
CHAPTER 2. ANALYTIC PROPERTIES

DIFFERENTIABILITY AND MOMENTS

The cumulant generating function has several nice properties.

Among these are the fact that its defining expression may be differentiated

under the integral sign. In this manner one obtains the moments of X from

the derivatives of ψ.

One needs first to establish a simple bound.

2.1 Lemma
I,

Let B = conhull {b^ : i=l,...,I} c R . Let C c B° be compact and
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 e C. Then there are constants K

ρ
 (depending on C,B) £=0,1,... such th

I b. X k
η
 v b e C , x e R

b. x
1

(1)

Also,

(2)

INI

e
b x

lib -

1
 e

b
'

x
 <

b
o
.χ

- e 1

b
o
ιι

<-

Σ

K
l

e

L

Σ
i =

I b. x
 k

£
 K, Σ e

 1
 , b € C , x € RK

L 1-1

Proof. Let ε > 0. Note that there exists a K < » such that
Jc 9 ε

I r I Λ <_ K e ε l Γ l v r e R

since

lim | r | A / e ε | r | = 0

Let {e. : i=l,...,k} denote the elementary (orthogonal) unit vectors in R .

Then

^ εlx^ I ^ εe ϊ x -εe ; x.
Σ e Ί < K' Σ (e + e ),X < K L X . I ^_ N o i e ς % r M e

32



ANALYTIC PROPERTIES 33

where K! = k^~
2
^

/ 2
K

0
 . Choose ε > 0 such that (b +€e.) € B, i = l,...,k,

for all b € C. See Figure 2.1(1). By convexity

since e a # x is convex in a € R and .̂) € B = conhuli {b..}. Then

k

ε
 Σ (e

'
ε
 1=1

( b - ε e Ί ) x b. x%

 I b
+ e Ί ) < 2k K' max(e 1 ) < 2k K Σ e

x » 9 ε » - j = i

Figure 2 . 1 ( 1 ) : B, C, and p. + = b + ε e i f o r the proof of Lemma 2 . 1 .
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This proves (1), with K£ = 2k K̂

Note that (2) may also be written

b - b
r

1 ( b Ί - b π ) x
< K- Σ e Ί °

1 1 = 1

bn X
He n c e it s u f f i c e s to p r o v e (2) in the c a s e w h e r e b

π
 = 0, (so tha t e ̂  = 1 )

r r,and we make this assumption below. Note that re -e +1 >_ 0 and also that for

r £ 0 l-e r < |r|. Using the f i r s t inequality when b x > 0 and the second

when b x < 0 yields

e b ' x b ' x

b x

b ' x^ max(b x e b ' x , I b x j )
Γb^Γl '

Hence

l x | | e b ' x + l l x l
b. x

by (1) since b £ C and 0 £ C. | |

FORMULAS FOR MOMENTS

k
Let £. >_ 0 be non-negative integers wi th Σ ί,. = I. Formal

calculation yields

(1)

In particular

(2)

Ί _i i

i = i 9 θ i

- λ ( β )

Vλ(θ)

k
= / ( _ π

- /xeθ

x ^ ) e θ <

*Xv(dx)

xv(dx) .

These calculations are just i f ied by the following theorem.

2.2 Theorem

Suppose θQ e M° . Then al l derivatives of λ and of ψ exist at



ANALYTIC PROPERTIES 35

ΘQ. They are given by the above expressions ( 1 ) , (2) derived by f o r m a l l y

d i f f e r e n t i a t i n g under the i n t e g r a l s i g n .

Proof. We prove only ( 2 ) . (The proof of the general formula (1) i s s i m i l a r

and proceeds by induct ion on I. See Exercise 2.2.1.) Let ΘQ 6 N°. Then

there is a B = c o n h u l l ί θ ^ : i = l , . . . , I } c W ° and C c B°, C compact, w i t h

ΘQ € C .

Let

e

θ ' x - e - ( θ - θ n ) xe
(3) d ( θ , x) = 9 .

l l θ - θ o l l

By Lemma 2.1

(4) sup |d(θ, x ) | <_ 2K Σe Ί

Θ€C i

Also

(5) | d ( θ , x ) | -> 0 as θ -> ΘQ

s i n c e Ve # x

 Λ _ Q = xe . Hence
π

/ d ( θ , x ) v ( d x ) -> 0 as θ -> ΘQ

by t h e dominated convergence t h e o r e m , so t h a t

λ(θ) - λ(θn) - (θ - θn) /xe ° v(dx)
( 6 ) 9 Q

I I θ - Θ Q I I

which proves ( 1 ) . II

Theorem 2.2 immediately yields the following fundamental formulae.

k 9
2
f

For f : R -> R introduce the notation D^f for the kxk matrix (-—r—).

An alternate expression is V'Vf since V
1
 converts each element of the (column)

vector I — into the row vector (a( τ^-)/3χ. : j = l,...,k), and hence D
9
f = V'Vf.

dX. σX.j J c-

2.3 Corollary

Consider a standard exponential family. Let θ £ W°. Then
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(1) E
Θ
(X) = Vψ(θ)

(2) cov X = D
?
ψ(θ) = V'Vψ(θ)

Notation. In the sequel we frequently use the notation

( I 1 ) ξ(θ) = Vψ(θ) = EΘ(X)

and

(21) ϊ (θ) = D2ψ(θ) = ZΘ(X) .

Proof. Calculating formally,

Vψ(θ) = /xeθ ' xv(dx)//eθ ' xv(dx)

= Eθ<X>

The calculat ion is j u s t i f i e d by Theorem 2.2. This proves ( 2 ) . The proof of

(1) is s i m i l a r . II

2.4 Examples

The reader is inv i ted to use Corollary 2.3 to calculate the

fami l iar formulae for mean and variance i n the classic exponential famil ies

such as (univariate) normal, mult inomial, Poisson, gamma, negative binomial, etc.

For the mult ivar iate normal d i s t r i b u t i o n Corollary 2.3 provides a

benefit in the reverse d i r e c t i o n . Let Y be m-variate normal (μ, 2 ) , as in

Example 1.14. Fix μ = 0. Direct calculat ion (not using Corollary 2.3)

yields the fami l iar resul t

(1) EίY.Yj) = σ.j = ( - ( α Γ 1 ) ^ - = - θ i j

when μ = 0, where ζf = ( θ Ί J ) . Calculation using Corollary 2.3 and the

formula 1.14(3) for the cumulant generating function thus y ie lds for i f j

6..)
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since the corresponding canonica l s t a t i s t i c s are Y.Y . / ( I + 6 . . ) . L e t

B = -Q.. Then (2) shows t h a t f o r any p o s i t i v e d e f i n i t e symmetric m a t r i x , B,

Ί J / ( l + 6 . ) where B " 1 = ( b i j )ToglBI = 2 b Ί J / ( l + 6 . . ) where B " 1 = ( b i j ) .6..
ij 1 J

Hence, a l s o ,

(4) ^ — IBI = 2b i j |BI/( l + δ..) .
i j J

The convexity of ψ together with Theorem 2.2 yields the

following useful result.

2.5 Corollary

L e t Θ 1 5 Θ 2 € N°. Then

(1) ( θ 1 - θ 2 ) ( ξ ^ ) - ξ ( θ 2 ) ) >. 0 .

Equality holds in (1) i f and only i f Pfl = P . Consequently ξ ( θ , ) = ξ ( θ j

1 2

if and only if P
Q
 = P

Q
 . (If {p

Q
} is minimal this happens only when

θ l Θ 2 θ

θ 1 = θ 2 . )

Proof. ψ is convex. Hence the directional derivative of ψ in direction

θ. - θ2 is non-decreasing as one moves along the line from θ ? to θ...

That i s ,

(2) (θ χ - θ2) Vψ(θ2 + p(θ1 - θ2)) = (θ 1 - θ2) ξ(θ 2 + p(θ2 - θ2))

is non-decreasing in p. This yields (1).

I f PQ f PQ then ψ is s t r i c t l y convex on the line joining θ0 and
θ l Θ 2 2

θ,. Hence (2) is s t r i c t l y increasing for p £ (0,1). This yields the

remaining assertions of the corollary. (The parenthetical assertion is

contained in Theorem 1.13.) ||

The final corollary to Theorem 2.2 establishes the possibil ity of

differentiating inside the integral sign for expectations involving exponential

families. The result is stated only for real valued stat is t ics, but obviously
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generalizes to higher dimensional statistics.

2.6 Corollary

Let T : R
k
 + R. Let

(1) W(T) = {θ : /|T(x)|e
θ#X
v(dx) < «} .

