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1. Introduction

Let X-,...,X be independent identically distributed random variables
1 n

(r.v.
f
s) and Y

Ί
,...,Y be independent r.v.

f
s., independent of X.,...,X . Let

In In

F(x) = P(X. >x),

G.(y) = P(Y. >y), y > 0, 1 < i < n
l l — — —

Let

Here, [A] denotes indicator of event A. The X.
f
s are true survival times, the

Y.'s are censoring times and one observes {(δ.,Z.), l ^ i ^ n } . This is the so-

called random censoring model where often one is interested in making inferences

about F or about some function of F based on {(δ.,Z.), 1< i<n}. In order to

l i — —

describe the specific problems to be considered here we need the following

definitions. In all of these definitions F(0) = 1.

189
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DEFINITION 1:

A life distribution 1 - F is said to be New Better Than Used (NBU) if and

only if

(1) F(x + y) <_ F(x) F(y), x,y >• 0 .

DEFINITION 2:

A life distribution 1-F with 0 < μ < °° is said to be Decreasing Mean

Residual Life (DMRL) if and only if

(2) J(s) F(t) I J(t) F(s), 0 < s <_ t < co
 p

where

ΓJ(s) = F(t)dt .
's

DEFINITION 3:

A life distribution 1-F with mean 0 < μ < °° is said to be New Better Than

Used in Expectation (NBUE) if, and only if

(3) J(t) < μ F(t), t > 0 .

It is clear that DMRLCNBUE. An NBU F with 0 < μ < °° is also NBUE. An

equality obtains in (1) if and only if F is an exponential whereas equality is

obtained in (2) and (3) only by an exponential distribution among all continuous

F
f
s with 0 < μ < °° .
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The probabilistic aspects of the above classes of life distributions have

been extensively studied by Bryson and Siddiqui (1969), Bryson (1974), Marshall

and Proschan (1972), Barlow and Proschan (1975), among others.

It is of interest, as discussed in Hollander and Proschan (H-P) (1972,1975),

Koul (1977,1978a,b) and Koul and Susarla (1980), to test

H_: F(x) = e~
 X
, x > 0, λ > 0 unknown

U —

against the alternatives

H.. : F is NBU, not an exponential

or

H : F is DMRL, not an exponential

HL: F is NBUE, not an exponential

The papers of Hollander and Proschan and Koul discuss some tests of H vs

H ,H and H^ when the observations are not censored. The paper of Koul and

Susarla discusses a test of H vs H and that of Chen, Hollander and Langberg

(1980) discusses a test of H^ vs H^ for randomly censored data.

In this paper we present two tests of H~ vs H and a new test of H vs H

for randomly censored data. Besides these the paper contains a limit theorem

which is useful in deriving the asymptotic distribution, under H and under

alternatives, of the test statistics for the above problems. The theorem

partly unifies the proofs of the asymptotic normality of these statistics under

random censoring and it also has applications to other problems, such as the

estimation of moments of F.

Section 2 contains the main theorem, the tests of H vs H and H based on

{(ό.,Z.), l £ i £ n } , and theorems stating their asymptotic normality along with

some proofs. Section 3 has a discussion about the asymptotic Pitman efficiency
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of some of the tests. Section 4 contains the proof of the main theorem.

NOTATION. The symbols £ and Π stand, respectively, for the summation and pro-

duct over the indices K i < n . For any function g and set A, g denotes

— — jΆ
g(x)dx. All limits are taken as n G = n~ G.. By o(l)(o (1)) is

meant a sequence of numbers (r.v.'s) that converges to 0 (in probability), z

denotes the t
t h
 percentile of N(0,l) distribution. For any function H, H will

stand for 1/H. The symbol := stands for "by definition".

2. The Main Theorem and Test Statistics

Let

(4) F<t) -

1+N(Z
±
)

2+N(Z
i
)

, t > 0

denote a modified product limit estimator of F, where

N(t) = I [Z
±
> t] , t ̂  0 .

Let {h } be a sequence of non-random functions on (0,°°) and {t } be a sequence
n n

of positive real numbers, t f °°.

n

THE MAIN THEOREM:

Let {F } be a sequence of survival functions and G ,. . . ,G the censoring

survival functions. Assume that the following conditions hold:

t

(Cl) n-1/2, |h
n

(x)}
 L
 (- F

J
0

 n

-Δ —
(H) * dG)dx

(C2) lim sup σ < °° ,
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t

Γ

where H = F G and
n

(5)

Then

(6) n " σ •
n
 Ό

Typically t = c(£nn)
a
 , c > 0 , 0 £ a < l satisfies (Cl) and (C2) for a large

class of {F } and {G.}. The proof of this theorem is sketched in Section 4.

