
LECTURE III. A NORMAL APPROXIMATION THEOREM

The basic Lemmas 1.3 and 1.4 are elaborated to obtain a normal approxima-

tion theorem. This is applied to the special case of a sum of independent

random variables, the study of which was begun in the first lecture, and also

to the study of the sum of a random diagonal. The substantial shortcomings of

these results, which will be described later in this lecture, will be overcome

to some extent in later lectures.

Lemma 1: Let (W,W) be an exchangeable pair of real random variables

such that

(1) E
W
W = (l-λ)W

with

(2) 0 < λ < 1

and let h: R -»• R be a bounded continuous function with bounded piecewise

continuous derivative h
1
. Then, with ILh defined by (II.4), that is

(3) (U
N
h)(w) = e*

w
 J

W
 [h(x)-Nh]e-*

x
 dx

= -e*
w
 J[h(x)-Nh]e"*

x
 dx,

w

where Nh is defined by (II.2), that is

(4) Nh = — / h(x)e"
2X
 dx,

/2¥ -°°

we have
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(5) Eh(W) = Nh + E(U
N
h)'(W)[l - ̂  E

W
(W-W)

2
]
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:
w
(w -w)

2
]

E(W'-W)(z -
 J
ψ

L
-)[«Mz 1 W

1
} - c9{z <_ W}]d(U

N
h)'(z).

Proof: We have to express the remainder in (1.45), where f was written

instead of U
N
h, as the sum of the last two terms on the right hand side of (5).

In fact

(6) E[(U
N
h)'(W) - ̂  (W'-W)((U

N
h)(W) - (U

N
h)(W))]

= E(U
N
h)'(W)[l -1_E

W
(W'-W)

2
]

- -^ E(W-W)[(U
N
h)(W).(U

N
h)(W)-(W'-W)(U

N
h)'(W)].

But, for W < W
1
,

(7) (U
N
h)(W) - (U

N
h)(W).(W-W)(U

N
h)'(W)

W
1

= / C(U
N
h)'(z) - (U

N
h)'(W)]dz

W
1
 z W

1

= / (/ (U
N
h)"(y)dy)dz = / (W'-y)(U

N
h)"(y)dy,

and, for W
1
 < W,

(8) (U
N
h)(W) - (U

N
h)(W) - (W'-w)(U

N
h)'(W)

W
= - / [(U

N
h)'(z) - (U

N
h)'(W)]d2

W

w w w
(U

N
h)"(y)dy)dz = J^y-W )(U

N
h)"(y)dy.

Now (7) and (8) can be combined to obtain, for all W, W ,

(9) (U
N
h)(W')-(U

N
h)(W)-(W-W)(U

N
h)

l
(W)

= /(W-y)[^{y <W'} - Jiy <_
 H

Taking expectation, applying the exchangeability of W and W
1
 again, and using

(6) and (1.45), we obtain (5).

Theorem 1: Under the assumptions of Lemma 1,
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(TO) |Eh(W)-Nh|

1 2 s u p | h - N h | / E [ l - E W ^ (W'-W)2]2 +

and, for a l l real wQ,

( Π ) |P{Wiw o > - Φ ( W O ) |

sup|h' |E|W-

± 2/E[1 - { E|W-W|3.

Proof: We r e c a l l t h a t by Lemma I I . 3 ,

(12) s u p K i y O Ί < 2 sup|h-Nh |

and

(13) sup|(UNh)"| i 2 sup|h'|-

Thus from Lemma 1 we obtain

(14) |Eh(W)-Nh| = | E ( U N h ) ' ( W ) [ l - ^ E W ( W - W ) 2 ]

E(W-W)(z -

W ( W - W ) 2 ]

<_ W1} - c9{z <_ W } ] ( U N h ) " ( z ) d z |

1 s u p | ( U N h ) 1 | E | l - ^ -

w-w
1

Iz - ^ | d z

1 2 sup|h-Nh|/E[1 - ̂  E
W
(W'-W)

2
]

2

+ 2 sup|h'|. ̂  E l
W
'"

W
l ,

which is (10). Here I have written

(15) a
 A
 b = min(a

5
b)

and

(16) a ̂  b = max(a,b).

