
LECTURE X. ANOTHER ABSTRACT NORMAL APPROXIMATION THEOREM

Here I shall describe an approach that is applicable to the study of sums

of m-dependent random variables and to the stationary case with appropriate

mixing conditions. In these cases it does not seem possible to construct an

exchangeable pair (W,W) with the properties required in Theorem III.1 and in

Lemmas 1.3, 1.4 and 11 I.I, which lead up to that theorem. The method of the

present lecture is that which I used in the easier part of my paper on normal

approximation in the Proceedings of the Sixth Berkeley Symposium. However,

the difficult problem of getting error bounds that are essentially sharp in

order of magnitude will not be treated here.

The present treatment is somewhat sketchy. I omit a number of proofs

that are completely analogous to proofs in the first three lectures. Also,

even the relatively concrete Corollary 2 does not deal with the usual formula-

tion of the problems considered here. Some notion of this can be obtained

from my paper mentioned earlier. Finally, I should mention that, in Lecture

XIV, I shall reformulate this approach in a way that will clarify its relation

to the basic formalism of the first lecture through (1.33).

In order to avoid excessive repetition in stating the hypotheses of the

lemmas and theorem of this lecture I shall formulate the

Basic assumption: A probability space (Ω,έ,P) is given and β and C are

sub-σ-algebras of β. The real random variable G is β-measurable and the

random variable W* is C-measurable. Assuming

(1) E|6| < -

105
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we define

(2) W = E
β
G.

Lemma 1: In addition to the basic assumption, suppose f: R -> R is a

bounded piecewise-continuous function. Then

(3) E Wf(W) = E G(f(W) - f(W*)) + E (E
C
G)f(W*).

Proof:

(4) E Wf(W) = E (E
β
G)f(W) = E Gf(W)

= E 6(f(W)-f(W*)) + E (E
C
G)f(W*).

Lemma 2: In addition to the basic assumption, suppose h: R -> R is a

bounded piecewise continuous function and let 7[\\ and UJi be defined as in

(II.2) and (II.4). Then

(5) E h(W) = Nh + E{f(W) - 6(f(W)-f(W*))} - E(E
C
G)f(W*)

where f = U^h.

The proof is omitted since it is analogous to the derivation of Lemma 1.4 from

Lemma 1.3.

Lemma 3: In addition to the basic assumption, let h: R -> R be a bounded

continuous function with bounded piecewise continuous derivative h
1
. Then

(6) E h(W) = Nh + E f'(W)[1-G(W-W*)] - E(E
C
G)f(W*)

oo

+ / EG(z-W*)[Λ{z±W} - J{Z£W*}]f"(z)dz.
—oo

The proof is omitted since it is analogous to the derivation of Lemma III.l

from Lemma 1.4.

Theorem 1: Under the hypotheses of Lemma 3
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(7) |Eh(W)-Nh| i2(sup|h-Nh|)/E[l-E
β
G(W-W*)]

2

+ J\ (sup|h-Nh|)E|E
C
G |+(sup|h'|)E|G|(W-W*)

2
.

The proof is omitted since it is analogous to the derivation of the inequality

(III.10) in Theorem 11 I.I from Lemma 11 I.I together with an application of the

inequality (11.45) in Lemma II.3.

Corollary 1: Under the basic assumption,

(8) |P{W!W
0
} - Φ(w

Q
)|

< 2 / E [ 1 - E B
G ( W - W * ) ]

2 + J\ E|E
C
G| + 2

y
V* /E|G| (W-W*)

2
.

The proof is analogous to the derivation of (III.11) from (III.10).

Now let us look at a special case of Theorem 1, where we consider a sum

of a large number of small random variables, most of which are nearly indepen-

dent of most of the others. This includes the m-dependent case, the stationary

case with an appropriate mixing condition, and some analogues of these with a

multi-dimensional index set. As in the third lecture, these results are far

from the best possible in that the bounds are not ordinarily sharp even in

order of magnitude and the moment conditions are not the weakest possible.