Then W(T) is convex. Define

(2) h(θ) = /T(x)e
θ#x
v(dx) = e

ψ ( θ )
E

θ
(T(X))

for θ e W(T). Then all derivatives of h exist at every θ € W°(T), and they

may be computed under the integral sign. In particular

(3) VE
Θ
(T(X)) = /(x - ξ(θ))T(x)exp(θ x - ψ(θ))v(dx) .

Proof. Suppose T(x) _> 0. Applying Theorem 2.2 to the measure

ω(dx) = T(x)v(dx) yields the desired results. For general T the corollary

follows upon using the above to separately treat T and T~. ||

Note that if T and |T|"
]
 are bounded then W(T) => w.

ANALYTICITY

The moment generating function is analytic. This fact is implicit

in the proof of Theorem 2.2. As a preliminary we extend the definition of λ

and ψ to the complex domain.

Let

λ : (Ck -> ID

be defined by the same expression as previously, i .e.

(1) λ(θ) = /exp(θ x)v(dx) .

For θ € (D let Re θ denote the vector with coordinates

(Re θ ̂ . ^ R e θ
k
) . Note that for x e R

k

(2) |e
θ
'

x
| =

 e

( R e θ ) χ
 .
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Hence λ(θ) exists for Re θ e N .

2.7 Theorem

λ(θ) is analytic on {θ E C
k
 : Re θ e M°} .

Proof. Lemma 2.1 (and its proof) apply for b € (Ck, x e Rk. Similarly the

proof of Theorem 2.2(2) is valid verbatim for θ £ I . Thus Vλ(θ) exists for

Re θ € W° (and has the expression 2.2(2)). This implies that λ is analytic

on this domain. | |

Two important properties of analytic functions are: (i) they can be

expanded in a Taylor series; and (ii) they are analytic in each variable

separately. Thus, for a fixed value of (Θ
2
,...,θ

k
), λ(( ,θ

2
,...,θ

k
)) is

analytic. λ(( ,θp,...,θ.)) is determined by its values on any subset having

an accumulation point. This is the basis for the following result.

2.8 Lemma

Let T : R
k
 •> R, and let

(1) h(θ) = /T(x)e
θ
'

x
v(dx), for Re θ e N(T), as defined in 2.6(1).

Then h is analytic on {θ € ik : Re θ € W°(T)}.

Let L be a line in R , and let B c L n M(T) be any subset of

L Π M(T) having an accumulation point in N°(T). Then

(2) h(θ) = 0 V θ € B

implies h(θ) = 0 for all θ € Rk such that θ € L n W°(T).

Proof. The first assertion follows upon applying Theorem 2.7 to T (x)v(dx),

and T"(x)v(dx).

Next, one may apply linked affine transformations as in Proposition

1.6. Because of this it suffices to consider the case where

L = ίθ € R : θ = .,. = θ = 0}. h((θ-,O,...,O)) is an analytic function of
L. K J.

θ € (C, as already noted. Hence (2) implies h(θ,O,..,O) Ξ 0 on its domain of

analytic!ty, which is {(θ,0,...,0) : Re θ E L n W°(T)}. This proves the
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analyticity, which is {(θ ,0,... ,0): Re θ € L ΠW°(T)}. This proves the second

assertion. ||

Note that, more generally, if B is as above then the values of h on B

uniquely determine by analytic continuation its value on all of L Π N°(T).

(Straight lines play a special role in the above lemma. However we

note that there is a valid generalization of the above lemma in which L can be

replaced by a suitable one dimensional curve determined as the locus of points

satisfying (n - 1) simultaneous analytic equations (C. Earle (1980), personal

communication). For example L may be taken to be the curve

x^ + x^ = 1, x
3
 = ... = x

k
 = 0.)

2.9 Example

A question which arises, in statistical estimation theory, is whether

the positive part James-Stein estimator for an unknown normal mean,

θ(x) = (1 - (k-2)||x|Γ
2
)

+
x, x € Rk,

can possibly be generalized Bayes for squared error loss. This is equivalent

to asking whether <$(•) can be the gradient of a cumulant generating function

for some measure v(dθ) having N = R . (Note interchange of roles of θ and x.)

See Theorem 4.16. The answer is, "No." To see this note that ό(x) Ξ 0 for

I |x| I <_ 1. Hence if ό(x) = vψ(x) = vλ(x)/λ(x) for | |x| | < 1 it follows by

analyticity that ψ(x) = 0 on its domain of analyticity, which in this case is

R . This implies <$(x) = 0, a contradiction. ||

2.10 Example

The question arises in the theory of hypothesis tests as to whether

the unit square,

S = {x € Rk : |χ.| £ 1}, k >. 2,

can be a Bayes acceptance region for testing the mean of a normal distribution.

Placed in a general context, the question is whether there exist two distinct

non-zero finite measures G
Q
 and G-j (concentrated on disjoint sets Θ

Q
 and

θ
1

 c
 R

k
) such that
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2
(1) d(x) = /e

θ
"

X
"

θ / 2
(G

Q
(dθ) - G

Ί
(dθ)) > 0 if x € S,

and d(x) < O if x ^ S . The answer is, "No."
2

Proof. Let μ.(dθ) = e'
θ / 2

G.(dθ), i = 0,1. Then d(x) = λ
Q
(x) - λ^x)

where λ. is the moment generating function of p.. Note that W = R
k
, i = 0,1.

I 1 y .

Hence d( ) is analytic on R .

For convenience consider only the case k = 2. Expand d in a Taylor

series about (1,1) as

d((l . 1) + (yΊ
. yJ) = Σ ί a. . . y\y)'

1 ά
 i=0 j=0

 JίΊ
"

J
 '

 ά

(a
Q 0
 = 0 since d((l, 1)) = 0.) Let i

1
 be the smallest index for which

i
1

Σ la. ., .1 > 0. i' exists since d t 0 if (1) is valid.
j=0

 J
'
Ί
 "

J

Suppose i
1
 is even. Then for y. >_ 0, i = 1,2,

(2) I
 3i 1

._
i
 yίyJ'-

J
 = I a. ., A-y,)H-y

2
)

v
'

3
.

j _ Q J j l -J I C . Q J , l -J I ά

There are values (y,, y j in the first quadrant for which (2) f 0, since (2)

is a non-zero homogeneous polynomial. Suppose (y-j, y^) is such a value. Then

|pΓ
1 l
d((i, D ) + (py?> py°)) = .Σ

 a
i
 5i
 .j(y?)

d
(y2)

il
"

:i +
 °^

= c + o(p) as |p| -> 0

with c ί 0. If c > 0 it follows that d((l, 1)) + (
P
y^, pyij)) > 0 for p > 0

sufficiently small; and this would contradict (1). If c < 0 it follows that

d((l, 1) + (py?, py2)) < 0 for p < 0 sufficiently small; and this would also

contradict (1).

If i
1
 is odd analogous reasoning yields

1) + ( y
r
 -y

2
)) = ||y|Γ

Ί
"d((l, 1) + (-y

r
 y

2
)) + o(l)

as ||y|| + 0, and that there are values of (y-j, -y
2
) > 0 for which

lim ||y|Γ
Ί l
d((l, 1) +

 P
(y?, -y2)) t 0. It follows that there are values of

P
ψ0
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y in either the fourth quadrant or the second quadrant for which

d((l, 1) + y) > 0. This again contradicts (1).

Hence (1) is impossible. ||

COMPLETENESS

2.11 Remarks

A family {F θ € 0} of probability distributions (or their
u

associated densities, i f these exist) is called stat is t ical ly complete i f

T : Rk -> R with

(1) /T(x)Fθ(dx) = 0 V θ € 0

implies

(2) τ(x) = 0 a.e. (F0) V θ € 0

(Implicit in (1) is the condition that /|T(x)|FQ(dx) < ~ v θ e 0 .)

Standard exponential families are complete if the parameter space

is large enough. This result, which is equivalent to the uniqueness theorem for

Laplace transforms, is proved in Theorem 2.12. (The uniqueness theorem for

Laplace transforms states that if U° n H° f φ then λ = λ if and only if
μ v μ v

μ = v.) The most convenient way to prove this theorem seems to be to invoke

the uniqueness theorem for Fourier-Stieltjes transforms (equals characteristic

functions) which is described in the next paragraph.

Let Im = {bi € (C : b € R} denote the pure imaginary numbers. Let F
k k

be a f in i te (non-negative) measure on R . The function K : R -> (C defined by
κF(b) = λ F (bi) b € Rk

is the Fourier-Stieltjes transform (or, Fourier transform, or, characteristic

function) of F. Hence λp restricted to the domain (Im) is equivalent to Kp.