In order the prove (11), we shall apply (10) with h = h
tι
 defined for

W
Q
, Δ

Δ > 0 by
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(17)

Then

(18)

and

(19)

and

(20)

(21)

1

1 -

0

i f w

w-wQ

Δ

i f

P{W

w

if

± w 0

w o } -

w0

+ Δ

ί Eh

£ w

•

W0,Δ

< W Q + Δ

( W ) .

V

s upiV±!

Thus, using (10) we obtain

P{W < w
0
} < E h

W o > Δ

- N h W Δ 4 2 Λ[l - Ir- E
W
(W'-W)

2
]

2
 + ΪTT E|W'-W|

3

2λ

< $ ( w ) + ^ - + 2 / E D - ^ E V - W ) 2 ) ] 2

 + ^ E|W-W|3.

The upper bound on the right hand side is minimized by

(22) Δ =12 |£/1E |W-W|3

yielding

(23) P{W <_ wn} < Φ(wn) + 2 / E [ 1 - i - EW(W'-W)2]2

2π)"ϊ / } E | W ' - W |
3
.

The bound for the error in (11) follows from (23) and the corresponding lower

bound.

Now let us return to the special case of a sum of independent random

variables. We need only evaluate the expectations occurring in the bounds

on the right hand side of (10) and (11) in the situation discussed at the end

of Lecture I starting before (1.51). I shall state the result as
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Corollary 1: Let X-j,...,X
n
 be independent real random variables with

(24) EX. = 0, EX
2
 = σ

2

and

(25) Σσ
2
 = 1.

Then, for all real w
Q
,

(26) IP{W < w
Q
} - Φ(w

Q
)I £ /Σ(ExJ-σJ) + (2π)'* /2Σ(E|X.|

3
+3σ

3
)

and for any bounded continuous functions h: R •> R with bounded piecewise

continuous derivative h
1
,

(27) |Eh(W)-Nh| ± sup|h-Nh| / Σ ( E X ^ ) + \ sup|h' |Σ(E|X. |
3
 + 3σ

3
).

Proof: We shall need the fact that, if XΫ is independent of X. and has
I 1

the same distribution as X. then

(28) E
X
(XΫ-X.)

2
 = σ

2
 + X

2

and

(29) E|X*-X.|
3
 l 2(E|X.|

3
 + 3(EX?)E|X.|) £ 2(E|X.|

3
 + 3σ

3
).

Of course (29) could be improved substantially. Then the expectations on

the right hand side of (10) and (11) can be bounded by using

(30) E[l - J E
W
(W'-W)

2
]

2
 = E[1 - J E

W
(X*-Xj)

2
]

2

< E[l - J E
X
(X*-Xj)

2
]

2
 = E[l - 1 Σ E

X
(X*-X.)

2
]

2

= E[l Σ(X
2
-σ

2
)]

2
 = \ Σ(ExJ-σJ)

and

(31) E|W-W|
3
 = E|X*-X

χ
 |

3
 = ^ Σ E|X*-X. |

3
 < f Σ(E|X. |

3
 + 3σ

3
).

Substituting in (10) and (11) we obtain (26) and (27).

Let us look at this corollary in the special case of a sum of independent

identically distributed random variables. Let Y-|,Y
2
,... be independent
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identically distributed random variables with mean 0 and variance 1 and let

(32)

Then,

(33)

we see

(34)

by applying Corollary 1

that, with

W =

to the

X
i

-LΣ

= _ L
•n

= E|Y

Y
i*

Y
i

il
3

and

(35) e
4

we have

(36) | P { W
1 W o

} - Φ(w
Q
)| <_

and

(37) |Eh(W)-Nh| < sup| h-Nh| / - £ — + — sup| h
1
1 (f3o+3).

'
 n

 2/n
 J

We see that the bound in (37) is of the right order of magnitude n~^ provided

$4 < «, but the bound in (36) is too large, being of the order of n~*. These

faults will be repaired in later lectures.

Finally let us look briefly at the case of a sum of a random diagonal.

Let {a..}. . r
Ί
 , be a square array of numbers such that, for every

i ε {1 n},

(38) I a.j = 0
J

and, for every j ε {l,...,n},

(39) I a . = 0,

and also

(40) I I afj = n-1.

