hence &( , x) assumes its supremum over Θ. But £(θ, x) = -°° for

θ € (δ - Θ) C H - M. It follows that Θ
0
(x) is non-empty.

Suppose x € R - R and (1) is valid. Then for each θ € Θ there is

an index i for which θ € ίΓ (x - x., β.). For this index

(2) £(θ, x) = θ (x - x
Ί
 ) + θ x

Ί
 - ψ(θ) i β

1
 + θ • x

i
 - ψ(θ) .
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0

Figure 5.7(1):

An Illustration of 5.7(1) showing R, x € R - R, Θ

and ξ(Θ) .

It follows that

Λ,(θ» x) £ sup {$. + θ x
Ί
 - ψ(θ) : 1 < l < 1} ->

θ € Θ

2
u H~((x - x.), β.)

i = l
 Ί Ί

a
s | |θ| |

by 5.3(3). The second assertion of the theorem follows from (2) as did the

first from 5.3(3). ||

CONVEX PARAMETER SPACE

When Θ is convex one gets a better result, including a fundamental

equation defining the maximum likelihood estimator.
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5.8 Theorem

Assume φ is as above. Suppose Θ is a relatively closed convex

subset of W with Θ n N° f φ. Then θ (x) is non-empty if and only if x 6 R (= K°)

or x € R - R and

(1) Θ <= H" (x - x
r
 β

χ
)

for some Xj € R, pj € R. ((1) is the same as 5.7(1) with I = 1.)

If θ
0
(x) is non-empty then it consists of a single point. This is the

unique point, θ e Θ n N° satisfying

(2) (x - ξ(θ)) (θ - θ) >_ 0 V θ € Θ

(An alternate form of (2) when x - ξ(θ) t 0 is

(2
1
) Θ c H" (x - ξ(θ), (x - ζ(θ)) θ) .)

( N o t e t h a t i f θ ( x ) € Θ t h e n , o f c o u r s e , θ ( x ) = { θ ( x ) } a n d

θ = θ ( x ) t r i v i a l l y s a t i s f i e s ( 2 ) . See 5 . 9 f o r i l l u s t r a t i o n s o f ( 2 ) . )

Proof. £( , x) i s s t r i c t l y concave on hi and hence can assume i t s maximum

a t o n l y one p o i n t o f the convex s e t Θ. Furthermore, θ f l c w° by Lemma 5 . 4 .

Suppose (2) i s s a t i s f i e d . Then f o r θ € Θ

(3) £ ( θ , x) - £ ( θ , x) = (θ - θ) (x - ξ ( θ ) )

+ (θ - θ) ξ ( θ ) - (ψ(θ) - ψ ( θ ) )

= (θ - θ) (x - ξ ( θ ) ) + A ( θ f ζ ( θ ) ) - £ ( θ , ξ ( θ ) )

w i t h e q u a l i t y i f and o n l y i f θ = θ. U ( θ , ξ ( θ ) ) - £ ( θ , ξ ( θ ) ) > 0 when
Λ /S Λ.

θ t θ since θ = θ(ξ(θ)) is the unique maximum likelihood estimator over N

corresponding to the observation ξ(θ) .) Hence (2) implies that θ
Q
(x) = {θ}.
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On the,other hand, suppose

(4) (x - ξ(θ
Q
)) (Θ

Q
 - θj) < 0 for some θ

Q
, θ

χ
 € 0 .

Then

θ
p
 = Θ

Q
 + p(θ

1
 - Θ

Q
) € θ

for 0 _< p £ 1 since Θ is convex. Then

^ * ( θ
p
, x )

| p = Q
 = (x- ζ(θ

0
)) (θ

1
 - Θ

Q
) > 0 .

Hence £(θ , x) > £(ΘQ, x) for p > 0 s u f f i c i e n t l y smal l ; and ΘQ cannot be

the unique maximum l ike l ihood estimator. I t follows that the unique maximum

l ike l ihood estimator i f i t e x i s t s , must s a t i s f y ( 2 ) .

F i n a l l y , i f x € R or (1) is sa t i s f ied then θ β is non-empty by

Theorem 5.7. Conversely, i f θ € θ is non-empty then θ s a t i s f i e s ( 2 ) . Hence ξ =

ξ(θ) € R and
(x - ζ) θ <_ (x - ξ) θ

by (2) so that (1) is satisfied with x
χ
 = ξ. ||

5.9 Construction

The criterion 5.8(1) is particularly easy to apply if

0 = (ΘQ + L) Π W for some linear subspace, L. This is because the vectors

{(θ - θ) : θ € L} will then span L. Thus, by (1), in order to find θ one

need only search for the unique point θ* 6 0 for which x - ζ(θ*) l L.

