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STOCHASTIC ORDERING OF SPACINGS

FROM DEPENDENT RANDOM VARIABLES

BYMOSHESHAKED1 and Y. L. TONG2

University of Arizona and University of Nebraska

Spacings (that is, the differences between successive order statistics) are useful in vari-

ous applications in statistics. Many properties of the spacing are known when the spacings

are constructed from a collection of independent identically distributed (i.i.d.) random vari-

ables. In this paper we study the spacings constructed from not necessarily i.i.d. random

variables. We introduce models for which two sets of spacings, constructed from two sets

of dependent random variables, can be stochastically ordered. Various examples will be

given and applications for goodness-of-fit tests, tests for independence, density estimation

and tests for outliers will be discussed.

1. Introduction. Let X = (Xu ... , Xn) denote an n-dimensional random vector and

let

be the ordered components (order statistics) of X. The nonnegative random variables

</,=*«+!>-*(,)> ί = 1 > > Π - 1

are called the spacings and have various applications in statistics. For example, certain non-

parametric test procedures depend on the maximum spacing or on linear combinations of

spacings (see, e.g., Pyke (1965), Weiss (1965), Rao and Sethuraman (1970) andKirmani

and Alam (1974)); certain estimation and test procedures based on order statistics, such

as those which depend on the range or midrange, involve spacings (David (1970), Ch. 6);

and certain tests for slippage (Karlin and Truax (I960)) and outliers (Barnett and Lewis

(1978), Ch. 3) also depend on spacings. For a comprehensive treatment of spacings see

Pyke (1965,1972).

In the literature the problem of spacings has been treated extensively under the assump-

tion that Xl9 ... , Xn are independent and identically distributed (i.i.d.) random vari-

ables. In certain applications which involve a mixture of experiments, a (random) change

of scale or a random shift in location may take place; then the random variables Xu ... ,

Xn are no longer independent. In this paper we study how the degree of dependence affects

the distribution of the spacings. In the case when Xλ, ... , Xn are interchangeable, it follows

from our main result that (in the model under consideration) the spacings vector U =

(Uu ... , £/n_ί) becomes stochastically smaller if Xl9 ... , Xn are more positively dependent

(that is, when Xλ, ... , Xn have more tendency to "hang together").

After stating the model and proving the main result in Section 2, we apply the result

to an additive, a multiplicative and a ratio model. In Section 3, after combining results

given in Shaked and Tong (1985), we obtain a partial ordering property for the spacings

which correspond to a number of important multivariate distributions, such as the multivar-

iate normal, multivariate stable, multivariate beta and the Dirichlet distribution. For all

these distributions the corresponding spacings vector U can be partially ordered through

the degree of dependence of the components Xu ... ,XnofX.
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In Section 4 we give applications and study the monotonicity properties of certain well-

known procedures concerning goodness-of-fit tests, tests for independence, density estima-

tion and slippage tests for outliers, which all depend on spacings.

2. The Model. Let X = (X,, ... , Xn) and Y = (F,, ... , Yn) denote two n-dimensional

random vectors and let

be their ordered components. Define the (n-1 )-dimensional spacings vectors by

U = (Σ/,, ... ,!/„_,) where ί / ^ X o ' + D - ^ , i = 1, ... , π - l .

The stochastic ordering of U and V will be developed under the following model:

Model A. There exist a random vector Z = {Zλ, ... , Zπ), random vectors (of any dimen-

sion) Wi, W2, W3, W4 and Borel-measurable functions φ, δj and δ 2 such that

(X,, ... ,Xj = (

Moreover, the following conditions are satisfied:

Al. Zu ... , Zn are i.i.d., W, is independent of Z, / = 1,2.

A2. φ(z,w), δ^ZjW) and δ2(z,w) are permutation symmetric functions of z = (zί9 ... , zn)

for every fixed w, and φ > 0 for all (z,w) whenever z is in the support of Z and w is in

the support of W ι or of W2.

