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This paper develops a unified way of obtaining stochastic versions of deterministic
rearrangement inequalities. Rearrangement inequalities compare the value of a function of
vector arguments with the value of the same function after the components of the vectors
have been rearranged. The classical example of a rearrangement inequality is the well-
known inequality of Hardy, Little wood, and Pόlya for sums of products. They show that
if aχ ^ ... 2s an and b\ ^ . . . . ^ bn are positive numbers, then for every permutation
(iτ(l), ... , iτ(n) )of( l , ... ,n) the inequalities %U\Φi^Έ<U\afr πW^%\<*ibn-i+\ hold.

The function Xxy is an example from a class of functions called arrangement increasing
functions for which such rearrangement inequalities hold. Given two nonnegative random
vectors X and Y with joint density/(x,y) we determine conditions on/for the stochastic
rearrangment inequalities g(Xι, ... ,Xn; Y]y ... , Yn)%g(Xu ... , Xn; K^i), •• , Y «(n))%

g(X], ... , Xn; Yn ,... , Y\) to hold for every permutation IT and arrangement increasing
function g. We present a number of examples of densities which satisfy the condition.

1. Introduction. The development of stochastic versions of deterministic concepts

arising in mathematics has, in the past, led to important new results in probabiliy and statis-

tics. The subject of this paper is in this spirit.

Specifically, we obtain stochastic versions of rearrangement inequalities. Rearrange-

ment inequalities compare the value of a function of vector arguments with the value of

the same function after the components of the vectors have been rearranged.

The classical example of a rearrangement inequality involving a function of two vector

arguments is the well-known inequality of Hardy, Littlewood, and Pόlya (1952) for sums

of products. For vectors a = (ax, ... , an) and b = (bu ... , bn) of positive numbers, Hardy,

Littlewood, and Pόlya show that the function/(a,b) = Σ% ̂ afti takes its largest value when

the components of each a and b are arranged in increasing (or, equivalently, decreasing)

order, and that/ takes its smallest value when the components of one of the vectors are

arranged in increasing order and those of the other vector are arranged in decreasing order.

In symbols they show that if aλ ^ a2 ^ ... ^ an and bλ ^ b2 ^ ... ^ bn (after relabelling,

say) for every permutation (τr(l), ... ,τr(n))of(l, ... ,n), then the inequalities:

(1.1) Σ7«iαA ^ Σ7= , α ^ ( 0 ^ Σ?= iaibn_i+,

hold.

The original idea which motivated this work was to obtain a stochastic version of the

inequalities in (1.1). More explicitly, given two random vectors X = (Xu ... , Xn) and

Y = {Yλ, ... , Yn), we wished to determine conditions to impose on X and Y to yield for

every permutation IT the stochastic inequalities:

d 2) Σ7=1xlyί.£Σ7

whereX 2 Ymeans P(X^t) ^ P(Y^t) for all t.
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As it happens, it is not hard to obtain such a stochastic version of the Hardy-Little wood-

Pόlya inequality. Sufficient conditions on X and Y for (1.2) to hold can be easily stated.

Suppose that X and Y are nonnegative random vectors having a joint density/(x,y). For

a given vector x we write x ^Ui x' if * < j , JC£ =̂  xjt and x' is obtained from x by interchanging

x, and Xj and leaving the other components fixed. Then inequality (1.2) holds for X and

Y if for all pairs i, j , \^i<j^ n,/satisfies:

(1.3) fiχ9y)+Aχ',y')-Aχ',y)-AχJ)&o9

where x ^tijx' and y ^tijyf.

Since the work of Hardy, Littlewood, and Pόlya (1952), papers on inequalities involving

rearrangements of vectors in OP have appeared widely in the literature. Marshall and Olkin

(1979) present a unified approach to the study of deterministic rearrangement inequalities.

We develop a theory which offers a unified approach to the task of obtaining stochastic

versions of rearrangement inequalities. Our work generalizes that of previous authors in

that we obtain their deterministic inequalities as special cases. In this paper we present an

overview of the theory we develop and some applications to statistics.

2. Deterministic Rearrangement Inequalities. A deterministic rearrangement in-

equality compares the value of a function of vector arguments with the value of the same

function after the components of the vectors have been rearranged. In the case of two vec-

tors, rearrangement inequalities have the form

(2. l) A*,t) =A*,9) ^A*x) ̂ A**ϊ) =A*,f),
where 1 (t) denotes the vector whose components are those of z arranged in increasing

(decreasing) order.