This process can be viewed from two slightly different perspectives. Because

of its importance we illustrate both these perspectives in the simplest

case where Θ
Q
 + L is a hyperplane.

Thus, consider the case where 0 = H n W with H a hyperplane, say

H = H(a, α). Let x e R. (The same construction also works for x € R - R

if 5.7(1) is satisfied.) To find θ (x) one may proceed from θ(x) along the

curve {θ(x + pa) : p 6 R} until the unique point at which θ(x + pa) € 0.

This point is θ. The process is illustrated in Figure 5.9(1).
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An alternative procedure is to map Θ n A/° into R as ξ(Θ Π A/°).

Then proceed along the line {x + pa : p € R} until the unique point at

which x + pa € ξ(Θ n N°). This point is x = ξ(θ). This process is

illustrated in Figure 5.9(2).

x+pa

Figure 5.9(1): First construction of θ

Θ

Figure 5.9(2): Second construction of θ

There are useful paradigms available also for the case where

θ is an arbitrary relatively closed convex set. These are described in 5.13.

The entire process i l lustrated above may also be viewed from a

different perspective. Θ is contained in a proper linear subset of R .

Hence the densities {pθ : θ e 0} form an exponential family which is not

minimal. This non-minimal family can be reduced by sufficiency and reparame-

trization to a minimal family of dimension k1 < k. Let (φ-,. - - ,φ. ,) and
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(yi> J Y ^ I ) denote the natural parameters and corresponding observations i n

t h i s f a m i l y . (They are formed by p r o j e c t i n g θ and x, r e s p e c t i v e l y , onto

H(a, α) or any t r a n s l a t e H(a, $) . ) This family w i l l have log-Laplace

transform ψ*(φ) = Ψ ( θ ( φ ) ) , and the m . l . e . , φ, s a t i s f i e s 5 . 5 ( 1 ) — i . e .

Φ(y) = Φ(y)

where φ(y) is the inverse to ξ*(φ) = Vψ*(φ) Thus

θ(x) = Φ(y(x)) .

These remarks can be used to yield a very simple proof of Theorem 5.8

in the special case where Θ = ( θ Q + L) n W. They also provide a method of

easily constructing the maximum likelihood estimate in many such cases. Here

are two examples.

5.10a Example

Consider the classical Hardy-Weinberg situation described in

Example 1.8. (Xj, X2> X^) is multinomial (N, ζ) with expectation

2 2
ξ = N(p , 2pq, q ) , 0 < p = 1-q < 1. This is a three-dimensional exponential

family with two dimensional parameter space

Θ = {θ: = β j d . l . l ) + B 2 (2,l,0) + (0, In 2, 0)} = H ( ( l , - 2 , 1 ) , -2 In 2 ) .

(This family is not minimal. This fact affects but does not hinder the

reasoning which follows.)

Reduction to a minimal exponential family yields a one-parameter

exponential family with parameter φ = 2θ 1 + θ 2 and natural observation

y = 2x1 + Xp. (Θ is two-dimensional but yields a family of only order one

since the original family was not minimal.) Note that

(1) E(Y) = N(2p2 + 2pq) = 2pN .

Hence

2x + x?

(2) P = 2N = 2N ° < y < 2 N
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Correspondingly, ξ = N(p , 2pq, q ) and θ can be defined from θ.. = ^ + In ξ..,

3, £ R. (Note that θ is a line rather than a single point because the original

representation of the multinomial family was not minimal.)

The simplicity of (1) is the special fact which enables the preceding

construction to proceed so smoothly. Many other multinomial log-linear models

behave similarly. Classes of such models are discussed in Darroch, Lauritzen,

and Speed (1980) and in Haberman (1974). Here is a useful example.

5.10b Example

Consider a 2χ2χ2 contingency table. The observations wil l be

denoted by y-jjk> i , j , k = 0 , 1 . They are multinomial (N) variables with

respective probabilities π. ., . There are various useful log-linear models for

such a table. The derivation of maximum likelihood estimates for such models

provides a useful and illuminating application of the preceding theory. Here

we consider the model in which responses in the f i r s t category (corresponding

to index i ) are conditionally independent of those in the third category

given the level of response in the second category. This model i l lustrates

several characteristic phenomena, and allows for direct and explicit maximum

likelihood estimates of the parameters TΓ. .. .