A3. Either φ(z,w) is nondecreasing (componentwise) in w for every z and W! 2* W2, or

φ(z,w) is nonincreasing in w for every z and Wj =̂  W2.

THEOREM 1. Assume that X and Y have the representation of Model A and that Al, A2

and A3 are satisfied. Then, for all k and all constants cijf i = 1, ... ,n, j = 1, ... , k, such

holds for all ψ which are componentwise nondecreasing such that the expectations exist.

Consequently,

(2.1) uSv.
Proof Let Z (1) < ... < Z(ll) denote the order statistics of Z = (Z,, ... , Zπ). Since φ, δ,,

and δ2 are permutation symmetric in zλ,... , zn for every fixed w, we must have, a.s.,

φ(Z,W, ) = φ(Z ( 1 ), ... ,Z ( n ),W, )

δ / z , w 2 + y ; = δ/z ( 1 ) , . . . , z ( n ) , w 2 + , )
for^ = 1,2. This implies that

ZMZWj) + δ/Z,Wy + 2) ^Z Γ φ(Z,W^ + δ/Z,Wy + 2)

holds if and only if Z, ^ Zv. Consequently,

+ 8, (Z,W3), ... .Z^φίZ.WO + δ.C

, ... ,Z(n)) + (δ,(Z,W3), ... ,8,(Z,W3)).
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Hence, for all cijy i= 1, ... ,n,j= 1, ... , £ , such that ̂ "= 1 c£y = 0,

(ΣUcnX{i)...,ΣUcikX(i))

= φ(Z,W,)(Xi'L, cnZ(i)9 ... , ΣJL, c ^ 0 ) .

Without loss of generality assume that φ is nondecreasing in w and that W j ^ W2. Then

oIX?,,c l Ίz ( 0 | , ... ,φ(z,w1)|ΣΓ=1 cikz«)\)

where ζj(z) is the conditional expectation of ψ, over the distribution of W l 5 given Z =

z. Let ζ2(z) denote the similar conditional expectation of ψ over the distribution of W 2.

Since φ is a nondecreasing function of w it follows that ψ(φ(z,w)|Σ"= i ς.j^l , ... ,

φ(z,w)|Σf=i c iΛz(I )|) is also a nondecreasing function of w for every fixed z. Thus, Wi ^

W 2 implies that

The proof is now completed by applying the equality

The last statement of the theorem follows by defining k = n-\, ci+u = 1, c/pl = - 1 , citj

= 0J J= i, i + 1 where i = 1, ... , n-\.

In the following we consider special forms of Model A.

(a) (An additive model). Assume that there exist constants a > 0, b and d (b and d have

the same sign) and independent random variables Zx, ... , Zn and W such that

( 2 1 ί {Xu .. 9Xrd = (aZι+bWf ... ,aZn
K ' } (Yu ... ,Yn) = (cZ^dWf ... ,cZn

Note that without loss of generality we can assume that b ̂  0 and d ̂  0 because otherwise

one can replace W by -W.

Letting Wλ and W2 be degenerate at a > 0 and c > 0, respectively, letting W3 = W4

= W, setting φ(z,w) = w, δ^z,^) = ?̂w and δ2(z,π>) = dw and assuming a > c, it is easy

to see that X and Y of (2.2) have the representation of Model A and satisfy Al, A2 and

A3 providedZp ... ,Zπarei.i.d.

In some applications (see Snaked and Tong (1985)) X and Y have the same marginals,

that is,

(2.3) Xi = Yhi=\, ... ,n.

In other applications the following condition, which is weaker than (2.3), holds:

(2.4) XUEXi^^xEYi

For example, ( 2 . 4 ) holds if £ Z , = . . . = EZn = EW = 0 or if EZλ = . . . = EZn = EW and

a + b = c + d.

Let Ui = X(, +i)—X(ι) and V, = Y^+i) —Y(o, i = 1, ••• , Λ—1. From Theorem 1 it follows

that if X and Y satisfy (2.2) with a ̂  c then

(2.5) (Uu ... ,£/„_,)^'(V 7, ... ,VΛ_,).