The classical rearrangement inequality is the inequality of Hardy, Littlewood, and Pόlya

(1952) where flx9y) = XxjVi. As w e n a v e noted above the inequality states that if JCI ^ x2

^ ... ^ xn and yi 25 )>2 ̂  ... ^ yn are nonnegative numbers, then for every permutation

ir of the subscripts of y, the inequalities

hold.

Rearrangement inequalities involving functions of vectors in J? have been widely

studied in the literature. Jurkat and Ryser (1966) obtained rearrangement inequalities for

functions of min(jc,y). They show that for nonnegative n-tuples H and f

and

for all permutations IT.

Mine (1971) obtained similar rearrangement inequalities for products and sums of

max(*,y).

Rearrangement inequalities also hold for a number of well-known test statistics. An ex-

ample is Pearson's product moment correlation coefficient given by

r(x,y) = ̂ (x-xβiy-yj) {2φr-Xj)2ϊiJyi-yj)2r1'2

Spearman's p and Kendall's correlation coefficient τ also yield rearrangement in-

equalities.

Rearrangement inequalities can be obtained for Blomquist's quadrant test. Blomquist

(1950) proposed the following test for positive association:
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β(x,y) = XΊ-ΛaiMbftd + a2(xi)b2(yi)]9

where

= l9ifxi>xmBd.f

b(yi) is similary defined, a2 = l-au and b2 = l-bι.

3. The Arrangement Ordering and Arrangement Increasing Functions. All rear-

rangement inequalities, such as the ones just described, are examples of functions which

are increasing in a partial ordering on J?1 x JF . This partial ordering, implicit in the work

of Hollander, Proschan, and Sethuraman (1977), is defined in Marshall and Olkin (1979).

They refer to the partial ordering as the arrangement ordering. Using this ordering they

obtain refinements of rearrangement inequalities involving many more comparisons than

given in the examples in the previous section.

To define the arrangement ordering we need some terminology and notation.

Let Sn denote the group of all permutations of {1,2, ... , n). An element of Sn will be

denoted by TΓ = (τr(l), ... , τr(rt)). Let TΓ and TΓ' be elements of Sn. We say that TΓ' is a

simple transposition of TΓ if there exist positive integers 1 ^ / <j ^ n such that τr(/) =

ir'(/) < ΊΓ'(0 = ΊΓ(/) a n d π(k) = π'ik) f o r k * i> J W e w r i t e t h i s a s π <Uj **'. F o r 7 Γ ' 7 Γ '
in Sn we say that IT' is a transposition of TΓ, written TΓ Uπ, if TΓ = TΓ' or if TΓ' can be obtained
from TΓ by a sequence of simple transpositions.

For a vector x in Jp, we define XTΓ to be the vector (JC^D, ... , x^))- Recall that we

denote by t the vector obtained from x by arranging the components of x in increasing

order. We say that x' is a transposition of x if x = for, x' = Ĵ TΓ' where TΓ i TΓ' . We write

x i x'.We note that this defines a partial ordering of CRn. This partial ordering has been

studied by Savage (1957), Lehmann (1966), and Hollander, Proschan, and Sethuraman

(1977), among others.

Let (x,y) € Tf1 x JP. The orbit of (x,y) is the set 0x>y = {(xτr,yσ): τr,σ e Sn}. For a vector

x e J?n the orbit of x is defined similarly.

Definition 3.1. Let (x,y) and (x',y') be two elements of 7? x 7F belonging to the

same orbit. We say that (x,y) is more similarly arranged than (x',y') if there exist

ττ,σe5n such that XTΓ = x'σ = ί and y n i y'σ. We write (x,y) % (x',y')

This partial ordering of Ί?Λ x 7?1 is referred to as the arrangement ordering. We write

(χ,y)= (χ',y')if(χ,y)ϊ (χ',y')and(χ',y')£ (x,y).

Figure 3.1 illustrates the arrangement ordering when x* = (.5,1,3) and f = (2,3.5,4).