Note that κp always exists ( i . e . Re((Im) ) = 0 c N). The uniqueness theorem

for Fourier transforms is as follows.

(̂
Theorem. Let F and G be two f i n i t e non-negative measures on R . Then F = G
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i f and o n l y i f κ p Ξ K Q ( i . e . λ p ( b i ) = X Q ( b i ) V b e R k ) .

Proof. This is a standard result in the theory of characteristic functions.

Proofs abound. A quick proof may be found in Feller (1966, XV,3). (This

proof is expl ic i t ly for R, but generalizes immediately to R .) 11

Here is the classic result on completeness of exponential families.

2.12 Theorem

Let ίp
Q
}: θ e 0} be a standard exponential family. Suppose

0° f φ. Then {p
Q
} is complete.

Proof. Let θ
Q
 E 0°. One may translate coordinates using Proposition 1.6 so

that ΘQ = 0. There is thus no loss of generality in assuming Θ
Q
 = 0.

Suppose Π(x)p
Q
(x)v(dx) = 0 V θ e 0. Then, letting T = T

+
 - T~,

u

(1) /T + (x)e θ " x v(dx) = /T"(x)e θ # x v(dx) V θ € 0

Let F(dx) = T+(x)v(dx), G(dx) = T"(x)v(dx). Then (1) becomes

(2) λ F (θ) = /eθ # xF(dx) = /eθ # xG(dx) = λG(θ) V θ € 0

Both λ F ( ) and λ r ( ) are analytic on the domain 0° x (Im) . (2) states that

they agree on 0 x 0 <= 0 x (Im) . Hence λr(x) = λ g ( z ) "^0Γ a ^ z suc^ t ' Ί a t

re z € 0° . (This follows d i rect ly from ana ly t i c i ty . Alternately one may

apply the second half of Lemma 2.8 to a l l l ines which intersect 0 .) In

part icular

(3) λ F (0 + bi) = λG(0 + bi) V b e R k

since 0 € 0°. Thus, F = G by Theorem 2.11. This says that

T+(x)v(dx) = T"(x)v(dx), which implies T+ = T~ a.e.(v), which implies

T = 0 a.e.(v). Hence {pQ} is complete. II
u

Note from the above that any canonical family is complete.

From this we derive:
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2.13 Corollary

A standard family with W° t φ is uniquely determined by its Laplace

transform (or by its cumulant generating function).

Note that the corollary applies to a l l minimal families since they

always have H° f φ.

Proof. Consider the standard families in R generated by the measures μ

and v. Suppose N° f φ and ψ = ψ . Then W = hi = hi.

Let ω = (y + v)/2. Then, ω generates an exponential family with

λω = ( λ μ + λ v ) / 2 H e n C e Wω = M a n d ψω = ψμ = V

Let T = 4± - 4ϋ . Then
dω dω

θ x-ώ (θ) Ί θ x-ψ (θ) θ x-ψ (θ)
/T(x)e θ ψω^ jω(dx) = ( l ) ( / e V y(dx) - fe v v(dx))

Hence T = 0 a.e.(ω) by Theorem 2.12; which implies μ = v. ||

Theorem 2.12 has many other important applications in statistics.

It plays an important role, for example, in the theory of unbiased estimates

and in the construction of unbiased tests. Some aspects of this role are

described in the exercises and in succeeding chapters.

MUTUAL INDEPENDENCE

Lehamnn (1959, p. 162-163) describes a nice proof of the

independence of X, S in a normal sample. A different but related proof

is a special instance of an argument which applies in several important

exponential families. (See Example 2.15.) The basic parts of the

argument are due to Neyman (1938) and Basu (1955), but the full result in

Theorem 2.14, below, was only recently proved by Bar-Lev (1983) and

by Barndorff-Nielsen and Blaesild (1983). The proof below follows

that in the second of these papers. See the exercises for an additional

related result of Bar-Lev and for several applications of this theorem.

Through most of this subsection we consider the situation where
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θ and x are, respectively, partitioned as θ
1
 = (θ/.x, θ/p)^

J x< =
 ^(D*

 x
l?)^

As in Sections 1.7 and 1.15, problems not in this form can sometimes be

reduced to this form through use of linked linear transformations on θ and x.

Where convenient, we write ψ(θ) = ψίθ/.x, θ/
2
)) ^

e u s e
 ^

e n o t a t
i °

n

Y ~ Expf (θ) to mean that the distributions of Y form a standard exponential

family with natural parameter θ. We also use the notation X l Y to mean that X

and Y are independent.

2.14 Theorem

Let X ~ Expf (θ) with θ° € Θ°. Let X1
 = (X|

1 ) s
 X|

2 )
) where X

( i )
 is

k
i
 dimensional, and let M X , ^ ) be a k

2
 dimensional statistic. Let

P l
( θ

( 1 )
, θ

( 2 )
) = log E

0
 (exp((θ

( 1 )
 - θf

1 }
) X

( 1 )

(1) + ( θ
( 2 )
 - Q°

{2)
) h(X

( 1 )
)))

P
2
(θ(

2
)) = "Όg E

θ
 (exp((θ

( 2 )
 - θ^

2 )
) (X

( 2 )
 - h(X

( l )
))) .

Then t h e f o l l o w i n g c o n d i t i o n s a r e e q u i v a l e n t :

( 2 ) X ( 1 ) l ( X ( 2 ) - h ( χ ( 1 ) ) ) u n d e r θ °

( 2 1 ) X ( 1 ) l ( X ( 2 ) - h ( X ( 1 ) ) ) f o r a l l θ € Θ

( 3 ) Ψ ( θ ( 1 ) , θ ( 2 ) ) = P 1 ( θ ( 1 ) , θ ( 2 ) ) + P 2 ( θ ( 2 ) ) V Θ G Θ

( 4 ) ( X ( 2 ) - h ( X ( 1 ) ) ) ~ E x p f ( θ ( 2 ) )

( 5 ) ( X ( 1 ) , h ( X ( 1 ) ) ) ~ E x p f ( θ ( 1 ) , θ ( 2 ) )

Proof. For convenience, assume without loss of generality that θ° = 0.

(See Proposition 1.6.) Let ω denote the joint distribution under 0 of

V = ( X ( 1 ) , h ( X ( 1 ) ) , X ( 2 ) - h ( X ( 1 ) ) ) . Consider the standard exponential family

generated by ω, with natural parameter space Nv. Note that, in general,
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ίX
( 1 )

 1 (X
( 2 )

 - h(X
( 1 )

))} « {(X
( 1 ) 5

 h(X
( 1 )

)) 1 (X
( 2 )

 - h(X
( 1 )

))} . The

equivalence of (2) and (2') is seen in this fashion to be a special case of

Exercise 1.7.1.

(2) => (3) follows from a direct calculation.

(3) =* (2): Let ω
χ
 denote the distribution under θ° = 0 of

(V
( 1 )

, V
( 2 )

) = (X
( 1 )

, h(X
( 1 )

)) and ω
2
 that of V

( 3 )
 = X

( χ )
 - h ( X

( 1 )
) .

Let ω* = ω- x uu. Then the cumulant generating function ψ* of ω* satisfies

ψ*(θ
( 1 )

, θ
( 2 )

. θ
( 2 )

) =
 P I

( Θ
( 1 )

, θ
( 2 )

) + P
2
( Θ

( 2 )
) , ( Θ

( 1 )
. θ

( 2 )
) e e .

Furthermore, the cumulant generating function of the linear function

(V
( 1 )

, V
( 2 )

 + V
( 3 )

) is ψ** given by

Ψ**(θ
( 1 )

, θ
( 2 )

) = ψ*(θ
( 1 )

, θ
( 2 )

, θ
( 2 )

) = Pi(θ(i).θ
( 2 )

)+p
2
(θ

( 2 )
)

= Ψ(θ
( 1 )

, θ
( 2 )

) , θ e Θ .

It follows from Corollary 2.13, since Θ° f φ, that (V\^
9
 V,

2
j + V,^Λ has

the same distribution under θ° as (X/i\> ^(2)^'
 T

^
us
 ^ ( 1 ) '

 X
(2) "

 n
^(i)))

has the same joint distribution under θ° as (V/,x> ^io\
 +
 ^C*) "

 n
(

V
f i O )

But, V
( 2 )

 + V
( 3 )

 - h(V
( 1 )

) = V
( 3 )

. Hence X
( 1 )

 1 (X
( 2 )

 - h(X
( 1 )

)) under θ°

since V
( 1 )

 ± V
( 3 )

.