In order to write the model in customary vector-matrix notation,

let z% = y. k where 1= 1 + i + 2j + 4k (1 <_ I <_ 8 ) , and, similarly,

π £ = π i i k ' *"et ^ ° 9 π^ ( ^ e n o ' t e ^ e v e c t 0 Γ with coordinates log π. , λ = l , . . . , 8 .

Let

D1 =

1

1

1

1

1

1

-1

1

1

-1

1

1

1

-1

1

-1

-1

1

-1

-1

1

1

-1

1

1

1

-1

1

-1

1

-1

1

-1

-1

-1

1

1

-1

-1

-1

1

1

-1

-1

-1

1

1

1

The log-linear model of interest here has

(2) θ* = (log π) = DB, 3 e R
6
 .
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In order to normalize π one must choose 3g so that

8

(3) Σ π = 1 .

The resu l t ing multinomial family is an 8-parameter exponential fami ly. I t s

canonical s t a t i s t i c can be reduced via s u f f i c i e n c y . Let x* = D'z so that

θ* z = 3'D'z = β'x*. Furthermore x£ = N with p r o b a b i l i t y one. Hence x € R

with ( x 1 , . . . , x 5 ) = ( X j , . . . , x £ ) is a s u f f i c i e n t , canonical s t a t i s t i c . The

corresponding canonical parameter is θ € R with ( θ * , . . . , θ g ) = ( β , , . . . , β r ) .

I t can be checked t h a t t h i s log- l inear family is characterized by the

condit ional independence of responses in categories 1 and 3 given level of

response in category 2. The condit ional independence can be checked by

noting that i f i t Γ , k ϊ k1 then (2) y ie lds

l n V j V + l n τ τ i j k = l n π i ' j k + Ί n π i j k '

From th is i t follows that π . + π..^ = π+ k ττΊ ή+» which implies the desired

conditional independence.

By Theorem 4.5 x is the maximum l i k e l i h o o d estimate of E(X) = ξ ( θ ) .

Thus, ( log TT) = D$(x) is the maximum l i k e l i h o o d estimate of ( log π) = θ * w i t h

β(x) = ( e 1 ( x ) . - . . » B 5 ( x ) . 3 6 ( β ) ) ' where 3 6 ( ) is determined by ( 3 ) .

The r e l a t i o n between ξ(θ) and π(θ) is easy to determine via simple

calculations such as ξ χ = EfX^ = Σ ( - l ) 1 E ( y i j k ) , e tc. These y i e l d

(4)

Thus

(5) Σ(-l)Ί'y i j k - xj = NΣί-l)1^., , etc.
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From these relationships and the structure of D it is possible in

this case to give explicit expressions for ί^^} in terms of ί y ^ } -
 L e t

a "+" replacing a subscript denote addition over that subscript. Thus,

τr
u
 = Σ π- .. . Simple manipulation based on (3) and (5) yields

1 + + 1Jk

N π
1 + +

(6)

The conditional independence properties yield

£
Hence

N π
ijk

FUNDAMENTAL EQUATION

5.11 Definition

For ΘΛ 6 0 c R define VQ(ΘQ)> the set of (outward) normals to
1/

Θ a t ΘQ e Θ, to be the s e t o f a l l δ e R s a t i s f y i n g

(1) δ ( θ 0 - θ) >. 0 + o ( | | θ Q - θ||) v θ e Q

V is obviously a convex cone, and can easily be shown to be closed.

Note that if Θ
Q
 e int Θ then V

Θ
(θ

Q
) = {0}. If Θ

Q
 is an isolated

point of Θ then V
0
(θ

Q
) = R . If Θ is a different!able manifold with tangent

space T at ΘQ then V
Q
( Θ Q ) is the orthogonal complement of T — i.e.,

V
0
(θ

o
) = {δ: δ τ = 0 V τ e T}. Here V

0
(θ

Q
) is a linear subspace of R

k
.