An arrow in the diagram from an element 0?,y) t o a n element 0?,y') means that (j?,y) £

,((.5,1,3), (2,3.5,4)),

((.5,1,3),"(3.5,2,4)) ^ ^ ((.5,1,3);(2,4,3.5))

((.5,1,3), (3.5,4,2)) ((.5,1,3)! (4,2,3.5))

) ^

FIGURE 3.1. An Illustrative Arrangement Ordering
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Remark. Let (x,y) denote the largest element of its orbit in the arrangement ordering,

that is, (x,y) % (xττ,yσ) for all ττ,σ e Sn. Then it is easy to see that (x-xj)(yr-yj) ^ 0 for

all pairs ij. In this case we say that x and y are similarly arranged. (Hardy, Littlewood,

and Pόlya (1952) use the expression "similarly ordered".) We write x i y .

Functions which are order-preserving with respect to the arrangement ordering were in-

troduced by Hollander, Proschan, and Sethuraman (1977).

Definition 3.2. A function/from 7?" x 1?" into R is said to be arrangement increasing

if(x,y)S (x',y')implies/(x,y)^/(x',y')forall(x,y)e7^x 7T.

Functions which are arrangement increasing play an important role in the theory we

develop. Their properties and many useful applications were first studied by Hollander,

Proschan, and Sethuraman (1977). In their 1977 paper they gave an alternative definition

of an arrangement increasing function which they call a function "decreasing in transposi-

tion". The present name is due to Marshall and Olkin.

PROPOSITION 3.3. (Marshall and Olkin (1979).) A function f from 7?" x 7?" into 7? is

arrangement increasing if and only (/* (i)/(x,y) = fixπ,yττ) for (x,y) e 7?" x 7?", TΓ e Sn,

and(\\)J{*9y)^j{1ί#'), whereyUy'.
A function satisfying (i) of Proposition 3.3 is called permutation invariant.

Hollander, Proschan, and Sethuraman (1977) give many examples of arrangement in-

creasing functions including a number of well-known densities in statistics. Some of these

examples are presented in Section 5.

4. Stochastic Rearrangement Inequalities. In this section we obtain stochastic ver-

sions of the rearrangement inequalities of Section 2. Specifically, we show the following.

Let X and Y be nonnegative random /^-vectors with joint density/satisfying the conditions

of Def. 4.1 below. Then for any arrangement increasing function g and permutation π we

have

g(Xu ... 9xn;Yu ... ,Yn)5.g(Xu ... ,xn;Y«i)9 ... ,/,(„))£g(Xi, ... ,xn;rn, ••• . >Ί)

These stochastic rearrangement inequalities follow as a corollary to our main result pre-

sented in Theorem 4.3. The condition we need on the joint density of X and Y to obtain

stochastic rearrangement inequalities is defined as follows.

Definition 4.1. A function / from 7?Ί X 7? into ypis called a positive set function in

arrangement (PSA) if x ^ίiJxr andy ^1ijy' for any pair / <j imply

/(x,y) -/(x',y) -/(x,y') +/(x',y') ^ 0.
We note that a function/is arrangement increasing if and only if/is PSA and permutation

invariant.

Before we state the main theorem, we introduce the notion of an arrangement preserving

kernel.

Definition 4.2. A function K from (7? X Ί?) x (7?" X Ί?) into yPis called an arrange-

ment preserving (AP) kernel if: (i) K(u,x; v,y) is permutation invariant in (u,x) and in (v,y),

and (ii) For all u,v e 7?, tf(u,x; v,y) is PSA in (x,y).

In our main result Theorem 4.3 below we state that the arrangement increasing property

is preserved under an integral transform defined by an arrangement preserving kernel.

THEOREM 4.3. Letf(x,y) be arrangement increasing and let ^(u,x; v,y) be an arrange-

ment preserving kernel. Then under mild conditions on the measure m and the assumption

that the integral exists finitely, the function
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g(u,v) = Jff(x,y)K(u9x; \9y)m(dκ9dy)

is arrangement increasing.

A corollary to Theorem 4.3 yields stochastic versions of deterministic rearrangement in-
equalities.

COROLLARY 4.4. Let (X,Y) have a PSA density. Then for all arrangement increasing
functions f and all permutations TΓ we have

f&t, ... ,X,,;K,, ... . y j SΛX,, ... ,Xn;Y^ ... , Kw(n)) £/(X,, ... ,Xn;Yn, ... ,K,).

Since the function g(x9y) = Σx/y,- is arrangement increasing we have as a consequence

of Corollary 4.4 a stochastic version of the Hardy, Littlewood, and Pόlya inequality,

namely that

iYj u xx/Kπ-d-) =2 xx/y
r

Ai_/+1.

A similar result holds for all the other rearrangement inequalities in Section 2.