(2) => (4) and (5), as can be seen by direct calculation of the

marginal distributions involved via the standard formulae (6) and (8), below.

(4) => (2): The marginal density of V,
3
x = X/

2
x - hίX/^) relative

to the marginal distribution ω
2
 is

(6) q
θ
(v

( 3 )
) = /exp(θ

( 1 )
 v

( 1 )
 + θ

( 2 )
 h(v

( 1 )
)

+ θ
(2) '

 v
(3) "

where ω( | ) denotes the indicated conditional distribution. By (4)

q
Q
(v^

3
j)=

 e χ
P(

θ
(

2
)

v
(3) "

 P
2 ^

θ
( 2 ) ^ (a.e.). Setting θ ^ = 0 yields
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(7) exp(ψ(θ
( 1 )
, 0) - p

2
(0))

= /exp(θ
( 1 )
 v

( 1 )
)

 ω
(

d v
(Dl

v
(3)) > (

θ
(i)> °) e Θ , (a.e.) .

Here the Laplace t r a n s f o r m o f ω ( # l v ( 3 ) ) e x i s t s on an open s e t and i s indepen-

dent o f V/3x ( a . e . ) . I t f o l l o w s from another a p p l i c a t i o n o f C o r o l l a r y 2.13

t h a t ω( | v / 3 J i s independent o f v,^ ( a . e . ) . So, V , ^ i s independent o f V / ^ .

This v e r i f i e s ( 2 ) .

The p r o o f t h a t (5) => (2) i s s i m i l a r . The marginal j o i n t d e n s i t y o f

V ( 1 ) . V ( 2 ) i s

( 8 ) q £ ( v ( 1 ) , v ( 2 ) ) = / e x p ( θ ( 1 ) v ( 1 ) + θ ( 2 ) h ( v ( 1 ) ) + θ ( 2 ) v ( 3 )

- ψ(θ)) ω'(dv
( 3 )

|v
( 1 )

) (a.e.) .

Setting θ,.v = 0 and cancelling terms in (5) implies

exp(ψ(0, θ ^ ) - p(0, θ(
2
j)) = /exp(θ^

2
j v ^ )

 ω
'(

d v
(

3
) I

V
(D) (a.e.).

Hence, as before ω'ί lv,^) is independent of v,^ (a.e.), which yields (2). ||

2.15 Examples

(i) Let Y,,...,Y be independent N(μ,σ ) variables. Then (Example

1.12) (Y., Y
2
) * Expf(μ/σ

2
, -l/2σ

2
). Hence ( Σ Y ^ ΣY?) * Expf(μ/σ

2
, -l/2σ

2
).

Also (ΣY
Γ
 (ΣY.)

2
/n) Λ, Expf(μ/σ

2
, -l/2σ

2
). This verifies 2.14(5). Hence

ΣY. -' ΣY
2
/n = Σ(Y.- Ϋ )

2
 ̂  Expf(-l/2σ

2
) and is independent of T

p
 by 2.14(4)

and 2.14(2').

( i i ) S i m i l a r l y , l e t X 1 ,...,X n be independent Γ(α, σ) . Then

(Example 1.12) i^ΣX^ Σ In XΊ ) ~ Expf(- l/σ, nα). The marginal d i s t r i b u t i o n

of X. is also (nα, σ) ; hence (ΣX^, In ΣXη.) ~ Expf(-l/σ, nα). Again,

Theorem 2.14 y ie lds that (Σln Xη. - In ΣXΊ ) 1 ΣX i. This is often re-expressed

in the form X/X 1 X where here X = ( Π X ) l y / n denotes the geometric mean of
i = l

 Ί

the observations. Also, ln(X/X) - Expf(nα). See the Exercises for a double
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extension of this conclusion.

There are further applications of this theorem. For some of these

see the exercises and the references cited above. In particular there are

several applications to problems involving the inverse Gaussian

distribution. See Chapter 3.

CONTINUITY THEOREM

The continuity theorem for Laplace transforms refers to the l imit ing

behavior of a sequence of measures and the associated Laplace transforms.

We f i r s t need a standard definit ion and some related remarks.

2.16 Definition

Consider R . Let C denote the space of continuous (real-valued)

functions on R . Let CQ c C denote the subspace of continuous functions with

compact support - - i .e.

c(x) = 0 for 11 x EI > r , some r < oo .

A (non-negative) measure v is called locally finite i f

v({x : I Ixl I < r}) < oo v r € R. Except where specifically noted, a l l measures

are assumed to be locally f i n i t e , σ-f in i te, and non-negative. Let {v } be a

sequence of measures. We say

v -* v (weak*) i f

(1) / c(x)vn(dx) -> /c(x)v(dx) V c € CQ .

Here are several important facts concerning weak* convergence.

For v finite let V̂  denote the cumulative distribution function:

V v ( t ) = v ( { x : xΊ. < t . , i = l , . . . , k } ) .

( i ) Then vn + v i f and only i f

(2) Vv ( t) + V v(t) V t € Rk at which Vv( ) is continuous.

k k
(ii) Sup p o s e v + v. Then lim inf v ( R ) > v(R ) . Su p p o s e there

n ~ n —
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is a c £ C, c >_ 0, with

(3) lim c(x) = °°
llxll-*»

such that

(3
1
) lim sup /c(x)v (dx) < «>

n-χ»

Then

(4) lim v (R
k
) = v(R

k
) < «

n-χ»

(iii) Furthermore, (4) implies

(5) /c(x)v
n
(dx) - /c(x)v(dx)

for all bounded c ε C. (Condition (3), (3
1
) is sometimes referred to by saying

the sequence is tight.)

(iv) If v > 0 is any bounded sequence (i.e. lim sup v (R ) < «>)
n-*»

then there is a subsequence {v
n
 } and a finite measure v such that v -> v .

n
i
 π

i
For a proof of these facts see Neveu (1965).

2.17 Theorem

Let S <= Rk and l e t B = conhull S. Suppose B° * φ. Let v n be a

sequence of measures on R such t h a t

( 1 ) l im i n f sup λ (b) < oo v b e S .
beS v n

Let bQ e B°. Then there e x i s t s a subsequence {n^} and a l o c a l l y

f i n i t e measure v such t h a t

(2) e b o ' x v (dx) -> e b ° # x v ( d x )
n
i

and

(3) λ (b) - λ
v
(b) V b € B° .

The convergence in (3) is uniform on compact subsets of B°,
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(Condition (3) is of course equivalent to

ψ (b) + ψ (b) v b e B°
n
i

Condition (1) implies the measures v are locally finite.)

Remark. Lemma 2.1 together with (3) shows that

(4) / x e
b # x

 v
n
( d x ) - /xe

b
'

x
v(dx), b ε B° ,

and similarly for higher moments of x. Hence

(5) Vλ
v
 (b) + vλ

v
(b), b € B°

ni

and similarly for higher order partial derivatives of λ. See Exercise 2.17.1.

Similar reasoning also shows that

(6) e
θ # b

v
n
 (dθ) - e

θ # b
v(dθ) weak* v b e B

Q
 .

Hence the measure v in (2) does not depend on the choice of b
Q
 € BQ .

Proof. We exploit Proposition 1.6 and assume without loss of generality

that bg = 0 £ B°. It also suffices to assume that B is a convex polytope

(i.e. B = conhull {b. : i=l,...,m}) since the interior of any convex set is a

countable union of such polytopes, and a compact subset of the interior will be

contained in one of them.

Now,

lim
m b Γ x
Σ e =

by Lemma 2.1. Thus, for some subsequence {n
1
.}
j

m
 b- x

(7) lim sup /( Σ e
 Ί
 )v.(dx) < co

n-« i = l
 n

j

by (1). Hence, the sequence {v ,} is tight, and there exists a further

J

subsequence {v } and a limiting measure v such that v -• v . This immediately

implies that also e
b # x

v
 (dx) -> e

b
'

x

v
(dx) for any b € Rk.

n i
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Let b € B°. Then lim (Σe 7
 /e

b
"

x
) = °°, again by Lemma 2.1.

b Γ x
l im sup / ^ T - e b ' X v n (dx) < ».

D x n in-χ» e

Hence the sequence e
 # X
v (dx) is also tight. This implies

/ e
b # x

v
n
 (dx) + /e

b
'

x
v(dx), which yields (3).

Let C c B° be compact. Then

||x||e
b χ
 < K Σ e

b i
*

X

by Lemma 2 . 1 . This yields

m b x
l im sup sup | |Vλ (b)|| <_ l im sup K / Σ e Ί v (dx)

Ί-XΌ beC vr\. i^oo i = i n

Ί

m
<_ lim sup K Σ λ(b.) < <» .