Let ̂  be a finite set and, for each i € J let X. be a real random

variable such that

(9) E X. = 0

and

(10) E xj < «.

Also let

(Π) W I
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and suppose that for each i £ J a subset S. c j has been chosen in such a way

that

(12) E I X. I X. = 1.
ΛZΪ

 Λ
 jes.

 J

A bound will be obtained in Corollary 2 for the error in the standard normal

approximation to the distribution of W. Roughly speaking, this bound will be

small if

(i) the number n of elements of the index set J is large,

(ii) most of the S. are small,

(iii) for most of the i € J9 X. is nearly independent of the ίX-J-jgc »

(iv) each of the X. contributes only a small proportion of the total

variability of W.

In order to fit this problem into the framework of the Basic Assumption,

I shall introduce an additional random variable I, uniformly distributed over

the finite set J independent of the ίX K cj- Let β be a σ-algebra in which

the random variable I and the {X } - ^
 a r e

 measurable, let β be the

sub-σ-algebra of β generated by the { X . } . ^ and, finally, let C be the

σ-algebra generated by I and the ίX.J. ̂ς . A more precise description of C
J J Jto j

is that it consists of all B € β having the property that, if ω, ω1 € Ω are

such that

(13)

and, f o r a l l j j£ Sw s,

( 1 4 )

then

(15)

I(ω ) = I(ω)

X . ( ω ' ) = X . (oj
J J

ω1 € B « ω 6 B

It will ordinarily be simplest to choose Ω to consist of all (n+l)-uples

(i,{x } £ J with i € J and the x. € R and to define the random variables I and
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in the obvious way by

(16) KMXjJj,^) = i

and

However, it may sometimes be necessary to introduce a more complicated under-

lying space Ω in order to obtain better approximations by using additional

randomization. The probability measure P is chosen in such a way that these

random variables have the distribution described earlier. Continuing to set

up the correspondence between this situation and the Basic Assumption, let

(18) G = nXj

so that

(19) E
β
G = 1 I nX = I X = W,

n i€^ Ί Ί

in agreement with (2) and (11). Finally let

(20) W* = I X. = W - I X .

Of course we shall ordinarily choose the ί S ^ } ^ ^ in such a way that i € S...

Now let us evaluate the expectations occurring on the right hand side

of (7) and (8) in the special situation considered here. We have

{ X j } j £S
(21) E|ECG| = E I |E \ \

and

(22) E|G|(W-W*)2 = E I | X . | ( I X . ) 2 ,
i € ^ Ί j e S J

and finally, with

(23) o.. - EX
i X j

,

also
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(24) E[1-E
β
G(W-W*)]

2
 = E[ I I (X.X.-σ..)]

2
.

i£^ j€S. Ί J ΊJ

Let us summarize these computations in a corollary, which is now an

immediate consequence of Theorem 1 and Corollary 1:

Corollary 2: Let J be a finite set and, for each i € J9 X.. a real random

variable and S.. a subset of J such that (9), (10) and (12) hold and let W be

defined by (11). Then, for all real wQ,

(25) |P{W±wo}-Φ(wn)| < 2 / E [ t t ( X ^ X - σ . . ) ]
jes.

|XJ( I Xi)
2
»Ί j€S1

 J

and, for any bounded, continuous, and piecewise continuously different!able

function h: R -* R,

(26) |Eh(W)-Nh| i2sup |h -Nh| /E [ j £ (X,X,-σ..)]
i€J- j€S. Ί J Ί J

r { XJ }^s.
+ /} sup|h-Nh|E I |E ΊX.|

2

+ s u p l h ' l E X | X . | ( I X . ) 2 .
i € ^ Ί j€S. J

i

I have nothing to add to the description of this lecture given in the

introductory paragraph. Some idea of possible applications of this approach

can be obtained from my paper in the Proceedings of the Sixth Berkeley

Symposium, to which I referred earlier.