In this section we now present some important applications of this theorem to

the testing problems mentioned in Section 1. First consider the problem of

testing:

(a) H versus H . Two measures of departure of H from H , for a given F,

Δ (F): = I I D(s,t) dsdt = I s F(s) - (I F )
2

'0
 J
0

 J
0
 J

0

and
*CQ i OO *OO .OO

Δ (F): = D(s,t) dF(s) dF(t) = F(s+t) dF(s) dF(t)-l/4
Z J

0 ^O
 J

0
 j
0

where

D(s,t): = F(s+t) - F(s) F(t), s,t :> 0 .

The measure Δ was considered by H-P (1972) in the case of no censoring.

For some other measures see Koul (1978a,b). Observe that Δ.(F)=0, j=l,2 if

F is in H
Q
 and Δ.(F) < 0, j =1,2 if F is continuous in U

±
. The smaller Δ.(F)

is for a given F, the more there is evidence in favor of F in H , j =1,2.

Therefore, it is natural to base tests of H vs H^ on Δ.(F), j =1,2, where F
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is given by (4). Because of the bad tail behavior of F, we instead consider

Δ.(F,M ), where
J n

C
Δ,(F,M ) =
1 n

 Jo

M M
n r n

D(s,t) dsdt ,

a n d
 M M

n r n
Δ

2
(F,M

n
) = I I D(s,t) dF(s) dF(t) ,

and where M ΐ °° .
n

The test j rejects for small values of Δ.(F,M ), j =1,2. The following

/\

theorem gives the asymptotic distribution of Δ. (F,M ), j =1,2 for a sequence

3 n

{F } of survival distributions in H Λ J H^ and for non-identically distributed

censoring r.v.'s. Let μ = F , γ = sF (s) ds. Note that now X_,X
O
,...,X

n J Q n n JQ n 1 2 n
a r e i . i . d . F , n > 1 .

n —

THEOREM 2:

(a) Let

h - (x) = ( x - 2 μ ) [ 0 < x <M ] + (2M - x) [M < x < 2M ] .
n l n n n n— n

Assume that {F } in H _ ( J H Ί , and G., , . . . ,G sa t i s fy (Cl) and (C2) with h =h Ίn U 1 1 n n nl

and t = 2M . Also assume that
n n

(7) lim sup μ < °° ,
n

(8) lim sup γ < °° .
n

Then

M
1 / 9 — 1 Λ 1 10 1 Γ n ^

(9) n ' σ n l { Δ 1 ( F . M n ) - Δ 1 ( F n . M n ) } . n 1 / 2 σ i ί j o (F - F^ h ^ + o p(l)

* d N(0, l ) ,
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where σ
 Λ
 is the σ of (5) with h replaced by h

 Ί
.

nl n n ^
 J

 nl

(b) Assume that {F } in H
Λ
(J IL have densities {f } and set

n u 1 n

h o ( x ) = [ 0 < x < M ] I f ( x - t ) f ( t ) d t
nz n J ~ n n

M M
f n r n

+ [M <x<2M ] f (x-t) f ( t ) d t - 2 f (x+t) f ( t ) d t .
n % -x n n Jo n

Assume that (Cl) and (C2) are satisfied by {F }, G
Ί
,...,G , and h replaced by

n 1 n n
h o . Then

nz

(10) n 1 / 2 σ " 1 {Δ (F,M ) - Δ (F ,M )} = n 1 / 2 σ 3 [ " (F - F ) h + o (1)
ΏΔ Z n z n n nZ j « n n z p

σ {Δ (F,M ) - Δ (F ,M )} = n σ 3 [ (F - F ) h + o (
Ώ.Δ Z n z n n nZ j « n n z p

where σ
 o
 is the σ of (5) with h =h _ .

nz n n nz

Outline of Proof: Due to the limited space, we only sketch a proof of (9). The

details for (10) are similar in nature. Write M for M and observe that

n

n 1 / 2 (Δ.,(F,M) - ΔΊ(F ,M)) = n 1 / 2 [ ί {F(s+t) - F (s+t)} ds dt
1 In J Q J Q n

Y)Z - ( F

Jo Jo n
- n1U {( I 7)Z - (| YJ1} = An-Bn, say .