If Θ is convex and θ
Q
 6 bd 0 then V

0
(θ) = {δ :Θ c fi" (δ,δ θ

Q
)} .
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5.12 Theorem

Assume φ is steep and regularly s t r i c t l y convex. Let Θ be a

relatively closed subset of N. Then for any θ € Θ9(x) n N°

(1) x - ξ(θ) € V0(θ)

Proof. Let θ € θ (x) c Λ/°. Note that

( 2 ) v θ U ( θ , ζ ( θ ) ) | θ = § = 0 .

and x - ξ ( θ ) = 0 when θ = θ. Hence, as in 5 . 8 ( 3 )

( 3 ) 0 < A ( θ , x ) - £ ( θ , x ) = ( θ - θ ) ( x - ξ ( θ ) ) + A ( θ , ξ ( θ ) ) - A ( θ , ξ ( θ ) )

= ( θ - θ ) ( x - ξ ( θ ) ) + o ( | | θ - θ | | )

Thus, by definition, (1) is satisfied. ||

Note that the theorem does not require x € R (= K°).

5.13 Construction

The fundamental equation, 5.8(1) or 5.12(1), can be used to picture

the process of finding a maximum likelihood estimator, by an extension of

the process pictured in 5.9.

Fix x e Rk. Suppose it is desired to locate Θ
0
(x). If 0 n W° / φ

one should first check to see whether x € ξ(Θ n N°). If so, then θ(x) = θ
β
(x).

/\
If not, then Θ

0
(x) c bd Θ. To see whether a given θ

Q
 e bd Θ n W° can be an

/\
element of θ first locate Θ, ΘQ,X, and x

Q
 = ζ(θ

Q
) on their respective

graphs. Then carry a vector δ pointing in the direction of x - XQ over to

ΘQ in order to check whether δ is an outward normal to 0 at θg. If so,

then ΘQ is a candidate for θ. In fact, if Θ is convex {θ
Q
} = Θ

0
(x). If Θ is

not convex one must search over bd Θ for all such candidates, then examine

β(θ, x) at each of them to eliminate those which are not global maxima.

(If φ is not regular and Θ is not convex one needs also to search over
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Θ n (W - W
0
).) The process is illustrated in Figure 5.13(1).

Figure 5.13(1): θ
Q and are candidates for Θ

0
(x). θ

2
 is not.

If bd Θ is a curve as in Figure 5.13(1) then this process is rela-

tively convenient. Otherwise, it is usually less convenient to search over

all of bd Θ for the set of candidates.

An alternate picture can also be constructed. In this picture one

constructs for each θ € Θ the collection of points in X space for which θ can

possibly be the maximum likelihood estimator. In order to construct this

picture one locates θ € bd Θ and draws the unit outward normal(s), 6,

to θ. One then maps θ to ξ(θ) and carries the vector(s) 6 directly over to

X space. The corresponding line or cone with vertex located at ξ(θ)

is the locus of values of x for which θ e
 θ

β
(

χ
)
 ΊS a

 possibility. Again,

if x falls in more than one such locus then &(θ, x) must be separately

examined at all such θ. This process is illustrated in Figure 5.13(2).
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Figure 5.13(2): C. is the locus of points, x, for which θ. can

possibly fall in Θ
0
(x).

5.14 Example

The curved exponential family described i n Example 3.12 provides a

p a r t i c u l a r l y elegant instance of the above construction. The family is a two-

parameter standard exponential family with θ ( λ ) = (-λ, - I n λ ) 1 , and

Θ = { θ ( λ ) : λ > 0} c M = (-co, o) x R, and ψ(θ) = l n [ ( e θ l T - l ) / θ 1 + e θ i T + θ 2 ] .

K = conhull { ( 0 , 0 ) , (T, 0 ) , (T, 1)} .

1 p " λ T

Then, ζ ( θ ( λ ) )
λT

, e " λ l ) . Figure 5 . 1 4 ( 1 ) shows both Θ and

K a n d ξ ( θ ) o n a s i n g l e p l o t . T h e r e i s no o v e r l a p s i n c e Θ cz { ( θ , , θ p ) : θ , < 0 }

a n d K cz { { x y x 2 ) : X j > _ 0 } .y x 2 ):

The tangent space to θ(λ) is spanned by (-1, -1/λ)
1
. Hence

s the line {p(l, -λ): p e R}. The locus, C(λ), of p

which θ(λ) can be the maximum likelihood estimator is the line

V
0
(θ(λ)) is the line {p(l, -λ): p e R}. The locus, C(λ), of points x for



164 STATISTICAL EXPONENTIAL FAMILIES

, --λT
( 2 ) C(λ) = ί ξ ( θ ( λ ) ) + p ( l , - λ ) : p e R} = + p, e " λ T -λp): p € R}

{ ( 0 , 1 ) + σ ( l , - λ ) : σ € R}

- λ T

as can be seen by letting σ =
- e + p. Formula (2) reveals that the

loci C(λ) are s t r a i g h t l ines through the point ( 0 , 1 ) . Again, see Figure ( 1 ) .