The f u n c t i o n s λ (•) are thus u n i f o r m l y ( i n { n . } ) u n i f o r m l y cont inuous on C.

The convergence i n (3) i s t h e r e f o r e u n i f o r m on C. ||

2.18 Uniform Convergence

Theorem 2.17 shows that if

A .
(b) -> ψ Λ ( b ) f o r a l l b G B° f φ then \>. + v

. A i

There is a useful uniform version of this statement. Let

(1) {v α n : n=l, . . . ,α € A}

be a family of sequences of measures and {v : α € A} be a family of measures.

All of these are assumed locally f i n i te . We say

v -** v (weak*) uniformly in α

when for each c 6 CΛ
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(2) /c(x)v (dx) - /c(x)v (dx)
n
->oo

uniformly over α € A. For notational convenience in the following, let

Vα = \ e t c

Proposition. Suppose the family of cumulative distribution functions

{V : α € A} is equicontinuous at e^ery x e R . Then v -+v uniformly in

α i f and only i f

(3) V
α n
 •*• V

α
 uniformly for α € A

Proof. The necessity of (3) is proved by applying (2) to continuous

functions c satisfying

c(x)

1
=

0

x i

X i

^ X 0 i

> X 0 i

- 6

+ 6

for

for

a l l

some

and then choosing 6 sufficiently small.

Conversely, (3) implies /g(x)d(V
αn
(x) - V

α
(x)) =

• ^
V
α n ^ "

 v

α
(

χ
))

d
9(

χ
) "*• ° uniformly in α for each differentiate g € CQ .

If c € CQ and ε > 0 there is a differentiable g € CQ with |g - c| < ε . Then

|/(c(x) - g(x)) d(V
α n
(x) - V

α
(x))| < 2ε uniformly for all α € A and all n.

Combining these facts yields the uniform convergence of v to v . ||

Extra care in the proof of the above proposition will show that if

the ίV
α
 : α e A) are equicontinuous uniformly over x € S and v^ -> v

uniformly in α then (3) holds uniformly for α € A, x € S.

2.19 Theorem

Let {v n) and {v } be as in 2.18(1). Suppose B = conhull S,

and B° ϊ φ. Let λ = λ , etc. Suppose
α
 α

(1) λ (b) -> λ (b) v b ε S
nκ»

uniformly over α e A, and suppose
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(2) sup sup λ (b) <
b€S α

 α

Then v -»• v uniformly over α € A.

Proof. If v -h v uniformly over α € A, there is a c € Cn and a sequence
an a

a such that

(3) lim |/c(θ)(v
α n

(dθ)-v
α

n-χ»

In view of (3) there exists a subsequence n. and limiting measures

vt t vΐ such that if we write v = ω. and v = ω. then

(4) ω. •* v* , λ
M
 (b) + λ *(b) , b E B ;

l 1 ω. v
1

and

(5) ω. -> v* , λ-
β
(b) -> λ

v
*(b) b € B

by Theorem 2.17. (To establish (4) we exploit (2) to guarantee condition 2.17(1)

for the sequence {ω } .)
n
i

Assumption (1) implies λ *(b) = λ *(b), b e B, which implies
v
l
 V

2

vϊ = Vo - This is a contradiction. It follows that v -*• v uniformly over

α € A. ||

TOTAL POSITIVITY

2.20 Def ini t ions

Let S cz R and h : S -> R . Let { X Q < . . . < X Π } <= S. The sequence

{x € S : i = O , l , . . . , n } is cal led a s t r i c t l y changing sequence for h having

order n i f

(1) (sgn h(χ._
1
))(sgn h(x.)) = -1 i=l

s
...,n
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The number S (h) -- the number of strict sign changes of h -- is the maximal

order of a sequence of strict sign changes of h. Clearly 0 <_ S (h) <_«> .

Let S"(h) = n < °° and let {x. € S : i=0,...,n} be a strictly changing sequence

for h having order n. Then the (strict) initial sign of h is

(2) IS"(h) = sgn h(xQ) .

(It is easy to check that this definition is well-formulated -- i.e. does not

depend on the chosen strictly changing sequence for h.)

Similarly a sequence {x. € S : i=0,...,n} is called a weakly

changing sequence for h having order n if

(3) (sgn h(x2i))(sgn h(x2j+1)) < 0

for i=0,...,[n/2], j=0,...,t(n-l)/2]

This means that zeros of the sequence {sgn h(χ.) : i = 0 , l , . . . , n } can be

reassigned as e i ther a (+1) or a (-1) in a manner so that the resul t ing

sequence of ± Γ s alternates in s ign. The number S (h) is the maximal order

of such a sequence. Clearly, 0 <_ S (h) <_ °°, and

(4) S+(h) > S"(h) .

Let S+(h) = n < °° and l e t {x. e S : i = 0 , . . . , n } be a weakly changing sequence

for h of order n. Then

+1 i f h(x 2 ) > 0 for some i = 0 , . . . , [ n / 2 ]

(5) IS"(h) = 0 i f h(χ.) = o i = 0 , . . . , n

-1 if h ( x
2 i
) < 0 for some i=0,...,[n/2] .

It can be checked that this definition is well formulated.

2,21 Theorem

Let {p
n
} be a standard one parameter exponential family. Let
u

g : R -> R such that v{χ : g(x) ̂  0} > 0 . Let
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(1) h(θ) = E
θ
(g(x)) , θ € A/°(g) .

Then

(2) S+(h) < S"(g) .

I f equality holds in (2) then

(3) IS+(h) = is"(g) .

Remark. The domain of h in (1) is res t r ic ted to W°(g). The theorem remains

true i f the domain of h is a l l of N(g). We leave th is general ization as an

exercise.

The sign-change-preserving properties (2 ) , (3) are equivalent to

"Total Pos i t i v i t y of {pQ} of order « . " Karl in (1968) is a very usefu l ,

standard reference on th is top ic . See also Brown, Johnstone, and MacGibbon

(1981).

Proof. Let

g(θ) = /eθxg(x)dx = e ψ ( θ ) h(θ) .

It suffices to prove g has the properties of h in (2), (3), The proof is by

induction on n = S~(g). Assume without loss of generality that IS"(g) = +1.

When n = 0 the result is trivial since then g ̂  0 and

v({χ : g(x) > 0}) > 0 so that g(θ) > 0 for all θ € W(h), as claimed in (2).

Assume the theorem is true for n <_ N. Suppose n = N + 1. Let

ξ, = infix : g(x) < 0}. ξ- > -» since IS"(g) = +1. Let

u(θ) = d_(
e
"

θ ζ
i3(θ)) = /(x -

 ξl
)g(x)e

θx
v(dx) .

Now, S"((x - ξi)g(x)) 1 N = n - 1, as can easily be checked from the definit ion

of ζ r Hence S+(u) <_ N by the induction hypothesis. Integration yields that

S+(U) <_ N + 1 where

(4) U(θ) = / θ u(t)dt = e " ξ i θ g(θ) .

(2) follows from (4). (3) may be verified by concentrating the above argument

on the case where S
+
(u) = N and S

+
(U) = N + 1, and using the induction hypothesis
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to keep track of IS (u) and consequently of IS (U). ||

The above property for n = 1 is equivalent to the strict monotone

likelihood ratio property. The following is an important consequence of this.

2.22 Corollary

Let {p.} be a standard one parameter exponential fami ly. Suppose
u

g : R + R is non-decreasing and not essent ia l ly a constant ( v ) . Then Eθ(g)

is s t r i c t l y increasing on M°(g).

[Remark. Again, the resul t is true on the f u l l domain, W(g), but we leave

v e r i f i c a t i o n of th is as an exercise.)

Proof. Let ess i n f g( ) < c < ess sup g( ) ί then g( ) - c s a t i s f i e s the

hypotheses of Theorem 2.21 with S~(g-c) = 1. Hence EJg) - c > 0 (or < 0)

for θ € W°(g) whenever θ > QΛc) (whenever θ < θ..(c)). I t follows that g is

s t r i c t l y increasing on W°(g). ||

I t is possible to derive from the above some results concerning

sign changes for multidimensional f a m i l i e s . In general, these results appear

yery weak by comparison with t h e i r univariate cousins. Here is an example of

such a r e s u l t which w i l l be useful l a t e r .

