
L E C T U R E VIII. POISSON APPROXIMATIONS

An example of approximation by the Poisson distribution has already been

given in the seventh lecture. Here I shall discuss this subject in the con-

text of the abstract formalism of the first lecture, with special emphasis on

the classical problem of the total number of occurrences of a large number of

independent random events with small probabilities. Most of this work was

done by Chen (1975a).

Theorem 1: In order that the random variable W taking values in Z , the

set of all non-negative integers, have a Poisson distribution with parameter λ

it is necessary and sufficient that, for all bounded functions f: Z -> R,

(1) E[λf(W+l) - Wf(W)] = 0.

Proof of necessity: Suppose W has a Poisson distribution with parameter

λ, that is, for all w € Z

(2) P{W=w} = e"λ
 £.

Then, for all bounded f: Z -> R

(3) EWf(W) = e"
λ
 I wf(w) K
w=0

 w

w
1

= e"
λ
λ I f(w'+l) £rr= λEf(W+l).

w'=0
 w

 *

Observe that the value of f(0) is irrelevant to this result. Of course the

identity (3) does not really require f to be bounded. It is valid if the
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82 APPROXIMATE COMPUTATION OF EXPECTATIONS

expectation on either side exists.

Proof of sufficiency: Assuming that W is a random variable taking

values in Z and that (1) holds for all bounded f: Z •+ R, let h: Z •> R be a

bounded function and define

(4) P
λ
h = e~

λ
 I h(w) K.

λ
 w=0

 w

We shall see that the equation

(5) λf(w+l) - wf(w) = h(w) - P
χ
h

has a bounded solution f. Then it will follow from (1) that

(6) E[h(W) - P
χ
h] = E[λf(W+l) - Wf(VI)] = 0,

which is the desired result.

A bounded solution f of (5) can be constructed by choosing f(0) arbitrar-

ily 5 say

(7) f(0) = 0

and, for w >̂  1, defining f(w) by

(8) f(w) = - I

i

The equality of the two expressions for f follows from

(9) I
£=0

(w-l)!λ~
w
e

λ
ί\[h-Rh] = 0.

If h is bounded, say

(10) |h(w)| <_ C
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for all w e Z
+
, then

(11) |f(w)| < z c f i ϊ t } i L λ £ - w < 2Ceλ,

again for all w _> 1, so that f is also bounded. To verify (5) for w _> 1 we

substitute (8) into the left-hand-side of (5), obtaining

(12) λf(w+l) - wf(w)

£=W+1

= h(w) - P χ h .

On the other hand, for w = 0 the left-hand side of (5) is

(13) λ f ( l ) = h(0) - a h
A

by the second form of (8). This completes the proof of Lemma 1.

Now we want to express this in the form of a diagram

x x
(14) 3 Q t . ZQ t ' R,

T

u

λ

λ

a special case of the lower line of diagram (1.28). The choice of the linear

spaces %
0
 and 3

Q
 is largely arbitrary, but for definiteness I define ZQ to be

the space of functions of at most exponential growth, that is, functions

h: Z
+
 + R for which there exist positive constants A and B such that, for all

w € Z+,

(15) |h(w)| i A e B w ,

and I take

(16) 3 0 =X0 Π {f: f(0) = 0}.
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The linear mappings occurring in the diagram (14) are defined by

(17) (T
λ
f)(w) = λf(w+l) - wf(w)

(18) (U
χ
h)(w) = - I

Λ-0

*'=0
 l

with p given by (4) and ι
Q
 an inclusion mapping. The final form of (18)

follows easily from (4). Here T f occurs on the left-hand side of (5) and
λ

U
χ
h was denoted by f in (8). We should verify that, for h € %Q, U

χ
h € 3Q.

Assuming (15), we have, by the first form of (18),

(19) |(U
λ
h)(w)|

i=vι

< (A
+
|P.h|)e

B w
 I

λ
 £'=0

which is of at most exponential growth.