One can check, using (7), that if (Cl) and (C2) hold with h =h , then they

also hold with h =1. Therefore, by (6)
n
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This, in turn, implies that

] / 2 fM Λ (M Λ rM . M A

(11) B = n / 2 ( F - F ) { (F + F )} = 2 F n U (F - F ) + o (1)
n -Ό Π ^0 Π J 0 n Jθ P

1/? ΓM -
= 2 μ n ' ( F - F ) + o (1) .

n J o

 n P

Direct integration yields that

f2M1/7 Γ
(12) A = n / { u [ 0 < u < M ] + (2M - u) [M<u<2M]} ( F ( U ) - F ( u ) ) d u .

n J o _ n

Therefore, (12) and (11) yield the equality of (9), whereas the convergence in

distribution to N(0,l) follows from the Main Theorem.

REMARK 1. Under H_, μ =λ
 λ
 and h Ax) ^ (x - 2/λ) .

O n nl

Actually, if

(13) lim sup I χ
2
 e

 X
 {G(x/λ)}

 λ
 dx <

then one can show that

(14) σ
 Ί

2
 = λ

 4
 f (x-1)

2
 e

 X
 {G(x/λ)}

 λ
 dx

nl
 J

Also, if

(15) lim sup y
2
 e"

3 y
 {G(y/λ)I"

1
 dy <

J
0
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then

(16) σ
n2 "

 4"T dy

Thus (13) and (15) imply (C2), respectively, for h
 Ί
 and h

 o
 under H

Λ
. A

nl nz 0

sufficient condition for (Cl) to hold for both, h _ and h
 o
, under H

Λ
 is that

ni nz 0

(17) n "
1 / 2

 (Ann)
2
 M

2
 e

 n
 [{G(M )}"

3
 -1] = o(l) .

n n

From (14) and (16) it is clear that the asymptotic null distribution of

the proposed tests depend on λ and G. To implement the tests we estimate λ by

and G by

G(t) = Π
2+N(Z.)

0, Z <_
, t > 0

It is easy to check that λ is a consistent estimator of λ under H as long as

0 < lim inf λl G(t) e
 λ t
 dt < lim sup λ G(t) e

 λ t
 dt < 1 .

That G is a consistent estimator of G, under H , can be deduced from Koul,

Susarla and Van Ryzin (1981).

Let

σ = λ
nl

N
9 -v —

} e
 ί

G
(

-1
d x
 »

a I = 4"
1

n2

(y-1/2)
2
 e"

3y
 {G dy ,
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where N + °°.
n

• 2
Under (13), (15) and (17), with M replaced by N , one can show that σ . =

2 *
σ . + o (1), j =1,2. Consequently the test that rejects H when Δ.(F,M ) <_

Λ
 1/2

z
Γ
 σ ./n has the asymptotic size ό, j =1,2. Next, consider
o nj

(b) H
n
 vs £L . Two reasonable measures of the deviation of H from H , for

a given F, are

Δ 3 (F) = I [ [ 0 < s < t < ω ] E ( s , t ) d s d t

and

Δ 4(F) = j j [ 0 < s £ t < « > ] E ( s , t ) dF(s) dF( t ) = J (3F 2 - F - 2F 4 ) /6 ,

where

E ( s , t ) = F ( t ) J ( s ) - F(s) J ( t ) , 0 < s < t < °° .

Let Δ (F,M) = [0<s<_t<.M] E(s,t)dsdt and define Δ (F,M), similarly. The

test j rejects H in favor of H if Δ.(F,M ) is large, j =3,4. The following

theorem gives the asymptotic normality of these test statistics for a sequence

{F } in H (JH and for non-identically distributed censoring variables. Note

that a variant of the Δ,-test was suggested by Chen, Hollander and Langberg

(1980) but they do not discuss the asymptotic distribution under sequences of

alternatives.

THEOREM 3:

(a) Let {Fn} be in H 0 < J H

2 ' F o r s l M

n >

M M

n f n rsh Λs):= 2 min(s,x) F (x)dx - (x - s) F (x)dx - (s-x)F (x)dx.

Ό n Jo n J o n

Assume {F
n
}, G

l9
,,.G and h satisfy (Cl) and (C2). Also, assume that (8)

holds.
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Then

n
1 / 2
 σ^

1
 (Δ

3
(F,M

n
) - Δ

3
(F

n
,M

n
)) - n

1 / 2
 σ j { ^ (F - F

n
> h ^

 +
 o

p
(l)

where σ
 o
 is the σ of (5) with h =h „.

n3 n n n3

(b) Let

h .: = (6F -1-8F
 3
)/6 on [0,M ] .

n4 n n ' n

Assume {F }, h , and {G.} satisfy (Cl) and (C2). Also, assume that (7) holds.