5. Examples of PSA Functions and AP Kernels. The results in the previous section

allow us to obtain stochastic versions of rearrangement inequalities for a large class of ran-

dom vectors which contains those pairs (X,Y) having PSA and AP densities. The purpose

of this section is to show that many multivariate densities of interest in statistical practice

fall into these two classes of functions.

A function φ is called a. positive set function if

ΦUi,y,)-φ(xI,y2)-φfe^ι) + Φfe^2)^0forallx1<x2andy I <y2.

Positive set functions can be used to construct AP kernels as we state in Theorem 5.1.

THEOREM 5.1. Let φ be α positive set function and let gj and g2 be arrangement in-

creasing. Then φ(gi(u,x), #2(v>y)) ̂  anAP kernel.

Some examples of positive set functions are (i) φ(x,y) = xy, (ii) ΦU,y) = F(x,y) where

F is ac.d.f., and (iii) φ(x,y) = h(x-y) where h is concave.

As a consequence of Theorem 5.1 and the fact that the product xy is a positive set function

we have the following important example showing how to construct AP kernels

Example 5.2. Let X and Y be independent random vectors each having arrangement

increasing density. Then the joint density of (X,Y) is an AP kernel.

The following examples of AI densities can be used to construct AP densities. (See Hol-

lander, Proschan, and Sethuraman (1977) for proofs.)

5.3.a. Multinomial: g,(u,x) = N! Π/L^^'/JC,/), where 0 < u, < 1, JC# = 0,1,2, ... ,

5.3.b. Negative multinomial:

g 2(u,x) = (Γ(N))-

whereiι, > 0 , ^ = 0,1, ... , / = l , ... ,/ι,andΛf>0.

5.3.c. Multivariate hyper geometric: #3(u,x) = Πf=i(!J|) / (^ l M /), where w, > 0, x{ —

0,1, ... ,ΣΓ=,JCI =

5.3.d. Dirichlet: g4(u,x) =

wherew,>0,^,^0,i = 1, ... ,n.2Γ-iX*^ l ,andθ>0.

5.3.e. Inverted Dirichlet:
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whereUi>0,Xi^0,i=l, ... ,n,andQ>0.

5.3. f. Negative multivariate hypergeometric:

gβ(u,x) = ( Π , 1 Λ / Γ ( N + ^ 1 ^ ^ ^ ^

whereMf>0,^ = 0,1, ... ,tf,2,1,Jc, = M a n d # = 1,2, ... .

5.3.g. Dirichlet compound negative multinomial: g7(u,x) = (Π£= ,αcl /Γ(Λ )̂Γ(θ)Γ(Λ^ + θ

+ 3 l , i ι , + ϊr-Λ))" 1 Γ ( N - Σ , 1 Λ ) Γ(θ + 2,1,11,) Γ(N + θ) Π,1,(Γ(JC, + κ,)/Γ(iι,)), where

Mi>O,jCj = O,l, ... ,ί = 1, ... ,«, θ > 0 , a n d W = 1,2, ... .

5.3.Λ. Multivariate logarithmic series distribution:

gs(u,x) = (log(l + ΣΓ-Hί/))-1®1-

whereκ, > 0 , * , = 0,l, ... , ι = 1, ... , Λ.

5.3.1. Multivariate F distribution:

ί 9 ( o , x ) = (2Π,1oΓ(λ,)(λo + 3

,f = 0,1, ... ,n.

5.3.j. Multivariate Pareto distribution: gw(u,x) = (Π^^/Γ^X^^/'^-n + l)~(β+'l),
wherejc />M I>0,i = 1, ... ,n,anda>0.

53.k. Multivariate normal distribution with common variance and common covariance:

£ π ( u , x ) = (2τr)Λ/2|Σ|-1/2exp(-1/2(x-u)Σ-1(x-u)-1), where Σ is the positive definite covariance

matrix with elements σ 2 along the main diagonal and elements pσ 2 elsewhere, p > -1/

(Λ-l).

AP densities can also be constructed from independent TP2 densities using the next re-

sult. Recall that/is TP2 if

A*ι ^ 1 ) ^ 2 ^ 2 ) ^Λχ\ ,y2)Λ*2,y\) for all xλ < x2 and>Ί < y2-

THEOREM5.4. LetfbeΊ?2- ThenUββhyi) is arrangement increasing.

Some examples of TP2 densities are (i) normal with variance 1, (ii) exponential, and

(iii)Poisson.