I t can be seen from Theorem 5.7 that θ(x) f φ unless x € K is ( 0 , 0)

or (T, 1 ) . (Applying 5.7(1) for points on the in te r io r of the l ine joining

( 0 , 0) to (T, 1) requires the choice 1 = 2 . Of course, these points occur with

probabil i ty zero, so i t ' s not worth the e f f o r t ! ) Since the loci C(λ) intersect

only a t ( 0 , 1) f. K i t follows from (2) that i f x t ( 0 , 0) or (T, 1) then

θΘ(.x) is the single point, θ ( λ ) , for which x € C(λ).

I f x = ( 0 , 0) or (T, 1) then θ(x) = φ since neither of these points

/\
l i e s in U C(λ). (That θ(x) = φ in this case can also be seen by applying the

λ€R
f inal part of Theorem 5.8 to the parameter set consisting of the convex hull of

θ ) .

Figure 5.14(1): Illustrating the construction of θ(x) via construction of loci C.
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The original description of this example involves a single

observation, X, which can take only values in (0 x [0, T]) u {(T, 1)}.
-in

However, if one observes X
n
 = n Σ X_ where X . are n i.i.d. variables each

n
 i = l

 Ί Ί

with the given distribution, then X
p
 can take values over more of K. This

problem has natural parameter θ* = nθ and log Laplace transform ψ*(θ*) =

nψ(θ*/n). It follows that N
9
K and ξ(θ) are as before. Θ undergoes a simple

transformation. It is easy to check that the above picture applies equally

well to this problem, for which various values of x € K° are possible.

See also Proposition 5.15.

From (2) one sees that the maximum likelihood estimator of λ is

(3) λ = (1 - x
2
)/x

χ
 .

In terms of the original motivation for this problem the parameter

1/λ is the mean value (= mean lifetime) of the exponential variable Z. Thus,

- x
2
)

nx
Ί
ι

n
In this problem nx

η
 = Σ Y. = "total time on test", and n(l - x

9
) = (number of

1
 i = l

 Ί ά

observations < T) = "number of objects failing before truncation". This

supplies the familiar expression for this problem:

/\ total time on test
(3") (1/λ) =

number of objects failing before truncation

Note that the value of T does not appear in (3"). This fact has been commented

on and exploited by Cox (1975) and many others.

It has been noted that the differentiate subfamily treated in this

example is a stratum within the full two parameter family. It is really this

fact which explains the elegance of the above construction and of Figure 5.14(1).

See Exercise 5.14.1 - 5.14.3.

In general the maximum likelihood estimate for an i.i.d. sample
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is determined exactly as that from a single observation. The latter part of

Example 5.14 mentions one special case of this. It is worthwhile to formally

note this fact.

5.15 Proposition

Let X-,... ,X be i.i.d. random variables from a standard

exponential family {p
n
: θ € 0} . Let θ^ denote the set of maximum likelihood

estimators of θ € 0 on the basis of a single observation.

The maximum likelihood estimator of θ € 0 based on the sample

1 n
X

Ί
>...,X

n
 is a function of the sufficient statistic, X = n Σ X. . Let

l n n .
= 1
 l

θ ^ ( ) denote this function of X
n
 Then

(1) θ<
n )
(ϊ) = θ

Θ
("x) .

Proof. The cumulant generating function for the sufficient statistic

S = nX is nψ(θ). The proposition follows from the fact that

£
n ψ
(θ, s) = θ s - nψ(θ)

= n(θ s/n - ψ(θ))

= n£
ψ
(θ, s/n) ,

since this shows that &niκ( > s) is maximized i f and only i f I ( , s/n) is

maximized. I I
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EXERCISES

5.6.1

Verify formula 5.6(6).

5.6.2

The multivariate generalization of the beta distribution is the

Diriohlet distribution, V(a), d e f i n e d a s f o l l o w s : k _> 2 ; θ > 0 , i = l , . . . , k ,

k k-1
θ 0 = . Σ V γ i > °> 1=l . . . k ; γ k = Ί " Σ V t h e d i s t r i b u t i o n has

density with respect to Lebesgue measure over the allowable { ( y ^ . ^ y , , Ί ) }

Γ(θ n ) k ( Θ . - 1 )

( l ) f θ ( y ) = k ° > π y i

 Ί .