Shaked and Tong (1985) considered the condition

(2.6)

that is,
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and

They denoted the relation (2.6) by X ^-Y and discussed some applications. Following

their arguments it follows that if X and Y satisfy (2.5) and (2.4) then X£*Y. Thus

PROPOSITION 1. IfXandY satisfy(2.2) witha>cand(2.4), thenX>"Y.

The special case where X and Y have the representation

n η Λ (Xu - . ,Xn)=dV-p)Va(Zu ... , Z J + p ^ ( W . ... ,W),

whereZ,, ... ,Z nand Ware as in (2.2), 0 ^ p < η ^ 1 andα > 0, i sModeU. l inShaked

and Tong (1985).

Note that in this special case we can actually have a stronger statement concerning the

distribution of U and V corresponding to X and Y. That is,

(I/,, ... , £ / „ _ ! ) ^ ( l - p ^ Z ^ - Z o ) , ... ,Z{n)-Z{n_λ))

( 2 ' 8 ) (V,, ... ^

Thus we have

(2.9) (£/„ ... ,£/„_,)= ( b

Consequently

(2.10) Sί ' .λA =

(b) (A multiplicative model). Assume X and Y have the representation

(X,, ... ,Xn) = Wλ{Zu ... ,ZJ + (W3, ... 9W3),

where W} and Z are independent, W2 and Z are independent and Zu ... , Zn are i.i.d. If

W] and W2 are nonnegative a.s. and Wλ ^ W2 then this is a special case of Model A and

Theorem 1 applies.

(c) (A ratio model). In certain situations Xλ, ... , Xn have the representation

(X,, ... ,XJ = (Z, l(%U\h(Zύ + Wχ)9 ... ,ZΛ /(Σ?«,A(Z,) + H ^ ) ) ,

where Z l s ... , Zn and Wj are independent and Z,, ... , Zw are i.i.d. [When Z, ^ 0, W,

> 0 a.s. and h is the identity function, then

(X,, ... ,*„) HZl/(ΣΊ=ιZi + Wt), ... ,ZjauZt + W{)).]

In this model if

(Xu ... , Yn) = (Z, /(Σ7-iA(Zι)

h ^ 0 and W2 > 0 a.s., then W2 ^ W, implies U § V. This follows from Theorem 1 because

in Model A one can take

δ^ZvW) = δ2(z,w) = 0.

We note in passing that it is easy to show that U ^ V also for spacings vectors constructed

from X and Y which satisfy the following model:
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Model B. There exist a random vector Z = (Zx, ... , Zn), a random vector W and Borel-

measurable functions φj, φ 2 , §\ and δ 2 such that

(Yu ... ,Yn) = (Z,φ2(Z,W) + δ2(Z,W), ... ,ZΛφ2(Z,W) + δ 2 (Z,

Moreover, the following conditions are satisfied:

Bl. Z], ... , Zn are i.i.d. and Wand Z are independent.

B2. φi(z,w), φ2(z,w), δj(z,w), and 82(z,w) are permutations symmetric functions of

Zj, ... , zn for every fixed w, and φ i ^ φ 2 > 0 over the support of (Z, W).

The main difference between Models A and B is that in Model B we have two functions

φϊ and φ 2 compared to the single function φ of Model A. But, in Model B, φ, and φ 2

are not required to be monotone.

We end this section by showing that Model 4.2 (unlike Model 4.1) of Shaked and Tong

(1985), which involves positive dependence by mixture, does not necessarily imply the

basic relation (2.1).

A random vector Y is called positively dependent by mixture (PDM) if there exists a

random vector W such that, given W = w, Yl9 ... , Yn are conditionally i.i.d. Shaked

(1977) and Shaked and Tong (1985) showed that, in some respects, a PDM random vector

Y is more positively dependent than a random vector X of i.i.d. random variables where

X and Y have the same marginals. One can expect that the spacings vectors U and V, corres-

ponding to X and Y satisfy U ^ V. The following example shows that this is not necessarily

the case.