Now let us look at the case where W is the number of occurrences of a

large number of independent events. More precisely, let X-.,...,X be inde-

pendent random variables taking on only the values 0 and 1 and let

(20) p. = P{X.=1},

(21) λ = j p.

and

(22) W = I X,.
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It has long been known that if all the p. are small then W has approximately a

Poisson distribution with parameter λ, but I believe a result essentially

equivalent to (43) below (but with a constant factor greater than 1 on the

r.h.s.) was first obtained by Le Cam (1960). It was later proved, using

essentially the present method, by Chen (1975a).

Let XΪ,...,X* be independent random variables independent of the X. and

suppose that, for each i, X* has the same distribution as X.. With I uniformly

distributed in {l,...,n} independent of the X. and X* let

(23) W
1
 = W - Xj + X*.

Then (W,W) is an exchangeable pair of random variables since we can think of

first determining I, then the unordered pair {Xτ,Xt}, then the X. for j f I and

finally choosing one of the two elements of the unordered pair {Xτ,Xt>, with

probability one-half independent of all the other choices, to be Xj. Then,

for arbitrary f: Z -*- R,

(24) 0 = EE
X
[f(W)jKW'=W+l} - f(W)j2{W=W'+l}]

= E[f(W+l)P
X
{W'=W+l} - f(W)P

X
[W

l
=W-l}]

= lε[f(w+i) ί \
n
 j=i

- f ( W ) | l

At the last equality sign the following argument has been used. With proba-

bility-, I takes any particular value j. Given this, the conditional

probability that W'=W+1 is ΛίX.=0}p. and the conditional probability that

W'=W-1 is J{X.=l}(l-p.) We can rewrite the final form of (24) as
j J

(25) E[λf(W+l) - Wf(W)]
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Substituting

(26) f = ILh
λ

in (24) with h: Z -*• R an arbitrary bounded function and II. defined by (18)
λ

we obtain

(27) Eh(W) = P
λ
h + E( ί PjJΐX,.=l})(U

λ
h(W+l) - U

χ
h(W))

= P
Λ
h + I p. EV

Λ
h(W.)

λ _i J A J

where

(28) Wj = ί Xj

and

(29) (V
χ
h)(w) = U

χ
h(w+2) - U

χ
h(w+1).

We can apply the same identity (27) to evaluate the right-hand side of (27),

obtaining

π o

( 3 0 ) Eh(W) = P.h + I pά. P, n V.h
A * τ U A — p A

J-i J

+ I I p2 p2 EV V h(W , ) ,
i l l aέ i J1 J? ^"P-ί ^ J"| >Jp

where

( 3 D W = I X..

It is clear how to iterate further, but we shall have enough to do in studying

the remainders in (27) and (30).

For this purpose we must bound V h for appropriate choice of h, in

particular for h=h«, defined for A c Z by
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(32) h
A
(w) =

1 if w £ A

0 if w (. A

We can rewrite the final expression (18) for U,h in the form

(33) (U.h)(w) = e
λ
(w-l)!λ"V

λ
(hh

Γ
 ) • P.h P.h. ]

λ λ
 Vl

 λ λ
 Vl

where

(34) C, = {0 w}.

Essentially this form was used by Barbour (1982) to obtain (42)

in applying this method to the study of random graphs. I shall discuss this

work in a later lecture. This expression is also instructive in suggesting

that similar results hold for approximation by other distributions.

Let us start by observing that U h can be expressed in the form
λ yΌ

(35) (U,h
wλ w

Vi

From this and the definition (29) of V
χ
 it follows that

(36)

w
n
-w-2

w
o
-w-2

w
0'

-λP.h- ] if w<w
o
-2

Vl

χ
h ] if w=w

o
-l

Vi
 w

C
w+1

 C
w

We observe that
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(37)
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> O if w = WQ-1

< 0 if w f w
o
-l.

The case w = WQ-1 is obvious. For the second part of (27), the case w <_ WQ-2

follows from

(38) (w+l)P
Λ
h

Γλ C
w+Ί

w+1 k
I YΓ (w+l-k) > 0
k=0

 κ

and the case w _> w
Q
 follows from

(39) (w+l)P,h „ - λp h
λ P C λ r

k
< 0.

k=w+2
 κ

Thus for any w € Z and A ci Z

(40) ( V w + l

But, by the middle case of (36)

(41) ^ x P Λ h C
V i

Λ i

by (38) and (39). Since V.I = 0, (40) and (41) yield

(42) |V
χ
h

A
(w)| < λ"

1

for all w e Z and: A e z . The bound (42) is sharp in the limit as λ

approaches 0 or °°, at least if one takes a supremum over w.