In the next example we use a result of Karlin for TP2 densities to obtain more PSA de-

nsities.

Suppose that components have lifelengths X with TP2 density g(θ,x) and Y with TP2 de-

nsityy(θ,y). Further suppose thatX and Fare independent and that θ depends on the environ-

ment with distribution ττ(θ). Then Karlin (1968) has shown that the joint distribution of

X, Ygiven by K(x,y) = J/(θ, v)g(θ,y)^ττ(θ) is TP2. From this result we get the following:

THEOREM 5.5. Let (X,,K,), ... , {Xn>Yn) be independent with TP2 density. Then the

joint density of (X,Y) = {X\, ... , Xn; Y\> ... , Yn) is arrangement increasing and hence

PSA.

In the next two results we state that certain operations on pairs of random vectors which

are PSA (AP) preserve the PSA (AP) property.

A vector x € J?1 majorizes y e J?1 if 2̂ = λx^ ^ Σ£= i vtί] for k = 1, ... , n and Σf= I*, =

X/Ljjy where jcfl] ^ ... ^ jc[n]. A function / i s Schur-concave if fix) ^fiy) whenever x

majorizes y. In Theorem 5.6 we show that Schur-concave densities can be used to construct

PSA densities.
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THEOREM 5.6. Let (X,Y) have a PSA (AP) density. Let W and Z be mutually indepen-

dent and independent o/(X,Y) each having a Schur-concave density. Then (X + W,Y +

Z) has a PSA (AP) density.

Marshall and Olkin (1974) give a number of interesting examples of Schur-concave de-

nsities . We list some of them in Example 5.7 below.

Example 5.7. The following multivariate densities are Schur-concave:

5.7.a. Multivariate normal: Let X!, ... , Xn be exchangeable and jointly normally dis-

tributed . Then the joint density of X is Schur-concave.

5.7.b. Multivariate "t" distribution: Let Uλ, ... , Un be exchangeable and jointly nor-

mally distributed. Let Z2 be chi-square distributed for Z ^ 0. Then X = (£/,/Z, ... , UJZ)

has a Schur-concave density.

5.7.C. Multivariate beta distribution: Let Uu ... , Un be independent, identically dis-

tributed chi-square random variables and let Z be a chi-square random variable, indpendent

ofUu ... ,ί/n.ThenX = (ί/,/(Xt/l +Z), ... , UJ&Ui+Z) has a Schur-concave density.

5.7.d. Multivariate "F" distribution: Letί/j, ... , Un each have a chi-square distribu-

tion with r ^ 2 degress of freedom, and let Z have a chi-square distribution with s degrees

of freedom. Then X = (U\IZ, ... , UJZ) has a Schur-concave density.

For random variables Xλ, ... , Xn, denote by Rt the rank of X, among Xx, ... , Xn. The

random vector R = (Ru ... , Rn) is called the rank order of (X b ... , Xn). We have the

following useful result for the rank orders of PSA (AP) random vectors (X, Y).

THEOREM 5.8. Let (X,Y) be PSA (AP). Let R be the rank order ofX and let S be the

rank order ofY. Then the random vectors (R,S) are PSA (AP).

6. Applications to Statistics. The theory of stochastic rearrangement inequalities has

applications in a number of areas in statistics. In this section we present two of these appli-

cations.

In the first example we show how the stochastic version of the Hardy, Littlewood, and

Pόlya inequality may be applied to reliability theory. This generalizes a result of Derman,

Lieberman, and Ross (1972) in the case of two vectors.

Application 6.1. Suppose that we have two stockpiles of n components each, stockpile

one of type 1 components, stockpile two of type 2 components. From these stockpiles we

are to construct n systems, each composed of a component of type 1 and a component of

type 2 arranged in series. A component / of type j has a random reliability p/

h j = 1,2; i

= 1, ... , n. We assume that P 1 = (P\, ... , P\) and P 2 = (Pf, ... , Pi) are independent,

each having an AI density with parameters α, ^ ... ^ an and β, =̂  ... ^ βrt, respectively.

Then, as we have seen in Section 4, (P1 ,P2) is AP.

For the assembly which pairs the /-th component of type 1 with the τr(/)-th component

of type 2, the average reliability of the n system is \ln Σ/L \p)p\^.