Let π be a random permutation of {!,...,n} such that, for every one to one
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π: {1,.,.,n} •* {1,...,n},

(41) P{Π=ττ} = ij-.

We shall be interested in the distribution of

(42)
 W

=
Σ a

i π ( i )

In order to apply Theorem 1, we introduce an ordered pair (I,J) of random

variables independent of n with

(43) p t M i J - J } - - ^

for every i,j ε {l,...,n} with i f j, and define the random permutation π
1
 by

π(i) if i i {I,J}

π(J) if i = I

π(I) if i = J.

(44) π'(i)

Finally we define

( 4 5 ) W
'
 = Σ a

iπ (i)
 = W+α

I,J,π(I),π(J)

where

( 4 6 ) β
i,j,k,Λ°

 a
u
 + a

j k "
 a
i k " V

Clearly (π,π') is an exchangeable pair since we can first choose the pair

(I,J), then the π(i) for i I {I,J} and then, of the two remaining possibilities,

choose one to be π and the other to be π
1
 with equal probability. It follows

that (W,W) is also an exchangeable pair.

We must verify the condition (1) which is part of the hypotheses of

Theorem 1 and then bound the quantities occurring on the right hand side of

(10) and (11). By (45) and (46),

(47) E
Π
W - W

+
E

n
[ a

I n ( J ) +
a

J n ( I )
- a

I n ( I )
- a

J n ( J )
3

= W +
 nrfclT \ ̂

-
w
 t ^

Thus (1) holds with
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(48) X = ̂  .

We shall bound the first term on the right-hand side of (10) or (11) by using

the inequality

(49) E[l - ̂  E
W
( W - W )

2
]

2
 < E[1 - ̂  E

Π
( W - W )

2
]

2

which is true because π determines W.

In order to bound the right-hand side of (49) we first compute

o o o

W[ΐPfy
 C
X

a
iπ(j)

+
 ΐ

 a
iπ(i)

+
X

( a
i

where the sums over the pair of indices i,j are subject to the restriction

i f j. The final equality uses (38), (39), and (40). From (50) we can compute

(51) E(W'-W)
2
 = EE

Π
(W'-W)

2
 = ̂ if = 2λ

since

and

(53) E
Λ-

a
iπ(j)

a
jπ(i) •

 E
 Σ

 a
iπ(1)

a
jπ(J)

=
 1 y V

 a
 a = - -A ΐ

=
 1 y

 a
2

 =
 1

l, k

where the sum over the pair of indices k,& is also subject to the restriction

k f a. Substituting f(w) = w in (1.38) and using (51) we obtain

(54) EW
2
 = 1,

which indicates that the scale has been chosen in a natural way.



A NORMAL APPROXIMATION THEOREM 41

From (50) it is not hard to see that for some absolute constants C and C

(55) Var E
Π
( W - W )

2

7 .υ

and consequently, by (48) and (49),

(56) E[l - ^ E
W
( W - W )

2
]

2
± £ - I a j

r

Similarly, for use in the final remainder term of (10) or (11) we observe that

(57) E|W'-W|
3

= E
'

a
Iπ(J)

 + a
Jπ(I) "

 a
Iπ(I) "

 a
Jπ(J)l

Thus in the present case (10) and (11) are specialized to

(58) |Eh(W) - Nh|

and

(59)

In Lemma 1 an identity was derived that makes the conditions for approxi-

mate normality of the random variable W fairly clear intuitively, at least in

a rough way. Provided that the scale has been chosen in such a way that

(60) 2λ = E(W-W)
2
,

1 W 2
the first remainder term is small if -̂  E (W'-W) is nearly constant, and the

second remainder term is small if |W'-W| is small, or more precisely if

E|W
I
-W|

3
/E[W'-W]

2
 is small. These rough statements were made precise in

Theorem 1. This was specialized in Corollary 1 to sums of independent random
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variables and then specialized further in (36) and (37) to the identically

distributed case. Finally the case of a sum of a random diagonal was consider-

ed briefly. A special case of this is the permutation distribution of a sample

covariance and, more particularly, the distribution of the mean of a sample

from a finite population.