Finally, from (27) and (42) we obtain, for any A c Z
+
 and λ€ R+
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(43) |P{W € A} - P h.| < ( I ph(\'] Λ 1).
λ A

 1 = Ί
 i

Recall that W is the number of successes in n independent trials with

probabilities p
] 5
...,p

n
 and λ is given by (21). We can also use (30) to

obtain a more accurate, but of course more complicated, approximation. From

(40) it follows easily that if we define

(44) ||h||
TO
= su

P +
|h(w)|,

w€Z

then, for all w € Z ,

(45) |V
χ
h(w)| I2||h||

oo
(λ-

1
 Λ l ) .

Using (45) with h replaced by V
χ
h

A
 and λ replaced by λ-p we obtain, also using

(42),

(46) l
V
λ-p

V
λ

h
A

( w ) l
 -

 2(λ
"

Ί Λ l
H (

λ
- P ) "

Ί Λ 1
)

and thus, by (30)

( 4 7 ) | P ί W € - A > - [ P λ h A + J Pj P λ _ p . V λ h A ]

<Z(lp2.)2(\-] Λ l ) ( ( λ - 1 ) - Ί Λ l ) .

In order to apply this we would have to study P V,h
A
,
 o r a t

 ^
east t 0

 ^
e a

^
e

to compute it. It may also be desirable to improve the bound (46).

I shall close this lecture with a brief treatment of the general problem

of Poisson approximation for the distribution of a sum of random variables, not

necessarily independent, taking on only the values zero and one. Let X/,...,X

be such random variables, let

(48) W = I X.,

and let I be uniformly distributed over l,...,n independent of X^,...,X
n
 We

shall see that, roughly speaking, for fixed λ = EW, the random variable W has

approximately a Poisson distribution with parameter λ if the conditional

distribution of W given Xτ=l is nearly the same as the unconditional
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distribution of W+l. The converse is almost true, but it requires an additional

condition, for example that the variance of W is not too large.

Instead of following the approach used to derive (25), I shall formulate

the argument in the manner of Chen (1975a). Let

n

(49) λ = EW = E I X. = nEX
Γ

Then, for bounded f:Z
+
 •* R,

η

(50) EW f(W) = I EX.f(W) = n E Xjf(W)

= n E X
I
E[1

r
(W)|X

I
=l3 = λ E [f(W)|Xj=l]

= λ E f(W+1) + λ{E[f(W)|Xj=l] - Ef(W+l)}.

For arbitrary bounded h:Z
+
 + R, substitute f = U

χ
h in (50) to obtain

(51) Eh(W) = P h + λ{E(U,h)(W+l) - E[(U,h)(W)|X
T
=1]}.

Λ λ λ 1

p
Theorem 2: There exist two functions α,a:(0,~) + (0,~) such that, for any

W, %, λ, and I as above, if we define

(52) ε = sup.[P{W€A} - Ph.]
AcZ+ λ A

and

(53) δ = sup+[P{W+l€A} - P{W€A|Xj=l}].

where hA is defined by (32), then,

(i) for any ε1
 > 0, if δ < α(ε',λ) then ε < ε

1
, and

(ii) for any δ
1
 > 0, if ε < aίδ

1
,λ) and

(54) EW
2
 < 2(Hλ

2
) = p,

say, then δ < δ
1
.

Proof of (i): This follows easily from (51) and the boundedness of the

operator U (in the space of bounded functions on Z to R with the bound as

norm), which was proved in (11). More precisely, from (51) with h=h* we obtain
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(55) e = Sup+[P{W€A}-P.h.]

<. (sup(UxhA((w))sup+[P{W+l€A}-P{W€AlXj=l}]

1 2λeλ
δ,

so that we can take

(56) α(ε\λ) =\ λ'W.