π Γ ( Θ . )
 Ί = 1

i = l 1

This is a k-parameter exponential family with canonical stat ist ic X. = In Y. .

(1) Describe K.

( i i ) Verify the standard formulae:

(θ π -θ.)θ.
E(Y ) = θ./θn Var(Y.) = —-—•——

l i ϋ l 2

(2)

θ . θ .
Cov (YΊ , Y.) = - 2

 Ί j

( i i i ) Der ive formulae f o r E(X.) analogous t o 5 . 6 ( 6 ) , ( 7 ) .

s j
( i v ) L e t 1 = s n < . . . < s = k and d e f i n e z. = Σ Y ,

i =ζ +1

j=l,...,£. Show that Z has a P(θ') distribution, and describe θ
1
 in terms of

θ.

(v) Let Y ' 1 ^ , i = l , . . . , n be independent, k-dimensional ^ ( θ ^ 1 ^ )

-1 n ( i )
variables. Verify that the d i s t r i b u t i o n of n Σ Yv ' is
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5.6.3

Let XΊ , i = l , . . . , k, be independent Γ(α., 3) variables. Describe

k
the conditional distribution of the variable (XΊ S..-,Xb) given Σ X. as a

1 κ i = l Ί

multiple of an appropriate Dirichlet variable. (Note the partial analogy

between the situation here and that in Example 1.16. Note also that the

situation here was described from another perspective in Exercise 2.15.1.)

5.6.4

The following is a valid statement: the k-dimensional Dirichlet

distributions form the family of (proper) conjugate priors for the parameter

( p . , . . . ,p. _-) of a k-dimensional multinomial distribution. Relate this

statement to the general theory of Sections 4.18-4.20, and describe (in terms

of the Dirichlet parameters) the posterior expectation of p given the multi-

θ. k-1 θ
nomial. observation. [Let p. = e / ( I + Σ e ), etc.]

1 j = l

(This conjugate relation between Dirichlet and multinomial

distributions has an in f in i te dimensional generalization in which the

Dirichlet distribution is replaced by a "Dirichlet process" and the multinomial

distribution is replaced by a distribution over the family of cumulative

distribution functions on [0, 1]. See Ferguson (1973) and Ghosh and Meeden

(1984).)

5.7.1

(i) Show that 5.7(1) implies x £ (ξ(θ))~.

(ii) Show the converse is not valid by constructing an example

in which φ = ψ, R = K° is not strictly convex, x £ (ξ(Θ))~, and 5.7(1)

fails. (I believe no example exists when R is strictly convex. See

Exercise 7.9.2 which shows that when R = K° is strictly convex and x £ (ξ(θ))~

then θ(x) t φ.)

[(i) x £ (ξ(H"((x - x
Ί
 ), £.)))" for x. € R, x e R - R.

(ii) Let v give mass 1 to each of the four points (+ 1, +1). Let x = (1, 0)



MAXIMUM LIKELIHOOD ESTIMATION 169

and Θ = {(t, 2): t € R} .]

5.7.2

Construct examples in which φ = ψ is steep, R = K°, x e (ξ(θ))~,

and (i) θ(x) = φ, (ii) θ(x) f φ. [For both examples let v be the uniform

7 2
distribution on the ball {x: (x

Ί
 - 1) + Σ x.} plus a point mass at 0. For

1 i = 2 Ί

( i ) l e t 0 = ί θ : θ = ( α , 0 , . . . , 0 ) } . For ( i i ) l e t 0 ={θ : ψ(θ) = 3 } . For

every unit vector v + e, there is a unique η(v) > 0 such t h a t ψ ( η ( v ) v ) = 3.

As v -» e - 9 η ( v ) -* « and hence ξ ( η ( v ) v ) -> 0 . Hence 0 £ ( ξ ( θ ) ) " . ]

5.8.1

Let {p . θ e 0} be a standard one-parameter exponential family.
u

Suppose ξ ( 0 ) is an unbounded interval — i . e . ξ ( 0 ) => ( ζ Q , ξ j with ξ Q = -°°

or ξ, = +oo. For ξg < A < ξ 1 suppose e i t h e r

A
(1) ζ Q = - oo and J J ( ξ ) d ξ = co

or

ξ- = oo and / J ( ζ ) d ξ = »
1 A

with J " 1 ^ ) = θ ' ( ξ ) = V a r

θ ( ε ) ( χ ) > s o t n a t J denotes the Fisher information for

estimating ξ. Consider the problem of estimating ξ under the loss 4.6(1) —

i . e . L(ξ, 6) = J ( ξ ) ( ό - ξ ) 2 . Show that: ( i ) the maximum l ikelihood estimator

is minimax; and ( i i ) i f 0 9 W then the maximum l ikelihood estimator is not

admissible, ( i i i ) Give examples when 0 = N and ξ ( 0 ) is unbounded in which

the maximum l ikelihood estimator is not minimax, is minimax but not admissible,

is both minimax and admissible, ( i v ) Can you generalize ( i ) to a k-parameter

family?