Example. Let Y\ and Y2 have the joint probabilities

1
2
3

1
Vβ

0
Vβ

2
0
1/3

0

3
Vβ

0
Vβ

and let X, and X2 be i.i.d. such that X; = Yit i = 1,2, that is P[XX = 1] = P[X{ =2] =

P[XX = 3] = Vs. Then P[V, ^ 2] = P[Yω - Y0) = 2] = Vs whereas P[Uλ =s* 2] = P[Xω

_ χ ( i ) = 2] = 2/9. Hence it is not true that £/, 5 V, although (K, ,Y2) is PDM.

It follows that if X and Y satisfy Model 4.2 of Shaked and Tong (1985) then it is not

necessarily true that the corresponding spacings satisfy U &V.

3. Examples. In this section we describe some examples of well-known distributions for

which the results of Section 2 apply.

(a) Exchangeable normal variables. Let X be a multivariate normal random vector with

means μ^, variances σ 2 and correlations p; let Y be another multivariate normal random

vector with means μ^, variances σ 2 and correlations η. I f O = ^ p < η ^ 1 then U ^ V .

This follows from (2.7) with α = 2 where Zλ, ... , Zn and Ware i.i.d. normal random vari-

ables with mean 0 and variance σ 2 . Note that adding μx to all X,'s and μy to all K/s does

not change the distributions of U and V.

(b) Multivariate Cauchy and stable variables. It is shown in Shaked and Tong (1985) that
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some exchangeable stable random vectors X and Y have the representation (2.7). Hence

Theorem 1 applies.

(c) Multivariate Dirichlet and beta variables. Let X have the distribution defined by

(Xu ... ,Xn) = (Z,/(X?= 1Z i + W)> ... ,Zn/(XUΆ + W))

where Zu ... , Zn are i.i.d. gamma random variables (for Dirichlet) or i.i.d. chi-squared

random variables (for multivariate beta), W is a gamma random variable or a chi-squared

random variable (with the same shape parameter but possibly with different scale parame-

ter) and Z and W are independent. In this case, as is shown in Section 2, a partial ordering

of the spacings can be obtained via the value of the shape parameter of W.

Note that in this case X]y ... , Xn are not positively dependent. Actually they are nega-

tively correlated. The result of Theorem 1 can be interpreted here by saying that the less

negatively dependent are X,, ... , Xn the smaller stochastically are the corresponding spac-

ings.

4. Applications

4.1. Goodness of fit tests. Let Zu ... , Zn be random variables, let Z ( 1 ), ... , Z ( n ) be the

corresponding order statistics and let £/, = Z ( l + υ - Z (/), i = 1, ... , n-\, be the correspond-

ing spacings. Statistics like the largest spacing, the fcth smallest spacing, partial sums of

ordered spacings, etc., have been used in statistical literature to construct tests of goodness

of fit and related hypotheses (see, e.g., Rao and Sobel (1980) and references there). Pyke

(1965) discussed statistics of the form Σ"z\ g(Ui) where g is some monotone function. A

general form for all the statistics mentioned above is Σ?z\ £/(£/,) where the g/s are all

monotone in the same direction (see Weiss (1957)).

In most applications the Z/s are i.i.d. with a common distribution F, say, and one is

interested to test H0:F=F0 where Fo is a given distribution (which may or may not depend

on some unknown parameters). The hypothesis Ho is then rejected if ΣΊz\ gβJϊ) is large;

tables of critical values have been prepared for various choices of the g/s.