Proof of (ii): Our aim is to show that, subject to (54), if δ, defined by

(53), is not small, then ε, defined by (52), is not small either. For this pur-

pose substitute f=h
/lf
 ,

Ί 4I
 ,

0
 -, in the next to last form of (50) to obtain

0 0 * * *

(57) P{W >_ w o |Xj=l} = } EW JKW >_ wQ} = τ ,

say. Later I shall use (54) to choose wQ appropriately. Then for the maximiz-

ing A in (53)

(58) |P{W+1£A Π { 0 , . . . , w Q - l } } - P{W€A Π { 0 , . . . . W Q - U I X ^ I } !

- P ί W e A l X ^ D l - P{W+1 >_ wo> - P { W i w o | X j = l }

Thus there exists w, < w
n
-l such that

I — U

(59) |P{W+l=w-,} - P{W=wJX T =l}| >± (δ - - ^ - τ ) .

Substitute f=h in (50) to obtain
w
l

w 0 V 1 ^ w l W l

w l
= |y- P{W=w1} - P{W=wΓl}|.

Now if W
1
 is a random variable having a Poisson distribution with parameter λ,

w,
(61) γ P ί W ^ } - PίW^w^l} = 0.

It follows from (60) and (61) that either
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w-
 Ί

(62) -γ- |P{W=w
1
} - PίW^w,}! 1 o~- (δ - — \ - τ)

λ I I ^WQ WQ-I

or

(63) I P{W=w1-Ί} - P { W = w Γ l } | >. 2^" (δ - - j ^ T " τ ^

In e i ther case

(64) ε = sup,|P{W€A} - P h.| ^ ^ — (δ - -K - τ ) .

0 λ

In order to prove (ii) it remains to use (54) to make an appropriate choice

of w
n
 for use in (64). By Markov's inequality

(65) τ = P{W

In order to have τ <_-| , choose w
Q
 to be an integer not less than j& . Then

(66)
 ε

 >
3.2

λ δ

(1+ 4*4 8(l+λ
2
)(λ

2
δ+4+4λ

2
)

λ
2
δ

It is now clear that, for fixed λ, if ε is small, δ is also small.

Of course the theorem and its proof leave much to be desired. The bound

used for U h, in the proof of (i) is absurdly large in view of (42). The

quantitative result (66) in (ii) is even further from being sharp. It would be

desirable to bring the upper and lower bounds for ε in terms of δ closer

together and to clarify the dependence on λ.

The way in which (51) is commonly applied, as in Chen (1975a), Barbour and

Eagleson (1983) and Lectures XII and XIII, is essentially an instance of the

method of coupling, although I am not sure this is clearly stated in any of

these references. On the same probability space we construct random variables

W and W* in such a way that

(i) as indicated by the notation, the distribution of this W is the same

as that of W in (48).
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(ii) the distribution of W* is the same as the conditional distribution

of W given Xj=l,

(iii) roughly speaking, W and W* should differ by as little as possible.

Then (51) with h=h« implies

(67) |P{W€A} - P
χ
h

A
|

= λ|E(U
χ
h

A
)(W+l) - EH(U

λ
h

A
)(W)|X

I
=1]|

= λ|E(U
χ
h

A
)(W+l) - E(U

χ
h

A
)(W*)|

< λ(sup V h
Δ
)E|W+l-W*|.

A
 λ A

By a more careful analysis of the transition from W to W* it should be possible,

in many cases, to obtain improvements on the Poisson approximation analogous to

(47) (or better, some of the results in Chen (1975a)) in the independent case.

In this lecture I have set up the formalism for Poisson approximation and

applied it to the distribution of the number of occurrences of independent rare

events. In Lemma 1, a Poisson random variable W with parameter λ was

characterized by the property that, for all bounded f, E[λf(W+l)-Wf(W)] = 0.

This led to the specialization of the lower line of diagram (1.28) starting

with (14).

Then the special case where W is the number of occurrences of independent

rare events was studied, leading to the identity (27). This led to the bound

(43) for the error in the Poisson approximation for the distribution of W. I

believe this was first obtained by Le Cam (1960). The lecture continued with a

rough treatment of an improved approximation to the distribution of W. Finally,

in Theorem 2 and the remarks below it, I discussed the general subject of

Poisson approximation for dependent trials. Other applications of the

Poisson approximation to special problems concerning dependent events will be

given in Lectures XII and XIII.