2.23 Corollary

Let {p Q } be a standard k parameter exponential fami ly. Let

ΘQ € N and v € Rk. Let θ = ΘQ + pv. Suppose g : Rk ->• R s a t i s f i e s

g(x) £ 0 v x £ α

(1)

^ 0 v x ^ α

for some α € R. Let

h(ρ) = E (g(X)) .
P

Then S+(h) < 1 . I f S+(h) = 1 then IS + (h) = - 1 .
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Proof. Apply Theorem 2.22 to the one parameter exponential family {p
Q
 }

Θ
P

of densities of v X. Observe that

E
θ
 (g(x)|v x = t) = g*(t)

is independent o f P by Theorem 1.7, and (1) guarantees that S"(g*) £ 1.

These observations enable the desired appl icat ion of the theorem. I I

PARTIAL ORDER PROPERTIES

The preceding multidimensional resu l t is not very s a t i s f a c t o r y ; the

hypotheses on h are too r e s t r i c t i v e . Better results may be obtained by

considering p a r t i a l orderings and imposing suitable r e s t r i c t i o n s on the

exponential fami ly. We give one simple r e s u l t as an appetizer for what may

be obtained.

For th is r e s u l t define the p a r t i a l order ing, <* , on R by x « y i f

x i 1 y-j» i = l , . . . , k . A funct ion h : R -> R is non-decreasing r e l a t i v e to th is

ordering i f x <χ y implies h(x) <_ h ( y ) . The fol lowing preparatory lemma i s

also of independent i n t e r e s t .

2.24 Lemma

Let X have coordinates X.,...,X. which are independent random

variables with d i s t r i b u t i o n s F1,...,F| ζ i respect ively. Suppose hy h^ are non-

decreasing r e l a t i v e to the p a r t i a l ordering * . Then

(1) E(h
1
(X)h

2
(X)) > EίhjWJEίhgίX)) .

Proof. The proof is by induction on k. Note that for k = 1 the result is

well known. This observation enables one to rewrite and reduce the l e f t side

of (1) as
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k
/.../ hΛx)h

?
(x) Π F.(dχ.)

1 ά
 i=l

 Ί Ί

k-l
= / . . . / ( / h

1
(x)h

2
(x)F

k
(dx

|<
)) Π F.(dx.)

k-l
>_ /.../ [/h

1
(x)F

k
(dx

k
)][/ h

2
(x)F

k
(dx

k
)] n F.(dχ.) .

Each function in square brackets is clearly non-decreasing in (x
Ί
,...,x, - ) .

Hence, by induction, (1) is valid. ||

Here is the application to exponential families.

2.25 Theorem

Consider a minimal standard exponential family for which the

canonical coordinate variables X
1 9
...,X

k
 are independent. Let h be non-

decreasing relative to the partial ordering «. Then E (h) is a non-decreasing

function of θ on M°(h). (This result may be extended to all of W(h).)

Proof. Write

Note that both x. - ξ.(θ) and h(x) are non-decreasing functions of x. Hence
J J

g|τE
θ
(h) > E (Xj - ξ

j
(θ))E

θ
(h(X)) = 0

J

by Lemma 2.24. It follows that E
Λ
(h) is non-decreasing in each coordinate of θ

and hence (equivalently) is non-decreasing relative to «. ||

The preceding theorem is merely a sample of the available results.

Other assumptions may replace the independence assumption, above. Notably,

the conclusion of Lemma 2.24 remains valid if the joint distribution, F, of

X has a density f with respect to Lebesgue measure which is monotone likeli-

hood ratio in each pair of coordinates when the others are held fixed.

(Exercise.) (There is also a lattice variable version of this fact.) Such

densities are called multivariate totally positive of order 2 (= MTPp).

Suppose {p
a
> is a minimal standard exponential family whose dominating measure,

v, is MTPp It follows by the proof of the theorem above that then h non-
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decreasing implies E
Q
(h) non-decreasing in θ.

Under suitable conditions it is also possible to derive analogous

"order preserving" results for other partial orderings. For example, one may

consider the partial ordering induced by a convex cone C c R , under which

x
 α

 c
 y if y - x e c.

A rather different but very fruitful partial ordering is that leading
k k

the notion of Schur convexity. Define x «
 Q
 y if Σ x. = Σ y. and if
b
 i=l

 Ί
 i=l

 Ί

k' k
1

Σ X
M I 1

 Σ
 V Γ - T 1 <_ k' < k, where x

r
 .

Ί
»i = l,...,k, denote the coordinates

i = l
 LΊJ

 i = i
 LΊJ LΊJ

of x written in decreasing order, etc. Then h is called Schur convex if it is

non-decreasing relative to the ordering <* (Obviously any such function

must be a symmetric function of x , , . . . ^ . )

For further information about these and other partial orderings,

consult Marshall and Olkin (1979), Karlin and Rinott (1981), Eaton (1982),

and references cited in these works.
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EXERCISES

2.2.1 Generalize 2.1(2) to

I e
θ # x
 -

 θ
o "

x I
 b.

Thus

(2)

Use

2.3.

K c

(1)

and

(2)

this to

1

[ 0 , oo).

VarQX <

(iΐx

prove 2.

Consider

^ ) ( e θ χ - e θ o χ -

||Θ -

2(1) by induction

a one-dimensional

Show that

( E 0 [ ( l

oo imply

- a ) X ] ) 2 > E O [ ( 1

E 0 (X) >

(θ - θ0) x e V x )

θ o l l

on I.

standard exponent!

- 2 a ) X ] , 0 < a <

: VarQ X .

[Let e θ = (1 - a) and show by d i f f e r e n t i a t i n g at θ = 0" that (1)

implies ψ'(0~) > ψ " ( θ " ) . The finiteness of Var X guarantees that

ψ"(0~) = VargX < «>, e t c . , S. Zamir (personal communication).] ( I t is not known

i f (1) implies (2) without the assumption that VarQX < 00.)

2.4.1 Canonical one-parameter exponential families for which VarQ (X) is
u

a quadratic function of E
Q
(X) are called quadratic variance function families

(= QVF). See Morris (1982, 1983). Verify that the following six families

have the QVF property:

(1) N(μ, σ
2
) μ known

(2) P(λ)

(3) r(α, σ) α known

(4) Bin (r, p) r known

(5) Neg. Bin. (r, p) r known

(6) v has density f(x) = (2 cosh(^))"
1
, -00 <

 x
 < «> ,

relative to Lebesgue measure. (X = π log(Y/(l - Y)) where Y ~ Beta [h, h).)
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[ I n (6) ψ(θ) = - log(cos θ ) . This is cal led the hyperbolic secant

d i s t r i b u t i o n . The generalized hyperbolic secant distr ibut ions are produced

from these by i n f i n i t e d i v i s i b i l i t y and convolution. These famil ies are the

only QVF famil ies (Morris, 1982). See also Bar-Lev and Enis ( 1 9 8 5 ) . ]

2.5.1 Let {p } be a canonical one-dimensional exponential family.

Then N° = ( θ ^ θ 2 ) , ξ(W°) = ( ξ ^ ξ 2 ) for some -°° < θ χ < θ 2 < «, and

-oo £ ξ < ξ £ co. i f K = [x-,°o) then ξ. = x.. (Theorem 3.6 is a m u l t i v a r i a t e

general ization of this r e s u l t . )

2.10.1 Let {pθ> be a two-dimensional canonical exponential family. Find

a convex subset of W such that h bounded and EQ(h) = 0 for a l l θ € 3W

implies h = 0 a . e . ( v ) . (Hence, the family {p Λ : θ € dhl} is "boundedly

complete".) Conclude that e\/ery test of ΘQ versus Θ, = hi - ΘQ is "admissible".

( i . e . Let π.(θ) = E A ( φ ) . Then π. (θ) <. π ( θ ) , θ € ΘΠ, and π. (θ) ^ π ( Θ ) ,
Φ θ ψ^ — Φ2 u φ^ — Φ2

Θ 6 0 , , implies π (θ) Ξ π ( θ ) .) [3W contains an i n f i n i t e number of l i n e

segments. See F a r r e l l ( 1 9 6 8 ) . ]

Similar Tests and Unbiased Tests

2.12.0 Let ΘΊ c Θ, i = 0 , l . A c r i t i c a l t e s t function φ, 0 £ φ <_ 1 , is

called level α unbiased i f EQ(φ) < α, θ € Θ n , and EQ(φ) > α , θ € Θ Ί . I t is

cal led similar ( level α) i f EQ(Φ) Ξ ot, θ 6 0 Q n 0 . n W. The following

problems consider the common case where ΘQ U Θ, = hi so that 8ΘQ n hi =

0 Q n § 1 n hi. Exercises 2 . 2 1 . 3 , 2.21.4 and 2.21.5 contain further applications

of these concepts. See also 7 . 1 2 . 1 .