Thus by the stochastic Hardy, Littlewood, and Pόlya inequality, the optimal assembly,

in terms of average reliability of the n systems, is achieved when the /-th component of

type 1 is paired with the /-th component of type 2. D

Let (X,Y) be AP with parameters (α,β) Let α 0 be a fixed vector of 7? in the orbit of α.

The theory we have developed can be used to study the problem of testing the hypothesis



STOCHASTIC REARRANGEMENT INEQUALITIES 11

(6.1) Ho: β i α 0 againstHa\ β £ α 0 .

Let/be an AI function and define the test Tfby

{ 1, if/(x,y)<vα

7, if/(x,y) = vα

0, otherwise.

The null hypothesis is rejected with probability 7}{x,y) if (x,y) is observed. Note that the

numbers vα and (0 < 7 < 1) are determined to give size a to the test.

LetZ?Γ/(α,β) be the power function of the above test against alternatives (α,β), that is,

We shall need the following definition (see Barlow, Bartholomew, Bremner, and Brunk

(1972), Chapter 6).

Definition 6.2. Let (α o,β o) e 7? x J? be given. A test T has isotonic power against

alternative (α,β) S(<*o,βo) ( w i t h respect to the ordering "S") if for any (α, ,β,) and (α 2,β 2)

inS^x 7? such that

(α 2 ,β 2 )^(α,,β,)5(αo,Po),

we have

Remark 6.3. It is a consequence of Definition 6.2 that any test T which is isotonic

with respect to the " ϊ " ordering is unbiased for testing

(6 3) Ho: (αo.β) = (αo»βo) against

Ha: (αo,β) 5(αo,βo), (α o ,β)^α o ,βo)

Note that by the remark in Section 3, the hypotheses in (6.3) are equivalent to those in

(6.1).

It follows from Theorem 4.3, that tests of the form given in (6.2) are isotonic with respect

to the arrangement ordering and, consequently, by Remark 6.3 that such tests will be un-

biased for testing Ho against Ha. We state this formally in Theorem 6.4.

THEOREM 6.4. Let (X, Y) be SSA like (αo,β). Consider testing the hypothesis

//o:(αo,β)f(αo,βo)

against

Ha: (αo,β) ί (αo,β), (αo,β) % (αo,βo)

Let f be an AI function and let Tfbe the test given in (6.2). Then the test Tfhas isotonic

power against alternatives (αo,β) ϊ(α o ,βo) Consequently, a test based on Tfis unbiased

for testing Ho: α 0 = β against Ha\ α 0 %β.

A number of well-known statistics, including those given in Section 2 such as Spear-

man's p and Kendall's T are AI functions and hence can be used to test the hypotheses in

(6.1).

Remark 6.5. In Theorem 5.8 we showed that if (X,Y) is PSA (AP) then its rank order

(R,S) is PSA (AP). Thus Theorem 6.4 also holds for test statistics 7}based on the rank

order of (X,Y). A useful application of the above remark arises in testing for the existence

of positive dependence between two time series. An example is described below.

Application 6.6. Studies of air pollution have shown that automobile exhaust is the
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major source of lead elemental air pollution in many urban areas. It is believed that auto-

mobile exhaust is also the major source of bromine pollution in the atmosphere. For a par-

ticular city, we wish to determine whether automobile exhaust is the predominant source

of both of these two pollutants or, alternatively, whether other sources are responsible for

bromine pollution. Suppose that λ, , the concentration of lead at time /, / = 1, ... , n, is

known. Letλ 0 = (λj, ... , λ j .

To help in distinguishing between the two alternative hypotheses, we test Ho: λ 0 = β

against Ha: λ o *β> where β/ is the true concentration of bromine at time /, / = 1, ... , n,

and β = (βj, ... , βn). Rejection of Ho would indicate that sources other than automobile

exhaust contribute to the bromine pollution.

Observations L on lead and B on bromine are assumed to be governed by a joint AP

density with parameters (\o>β) By Theorem 6.4 we conclude that a test using an AI test

statistic based on the ranks ofL and the ranks ofB is isotonic and is consequently unbiased

againstHa.

Remark 6.7. Suppose that the measurements L and B are subject to errors X and Y

with X~ MVN(0, X(p,)) and Y~ MVN(0, Σ(ρ2)), where

U w
for 0 ^ p =̂  1. Since the density of each of X and Y is Schur-concave by Theorem 5.6,

(L+X, B+Y) is PSA (AP) and, as before, a test using an AI test statistic based on the

ranks of L+X and of B-f-Y is isotonic.
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