[ L e t α n Ψ ξ Q , 3 n + ξ χ and

(2) h^2 ( ξ ) = m1n( / J ( t ) d t , K p , / J ( t ) d t )
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where K is chosen so that h is a probability density. Show K
n
 -+ 0 because

of (1). Then use 4.6(2). For (ii) use Theorem 4.24.]

5.9.1

Consider the general l inear model as defined i n 1.14.1. (a) Verify

that the usual least squares estimators of ξ are also the maximum l i k e l i h o o d

estimators ( i . e . μ = Bξ). (b) What is the maximum l i k e l i h o o d estimator of
2

σ ? Is i t unbiased? (Assume m ^ r + 1.) (c) Generalize the preceding
p

questions to the situation where Y ~ N(μ, σ ΐ) with μ = Bξ as in 1.14.1 and t

a known positive matrix. [The maximum likelihood estimates are the usual

generalized least squares estimates.]

5.9.2

Generalize 5.9.1 to the multivariate linear model defined in 1.14.3.

5.9.3

Let (X., X2) be the canonical stat ist ics from a normal sample with

mean μ. and variance σ?> and let (Z,, Z2) be from an independent normal

sample with mean μ2 and variance σ|. Suppose μ, <_ μ2, but the parameters are

otherwise unrestricted. Show that (μ. , μ2) = U p z,) i f x, <_ z, and otherwise
/\ /\ /\
μ, = μ2 = μ is the unique solution to

(Assume x2 > x? and z2 > z^, which occurs with probability one.)

5.9.4

Let ξ be a normally distributed vector with mean 0 and covariance

matrix I. Given ξ let Y be distributed according to the general linear

model 1.14.1. (Assume m •> r + 1.) Suppose B'B is diagonal and t <= P, a

relatively closed convex subset of positive definite diagonal matrices,

(a) Show that the (marginal) distributions of Y form an exponential family
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with Θ a r e l a t i v e l y closed proper convex subset of N. [ζ and |(Y - Bξ) |

are minimal s u f f i c i e n t s t a t i s t i c s . ] (b) When V is a l l posi t ive d e f i n i t e

diagonal matrices describe the maximum l ike l ihood estimates of 2, σ .

(c) Extend (b) to include other suitable subsets, P. (d) The preceding is a

canonical form for a class of random effects models (see, e . g . , Arnold (1981)).

To see th is convert the usual balanced one-way or two-way random effects

models to a model of th is form by applying suitable l inear transformations to

the usual parameters. [For the one-way model having E(Y..) = μ + α . ,
1 J Ί I

μ ~ N ( 0 , σ*)9 a. ~ N(0, σ*), i = l , . . . , I , j = l , . . . , J l e t ζ. = Iμ + Σ α,
μ i u J. * i

and ( ξ 2 i - . . » ξ j ) = ( α ^ . . ^ j j M where M is a I x ( I - 1) matrix whose columns

are orthonormal and orthogonal to 1.]

[The fol lowing three exercises concern the 2χ2χ2 contingency t a b l e . ]

5.10.1

Consider the model under which the f i r s t category and t h i r d cate-

gory are (marginally) independent ( i . e . , π..+k = τ τ i + + π + + k ) . Show th is is a

log- l inear model and f i n d an e x p l i c i t expression for the maximum l i k e l i h o o d

estimator.

5.10.2

Consider the log- l inear model described by the r e s t r i c t i o n

0 = φ 1 + φ- + φβ + φ7 - (φ 2 + Φ3 + Φ5 + Φg) (This is the model described by

the phrase, "no th ird-order i n t e r a c t i o n s . " ) Write the equation(s) determining

the maximum l ike l ihood estimator. Determine that these equations do not have

a closed form s o l u t i o n , such as 5.10(7). (See Darroch, Lauritzen, and Speed

(1980). In such a case the l i k e l i h o o d equations must be solved numerically.