In some practical situations it may happen that the assumption of independence of the

observations is not valid. For example, a random shift of all the observations combined

with a change of scale may transform the Z/s into dependent random variables with the

same (or with different) marginals as the original Z/s (we denote these dependent random

variables then by F/s). Forexample, assume that theZ/s are i.i.d. normal random variables

with mean μ and variance σ2. Define

where Z is a random shift, independent of Zλ, ... , Zn and having a normal distribution with

mean λ. and variance σ2. Then each Yt is a normal random variable with mean (l-p)12 μ

+ p l / 2λ and variance σ2, but now the K's are not independent. In most applications μ =

λ = 0 (the condition λ = 0 means that, on the average, the random shift is zero), so that

the yys have the same common marginal distribution as the original Z/s, but they are not

independent. It follows from Theorem 1, then, that if one uses the test statistic Σ ^ &(£/,.),

where the g,'s are nondecreasing, then one has a smaller probability of rejection of Ho than

intended. Actually, Theorem 1 shows that the more dependent the F/'s are, the smaller is

the probability of rejection of Ho. The opposite is true if the g,'s are nonincreasing.

Of course the above analysis is valid whenever the 7/s are distributed according to any

multivariate stable distribution (see Section 3).

Relation (2.10) is particularly useful in this setting. To see this let p = 0 in (2.7) and
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ηe(0, l ) . Then(Xj, ... , Xn) = (Zu ... , Zn), i.e. Xu ... , Xn are i.i.d. whereas Yu ... ,

Yn are not independent. The corresponding spacings U and V, constructed from X and Y,

respectively, satisfy (2.8) and hence (2.9) and (2.10). If η is known and if the test statistic

is Σ ί 1 ! λ/ί/, then the critical values for testing Ho (mentioned above) can be obtained from

existing tables by multiplying the tabulated values by (\-i])VcL [recall that here we take p

= 0].

We remark in passing that comments which are similar to the above apply to any statistic

which is a monotone function of the spacings. In particular, they apply to the statistics dis-

cussed in del Pino (1979) which are monotone functions of the A -spacings: Z(Λ+ I Γ -Z ( 1 ) , ... ,

4.2. Tests for independence. The discussion in Section 4.1 shows that if observations are

dependent in the sense Model A instead of being independent then the significance levels

of many tests, which use these observations, are different than the desired ones. In particu-

lar, if the gi's are nondecreasing then the probability of rejection decreases as the observa-

tions become more positively dependent.

One way to interpret this discussion is to observe that the statistics l,"z\ g/(ϊ/, ) actually

yield unbiased tests for the hypothesis which claims that the random variables are indepen-

dent versus the alternative which claims, for example, that they are positive dependent in

the sense (2.2) with a ^ c andd ^b = 0.

We note in passing that the resulting tests are not necessarily optimal in any sense. We

do not try to derive here any optimality property for any test. We remark, however, that

one advantage of the above tests is that existing tables of critical values of statistics of the

form Σ' z] gi(Ui) and existing results about their asymptotic distributions (see Pyke (1965)

and references there) may be applied for testing the hypothesis of independence mentioned

above.

4.3. Empirical distributions and quantile function estimates. Let Z\, ... , Zn be identically

distributed random variables with a common distribution F. Let Z ( 1 ) ^ . . . ^ Z ( n ) be the cor-

responding order statistics. The empirical distribution function, F, is (denoting Z ( π + 1 ) =
00)

F(z) = 0 i f z < Z ( 1 )

= i/n if ze [Z(/),Z(/+1)), i = 1, ... , n,

that is, F is constant on intervals whose length are the spacings associated with theZ/s.

In most applications the Z, 's are independent and then F is an estimate of F whose proper-

ties are well known. However, in some applications the Z/s are dependent in the sense

of Model A [then we denote them by Ylf ... , Yn] although marginally Yt = Z, . In that case

F is not necessarily an unbiased estimator of F. By Theorem 1, the more positively depen-

dent the y/s are, the shorter (stochastically) the corresponding spacings are and thus, the

shorter (stochastically) the range of the support of F is. Geometrically, if X and Y satisfy

(2.1) then the graph of the F based on the F/s will be (stochastically) steeper than the graph

of the F based on the X,' s.