2.12.1 Let {p } be a regular canonical family and l e t θ 1 = ( θ | i ) » θ ( 2 ) ^ 9

X1 = ( X | . j , x ( 2 ) ) b e p a r t i t i o n e d vectors. (Regularity is convenient but not

essential here.) Let L = {θ : θ / ^ = 0} . Assume L Π W° f φ.

( i ) Show that a c r i t i c a l function φ is s imilar on L i f and only i f

( 1 ) α = / Φ ( x ) v ( d x j 1 j | X ( 2 ) ^ a ' e ( v )

(Tests with property (1) are said to have Neyman structure. Note that the
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right side of (1) is E
Θ
(Φ|X(

2
))

 f o r θ € L )

(ii) Show that φ is similar on L and satisfies

(2) v VE
Λ
(φ) = 0 V v € L 1 = { v : v θ = 0 V Θ 6 L }
Ό

if and only if φ satisfies (1) and

(3) / x^jjφίxjvίdx^jlx^j) = 0 a.e. (v) .

(Note that (2) is a necessary condition for a test of HQ: θ € L versus

Hy θ f L to be unbiased. (3) expresses the fact that v VE (Φ|X/2^) = °

for a l l θ € L, v € L , x ^x . See Lehmann (1959) for many applications of

(1) and (3) to the construction of U.M.P.U. tests.)

2.12.2 ( i ) Let X - N(θ, I) in Rk, k >_ 2. Show there does not exist a

non-constant level α similar test of ΘQ = {θ : θ. <_ 0 for some i } .

[Use Example 2.10.]

( i i ) Show there exists a non-constant similar test of

ΘQ = {θ : θ = 0 for some i } , but there does not exist a non-constant

unbiased test of this hypothesis.

2.12.3 Let X <Ξ Rk, X. ~ P(λ.), independent. Show there exists a non-

t r i v i a l similar test of {λ : λ. < 1 V i } but there does not exist a non-trivial

unbiased test of this hypothesis.

2.13.1

Let X = (X..) be a matrix Γ(α, I) variable. (See Exercise 1.14.4.)
J
 m

Observe that log |X| has the same Laplace transform as Σ log Y. where Y.

are independent Γ(α - (i-l)/2, 1) variables. Hence |X| has the same distri-

m
bution as Π Y.. Reinterpret this result to show equality of the distribution

i = l
 Ί

of the determinant of a Wishart (n, I) matrix and a product of independent

χ
2
 -variables.

2.13.2

V F
 k Ί

'i
Let F, G be two distributions on R . Let μ^ . = E( Π X.

J
) and

Ί
i

f ϊ Ί
k j=l

 J
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p
similarly for y . Suppose

(1) \ζ , = μ? , i , = 0 , 1 , . . . j = l , . . . , k ,

and

(2) lim sup £n/fn < » , j = i,...,k

w h e r e m j , 2 n = E d X j l 2 " ) . ( N o t e , n j ) 2 n = μ 0 ) _ ) 2 n ) _ ^ .) Then F = G.

(Condition (2) is sl ightly weaker than the necessary and sufficient condition,

( \
(3) Σ m * l / = - , j = l , . . . ,k ,

n=l J ' ^ n

for (1) to imply equality of F and G. See Feller (1966, Sections XV4 and

VI13) and references cited therein.)

[Use Stir l ing's formula to show that Σm. θ n /n! converges absolutely
J )Π

for |θ| < ε , j = l,...,k, and hence that λp = λp on an open set in R .]
2.14.1 (Bar-Lev (1983).)

Let X - Expf (θ) with Θ° f φ. Let t (
X
(2)I

X
M))

 d e n o t e t h e
 indicated

conditional covariance matrix. Show that 2
θ
(X/o)l

x
/i\) depends only on θ if

and only if X / ^ 1 (X/
2
x - hίX/^)) for some (measurable) function h.

[Integrate Z
θ
(

χ
(2)l

x
(i))

 o n θ s t a r t i n
9 at 0 e Θ° to find that the

conditional cumulant generating function of X/p\ under P
Q
 is

(2) Ψ(θ|x,,\) = p(θ/
2
\) + θ/

2
j "(X/!)) ^o^ some functions p , h .

Show that (2) implies X/
2
x -

 n
(

χ
M ) ) J-

 x
(j) under P

Q
.]

2.14.2

Suppose X - Expf ( θ ) with Θ° f φ. Then the following are

equivalent:

(1) X, x l X ( 2x for some θ° € Θ, or for a l l θ e Θ,

(2) Ψ ( θ ( 1 ) , θ ( 2 j ) = Ψ 1 ( θ ( 1 ) ) + Ψ 2 ( θ ( 2 ) ) f o r s o m e f u n c t i o n s Ψi a n d Ψ

(3) X ( i ) ~ Expf ( θ ( i ) ) for i = 1 and 2 ,

(4) c o v

θ ( χ ( i ) ' X ( 2 ) } = ° V θ e θ
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[For (1) - (3) apply Theorem 2.14 with h H 0 and check Ψi = p i , 1=1,2.

For (4) =* (2) use 2.3(2) and i n t e g r a t e . ]

2.14.3 (Pat i l (1965), Barndorff-Nielsen and Blaesi ld (1983).)

Let P = {Pθ : θ € 0} be a family of d is t r ibut ions on V, 8. Let

X : V -> Rk (measurable), 0 <= Rk with 0° t φ. Suppose

In EQexp((3 - θ) X(Y)) = p(β) - p ( θ ) , β,θ e 0

for some function p( ). Then X ~ Expf ( θ ) . [Use Corollary 2.13.]

2.14.4

Let X have a k-dimensional m u l t i n o m i a l ( N , π) d i s t r i b u t i o n .

W r i t e X | j j = ( X ^ . . . ^ ) ' , X j 2 j = (Xfe + 1 , . . . , X k ) \ Show t h a t the marginal

d i s t r i b u t i o n s o f both X,-x and X/^x form an e x p o n e n t i a l f a m i l y , b u t X/jx

i s not independent o f X/?\ as one might expect f rom Theorem 2 . 1 4 ( 2 ) . Why not?

[The f a c t t h a t X i s not a minimal f a m i l y i s i r r e l e v a n t ; f o r k >_ 3, k.. < k-2

the same phenomenon occurs i n the minimal model d e f i n e d as i n 1 . 2 ( 7 ) . ]

2.15.1

Let the independent symmetric mxm matrices, X., i=l,...,n, have

matrix r(α., t) distributions. (See Exercise 1.14.4). Show that
1 n n

Z = Z1 9...,Z with Z. = IX. I/I Σ x I is independent of Σ x. . Show that the
1 n J J i = i Ί i = l 1

distributions of In Z = {In Z. : j = l , . . . , n } form an exponential family, and

identify the canonical stat ist ic and parameter for this distribution. (This

generalizes Example 2.15(i i). The distributions of Z form the so-called

multivariate beta distr ibution. See, e.g., Muirhead (1982). When m = 1

the X. have ordinary Γ distributions and the distribution of Z is a Dirichlet

distr ibution. See Exercise 5.6.2.

2.16.1

Suppose v -»• v with v(R ) < <». Then

(1) lim sup v
n
(R

k
) < v(R

k
)

i f and o n l y i f the sequence { v n } i s t i g h t . [ L e t c ( x ) = i i f r Ί <_ ||x|| <_



ANALYTIC PROPERTIES 65

and choose r. 3 sup v ({||x|| >.r.}) <_ 1/i , 1=1,2,... .] Hence a convergent
n

sequence of probability measures has a probability measure as its limit if

and only if it is tight.

2.17.1

Verify 2.17(4),(5). [From Lemma 2.1(1)

(1)
 I |/ xe

b χ
 v ^ d x ) ! I < Σ II ^ ί ^ ^

and the quantity in braces in (1) is 0(1/(1 + llxll)). Now use 2.16(1).]

2.17.2

Let S c R and B = conhull S. Let v be a bounded sequence of

k k

measures on R ( v

n ( R ) < K. < » ) with λ^ (b) < », b € s , n = l , . . . . Suppose

0 € B°. Define Pp b by

dPn .

(1) - g j ^ = exp(b x - ψv (b)) .
n n

Suppose f o r each b € S there is a K = K(b) such that

(2) l im sup P . ( { l l x l l < K}) > 0 .