The usual methods are the E-M algorithm or the Newton-Raphson algorithm. See

Bishop, Feinberg, and Holland (1975) and Haberman (1974).)

5.12.1

Consider the model described by h = TΓQ++ = π1 + + = π+Q+ = π+ 1 +
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Show this corresponds to a differentiable subfamily within the f u l l exponential

family, but is not a log-linear model. Find the maximum likelihood estimator

for this differentiable subfamily [TΓQQ+ = π--+ . ]

5.14.1

Let { p θ : θ € 0} be astratumof regular (or a steep) exponential

family, as defined in Exercise 3 .12.1 . (a) Show that for x € R the maximum

likelihood estimator exists and satisfies

(i)
ζ
(2)

 X
(2)

(b) Discuss the situation when x € R - R. (c) Show (by example) that there

can be two solutions to (1); but there can never be more than two. Is it

possible for both of these solutions to be maximum likelihood estimators?

[Suppose the family is defined by ψ(θ) = ΨQ. Note that the set

{θ: ψ(θ) £ ΨQ} is convex and apply Theorem 4.8.]

5.14.2

Show how the result of Exercise 5.14.1 directly yields 5.14(3').

[Translate x
2
 ]

5.14.3

Apply 5.14.1 to describe the maximum likelihood estimator for

the other examples discussed in 3.12.2.

5.15.1

Let X 1 9 . . . , X be i . i . d . with distribution pQ from a canonical

exponential family. Let K <= W° be compact. Then xn is uniformly asympto-

t i c a l l y normal over θ € K with mean ξ ( θ ) and covariance matrix

= n"1= n"
1
D

2
ψ(θ). [Apply Theorem 2.19.]

5.15.2

Consider the setting of 5.15.1: (a) The maximum likelihood
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estimators θ n and ξ n e x i s t with p r o b a b i l i t y approaching 1 as n •* » uniformly

over θ € K. (b) They are asymptotical ly normal uniformly over θ € K

with means θ and ζ and covariances n £ ( θ ) and n £ ( θ ) , r e s p e c t i v e l y .

C(a) P ( x n (. R) converges to 0 ( e x p o n e n t i a l l y f a s t ) , uniformly on K. (b) i f

g ( t ) = g ( t Q ) + ( h ( t o ) ) ' ( t - t Q ) + o ( | |t - t Q | |) then g ( x R ) i s asymptotical ly

normal with mean ξ ( θ ) covariance h' ( ξ ( θ ) ) £ ( θ ) h ( ξ ( θ ) ) s uniformly for θ € K.]

5.15 .3

Let X , , . . . , X be i . i . d . with d is t r ibu t ion p from a d i f f e r e n t i a t e

exponential subfamily {pQ: θ € Θ}. Let K c θ be compact, (a) Then ΘM is

uniformly asymptotical ly normal over θ e K with mean θ . (b) For a curved

exponential family with θ = θ ( t ) the maximum l i k e l i h o o d estimator t of t is

uniformly asymptotical ly normal a t θ ( t ) G K with mean t . (c) Write the

asymptotic variance of t as a function of 2 ( θ ( t ) ) , θ ' ( t ) , and the s t a t i s t i c a l

curvature a t t of the curved exponential f a m i l y . [See Theorem 5 . 1 2 , the h i n t

to 5 . 1 5 . 2 ( b ) , and Section 3 . 1 1 . For ( c ) , and for a geometric i n t e r p r e t a t i o n

of ( a ) and (b) note t h a t */FΓl Iς - ξ 11 -> 0 in p r o b a b i l i t y where ξ denotes the

p r o j e c t i o n in the inner product <s, t > = s1 Σ ( θ ) t of x on the tangent l i n e

a t θ to Θ. I f the problem is w r i t t e n i n the canonical form of Section 3.11

the asymptotic variance is I . ]

5.15.4

Let {p
Q
: θ e 0} be a curved exponential family. Let θ

1
 E W but

θ
1
 ί 0. Assume (w.l.o.g.) that the family has been written in the canonical

form 3.11(1) - (4) with 0 = i
0
(9') = θ

Θ
(ξ(θ')). Show θ' = (0,α,...,0) with

α £ p. Let X..,...,X be i.i.d. observations under θ
1
 from this family and let

t be the maximum likelihood estimator of t. Show that if α<p then t is asymp-

2 2
totically normal about 0 with variance σ^ίθ'Jp /(p - α) . What happens

when α = p?