Thus, various statistics which are functions of F can be compared stochastically. This

is the case if these statistics are nondecreasing functions of the underlying spacings. For

example, various measures of dispersion (such as the range, the interquartile range, the

sample variance, etc.) computed from F based on the X/s are stochastically larger than

the same computed from F based on the Kt's.
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The inverse of F,

Q(u) = inffr: F(x) ^ u}

and its density q (if it exists), are called, respectively, the quantile function and the quan-

tile-density function. Parzen (1979) discusses various estimators Q and q of Q and q.

Graphically, one of the estimators, Q, is obtained by "inverting" F (that is, flipping the

graph of F around the main diagonal of the bivariate plane). Parzen (1979) also suggests

various "sensible" estimates of q which are obtained by by differentiating "smooth" ver-

sions of Q. For example, one estimator of q is given by

The comments about the influence of positive dependence on Q and q are similar to the

ones made above about P. Various monotone functional of Q are discussed in Parzen

(1979). Thus, one can stochastically compare various statistics based on a Q which was

constructed from X/s to similar statistics based on a Q which was constructed from Y{s

where X and Y satisfy (2.1).

4.4. Tests for outliers. For i = 1, ... , n, let Zf be a normal random variable with mean μ,

and variance σ 2 . Consider the null hypothesis H0:μι = ... = μn and the following possible

alternatives which state that one or k of the Z.'s are outliers:

A : μj = . . . = μt_! = μ l + 1 = . . . = μn < μ, for some i e 1, ... , n (one of the Z/s is an

outlier caused by a slippage to the right),

A'. μ,, = ... = μ._{ = μi+ι = ... = μn > ^ for some/€ 1, ... , n (one of the Z's slipped

to the left),

A": μγ = ... = μ^j = μi+ι = ... = μn =£μf for some i € 1, ... , n (one of theZ/s is an

outlier),

Bk:n-k μ.'s are equal to an unknown μ and the other μ 's are larger than μ

(there are k outliers caused by slippages to the right). Similarly B\ and B"k can be defined.

Various tests have been proposed for testing these and similar alternatives when the Z.'s

are assumed to be independent (Barnett and Lewis (1978, pp. 89-115)). For example, if

σ2 is known then one can test A [respectively, Bk] by rejecting Ho if

TA = σ~λ$λ(7j) = σ~λ{Z{n)-Z) > cfor somec

[respectively,

TBk = σ~ιή>k(Z) = σ~ι(Z(n) + . . . + Z(n_^+ D-kZ) > c for some c];

here Z = n~\Zλ + . . . + Zn). Similarly, A' [respectively B'k] can be tested by rejecting Ho

when

ΎA> = σ ^ φ V Z ) ss σ-^Z-Zd)) > cfor somec

[respectively,

TB\ Ξ cr-^^(Z) s σ-
ι(kZ-Z0)-...-Zik))> cfor somec].

The two-sided alternative A" may be tested by rejecting Ho when

7> = σ~ι\\f(Z) = a-!max (Z(n)-Z, Z-Z0))>c for some c

and!?"* may be tested by rejecting Ho when

TB\ = σ"2ίKZ) = σ"2Σ?=! (Zi-Z)2 > c for some c

(see Dixon (1950, p. 490)) or by rejecting Ho when
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tff>k = σ - 1 φ (X) = σ"1 (Z(n)-Z(i)) > c for some c.

If σ2 is unknown, but an independent estimate Si of σ 2 is available, then one can test the

various alternatives by replacing σ by 5 υ in the above statistics (see details in Barnett and

Lewis (1978, pp. 89-115)).

Note that all the above test statistics are nondecreasing functions of the spacings (for

example Z{n)-Z = nι Σ%\ (Z(Λ)-Z(J)) = /r1 Σ£\ Σ]z)+ι I/.). It follows from Theorem 1 that if

the observations are not independent but instead that a random shift and a rescaling in the

sense Model A have been applied to the Z/s [denote them then by Y.'s] leaving the

marginals unchanged, then the significance level of each of the above tests may be smaller

than the desired one.

Of course, the same analysis applies also to Z's which have distributions other than

normal (see Section 3 for examples).
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