Then there is a subsequence {n 1} c {n} and a non-zero l i m i t i n g measure v such

that for a l l b € B°

(3) e b # x v . ( d x ) - e b # x v(dx) , λ (b) -> λ ( b )
n v n , v

[As in the proof of Theorem 2.17 i t s u f f i c e s to consider the case

where S is f i n i t e . Then K = maχ{K(b) : b € S} < ~ . I f b € S, I Ibl I < KQ

then 0 < ε < / e b " x v . (dx)/λ (b) < K Ί e K o K /λ ( b ) . Hence 2 . 1 7 ( 1 )
" ||χll<K n V n ' " X V n '

is s a t i s f i e d on S n {b : I Ibl I < KQ} . v f 0 since 0 € B° ]

2.18.1

Let {v : α e A}, n = l , 2 , . . . be a family of sequences of measures

on X = { 0 , 1 , . . . }. Show t h a t v^ •+ v^ uniformly i n α i f and only i f
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v ({x}) -• v ({x}) uniformly in α for each x € X.

2.19.1

Let {pQ> be an exponential family with supp v c {0,1,...} andu

v(0) > 0, v(l) > 0. Let X-,»...,X be a random sample and, as usual, let

n
Sn = Σ X.. Define θ (λ) byn .

=1
 i n

(1) ξ(θ
n
(λ)) = λ/n

Let F
Λ
 denote the distribution of S

n
 under the parameter θ (λ). Show that

Λ , n n n
F
i n - *

p
U )

 a n d th
^ convergence is uniform in λ over λ e [a,b] for

Λ , Π

0 < a < b < oo. (A s l i g h t elaboration of the argument y ie lds uniformity over

[ 0 , b ] . ) Generalize t h i s resu l t to the case where pQ is a k-dimensional

exponential fami ly. [Show Ψ"(θ (λ)) -+0 as n -> «> since θ n (λ) -> -«>, uniformly
nc n

for λ € [a , b ] . Hence log EQ / , ^e p : > n = λ ( e p - 1) + o ( l ) as n -> «> uniformly

for λ € [a , b ] . Then apply Theorem 2.19. In the non-degenerate k-dimensional

case the l i m i t d i s t r i bu t ion is the product of independent Poisson var iab les. ]

(A special case of the above is the well known resu l t Bin (n , λ/n) -> P(λ).

The general form of the above statement was pointed out to me by I . Johnstone.)

2.21.1

Let X be non-central χ2 with m degrees of freedom and non-

central i t y parameter θ . Show that the d i s t r i b u t i o n s of X have the sign-change

preserving properties 2.21(2), ( 3 ) . [Use Exercise 1.12.1(1). Write

Eθ(h(X)) = Eθ(E(h(X)|K)) . ]

2.21.2

Let X be a one-dimensional exponential family and ΘQ € N°.

(i) Show that the (essentially unique) level α test of the form

1 x > x
Q

(1) φ(x) = γ x = x
0

0 x < x
Q
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is the U.M.P. level α test of H
Q
: θ <_ Θ

Q
 versus H*: θ > Θ

Q
.

(ii) Similarly, show that the (essentially unique) level α test of the form

(2)

satisfying

(3)

Φ(χ)

1

= γ i
0

E θ

X >

X =

X l

(χφ(χ))
0

x 2

x i
< X

=

or x

< x 2

0

< x χ

is the U.M.P.U. level test of H
Q
: θ = Θ

Q
 versus Hy θ f Θ

Q
 .

[(i) Let Φ
1
 be any different level α test. Then S"(φ - φ

1
) = 1.

E
Ω
 (φ - φ

1
) = 0 by definition. Now use Theorem 2.18. (ii) Condition (3) is

ϋ o

the one-dimensional version of 2.12.1(3). Again use Theorem 2.18.] ( I t is

also possible to show by a cont inui ty argument that level α tests of the form

(1) and ( 2 ) , (3) always e x i s t . )

2.21.3

Consider a 2χ2 contingency table. (See Exercise 1.8.1.) Describe

the general form of the U.M.P.U. level α tests of the following null hypothe-

ses. In each case the alternative is the complement of H
Q
.

(i) H
Q
: P

n
P

2 2
/ P

1 2
P

2 1
 ί

 l

(ϋ) H
o
: P

1 1
P

2 2
/P

1 2
P

2
i = 1

(111) H
Q
: p

π
 < p

1 2

(iv) H
Q
: p

1 2
 = p

2 1
 .

(This corresponds to the exact form of McNemar's test. See, e.g. Fleiss

(1981).) [Use Exercise 2.21.2 and, for (i), (ii), Exercise 1.15.1. See

Lehmann (1959).]

2.21.4

Consider a 2χ2 contingency table. Let c > 0, c f 1. Show there

exist non-trivial similar tests of the null hypothesis
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HO : P l l ^ P l l + Pi2^ = CP21^P21 + ^22^ °^ conc*"""tional p r o b a b i l i t i e s i n a

given proport ion, even though t h i s is not a log-l inear hypothesis. [Use

randomized t e s t s . Consider the condit ional d i s t r i b u t i o n given Y.+, i = l ,2

under which Y*, and Yp . are independent binomials. (This case is of i n t e r e s t

on i t s own meri ts.) Consider the special case Y,+ = 1 = Y~+ for which the

condit ion for s i m i l a r i t y reduces to four l inear equations in the four

variables φ(y) for the four condi t ional ly possible outcomes, y. This test is

unbiased f o r the one-sided version of HQ, but not for HQ as defined above.

Is there, i n general, an unbiased test of HQ? Is there, in general, a U.M.P.U.

test of e i ther the one- or two-sided hypothesis in e i ther the o r i g i n a l

model or the condit ional (independent binomial) model? The somewhat

analogous question of the existence of s imi lar and of unbiased tests for the

Behrens-Fisher problem of equal i ty of means for two normal samples with

unknown variances is solved i n Wijsman (1958) and i n Linnik (1968).]

2.21.5

Let X
1$
...,X be a sequence of independent failure times,

assumed to have a Γ(α, σ) distribution. Describe the U.M.P.U. tests of

H
Q
: α = 1 versus H,: α > 1 and H': α f 1. [Use Exercise 2.21.2 and Example

2.15.]

2.25.1

Suppose v has density f with respect to Lebesgue measure on R

and f is MTP
2
 (i.e. has monotone likelihood ratio) in each pair of coordinates.

Prove the conclusions of Lemma 2.24 and Theorem 2.25. Prove these also for

the case where f, as above, is a density with respect to counting measure on

the lattice of points with integer coordinates. [If h(xj,... ,x
k
) is non-

decreasing then, under v, E(h(X
χ
,... >\_y \)\ \ = \ )

 Ί
'
s
 also non-

decreasing.]

2.25.2

Let {pQ} be a canonical k-parameter exponential family with
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ΘQ G W°. Let HQ: θ <_ ΘQ and Hy θ > ΘQ. ( i ) Show t h a t any Bayes or

generalized Bayes t e s t , α, of HQ versus Hj has the strong monotonocity

property

Φ(x) > 0 y > x => φ(y) = 1

(1)

Φ(x) < 1 y < x => Φ(y) = 0

Assume ΘQ = 0 and consider V / p ^ x H G ^ d θ ) - G Q ( d θ ) ] where G i denotes the

( g e n e r a l i z e d ) p r i o r measure r e s t r i c t e d to H . ] ( i i ) Suppose the dominating

measure v is MTP2 Show t h a t any (general ized) Bayes t e s t is unbiased.

[Use the above and Exercise 2 . 2 5 . 1 . ]

2.25.3 (Slepian's I n e q u a l i t y )

Let X, Y be k-dimensional normal variables with mean 0 and non-

singular covariance matrices A, B, r e s p e c t i v e l y . Suppose

Then, f o r any C e Rk,

( 1 ) Pr{X < C } > Pr{Y <. C} .

[ I f Z ( p ) ~ N(0, A + p(B - A)) then

(2 ) a X p ( z ( p ) < C) = Σ Q i i ~ - P ( Z ( p ) < C)8p - i W πj 3 θ i j

where each α. . >_Q. Note that for i ^ j

(3) τ j £ - = θ., exp(-ln|*|/2) = θ,, λ

9 2 p f l ( Z )

by 2 . 4 ( 2 ) . Hence

(4) — = θ. . p (Z)
9 θ i j Ί J θ ^ i """j

from Corol lary 2.13. Combine ( 2 ) and ( 4 ) to y i e l d ( 1 ) . ] (For an a l t e r n a t e

proof of Slepian's i n e q u a l i t y see Saw ( 1 9 7 7 ) . For general izat ions see Joag-

Dev, Perlman, and P i t t (1983) and Brown and Rinott ( 1 9 8 6 ) . )