Then

M
1 / 9 — 1

 Λ
 1 /9 —1 Γ

 n Λ

n
 / Z

 σ / (Δ. (F,M ) - Δ,(F ,M )) = n
/Z
 a , (F - F ) h , + o (1)

n4 4 n 4 n n n4 J n n4 p

>
d
N(0,l) ,

where σ , is the σ of (5) with h = h . .
n4 n n n4

REMARK 2. As in Remark 1, it can be shown that under (13) and under H with

a fixed λ,

σ
2
 = λ

 6
 [ e

 fc
 (2-2e

 t
 - t)

2
 {G(t/λ)}

 λ
 dt

n3
 Jo

and that if

then

I -λ — -1
lim sup e {G(s/λ)} ds < «> ,

J
0

σ ] = (36λ
2
)~ e"

s
 (3e~

S
-l-2e"

3 s
)

2
 {G(s)A)}"

1
 ds
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Moreover, a sufficient condition for (Cl) to hold under H , for both h _ and

h
n 4
> is (17).

Let

N

σ j = (λ)" 6 I e - t ( 2 - 2 e " U - t ) 2 {Gίt/λ)}" 1 dt ,

N

σ
 2
, = (36Λ

2
)"

1
 I e~

Z
 (3e"

t
 - 1 - ze""

3 t
)

2
 {Gίt/λ)}""

1
 dt .

n4 J
Q

/\ /\ 1 / O

Then the test that rejects H. when Δ.(F,M ) > z
1
 σ ./n has the asymptotic

0 j n — 1-α nj

size α, j =3,4. Both of these tests are consistent against a fixed F in EL

and for all those censoring distributions for which (17) holds and an analogue

of (C2) holds for h
 o
 and h . at the given F.

nJ ΠH

3. Asymptotic Efficiency

Consider the problem of testing H» vs a sequence of alternatives

{FQ } ε H when there is no censoring. In this case one can base tests on

n

Δ.=Δ.(F), j=l,2, where F(x) = n"
1
 J[X >x], x^O. Observe that

~ 1 9 9 ~

Δ. = (2n) ^X. - X . The Δ« is a priori scale invariant while a scale

invariant analogue of Δ- is

-k ^2
 Λ

Note that an analogue of Δ_ under random censoring is λ Δ_(F,M ). We did not
1 In

consider this statistic in the previous section because its asymptotic null

f
M
n ~ 2

distribution still depends on λ as does that of Δ (F,M )/( F)
1 n

 Jθ

Using the standard central limit theorem one has

(18) n
1 / 2

0 n
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for all {F
Q
 } ε H. which are contiguous to F

n
 . Note that implicit in (18) is

D 1 O~

n 0

the assumption that Δ
1
 (F

Q
 ) < «> for all n which amounts to assuming the finite-

1 Ό

n

ness of the second moments (see (8)) whereas no such assumption is needed for

Δ -test.

Now if Δ.(θ) = 8Δ.(F
fl
)/3θ, j=l,2, then it follows that the asymptotic

relative Pitman efficiency of Δ -test relative to the Δ2~test is

{Δ
l (
θ

0
)/Δ

2
(θ

0
)}

2
 .

2

Consider the alternatives: (al). F
Q
 (x) = e"

X
"

X
 °n^

2
, θ =ό ~

1
 , δ > 0,

U n n
n

x >_ 0. Then Θ
Q
 = 0 and Δ

1
(0)=l, Δ

9
(0)=l/16 and e(l,2) = (5x256)/432 = 2.96.

θn -1/9 *
(a2). If F

Q
 (x) = exp(-x

 n
) , θ =1 + on

 ± / Z
, δ > 0, then θ = 1 and Δ

Ί
(0) = 1,

Ό n — u i
n

•

Δ
2
(l) = 1/8 and e(l,2) = .74 .

— _ -θx
Now suppose there is random censoring with G(x) = e , θ < λ. Then from

(14)

σ
nl *

 λ 4
 I

 ( X
"

1 ) 2 e
 ^ ^ (α=l-(θ/λ))

_Λ —^ _9 —1

λ
 4
 [2α -2 α + α ]

(Hr
2
)/λV = a

x

2
 , (say) . (r = θ/λ)

Also, from (16)

4
 x
 I (x-1/2)

2
 e

 ( 3 Γ ) x
 dx (β = 3-r)

4
 X
 [23

 3
- 3

 2
 + 4

(5-2r+r
2
)/163

3
 = σ

2
, (say) .
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Note that Δ.
f
s do not change. Then at the alternative (al),

e(l,2) = 256. (σl/O = 256. ^—~

16(3-r)~

-• 2.96 as r -> 0 (i.e., θ + 0)

-> 0 as r -> 1 (i.e., θ -> λ) .

Thus, for example, if censoring distributions are almost like the exponential

(λ) distributions, then Δ -test would be preferred.

In general, if G, the average of censoring distributions, has lighter right

tail compared to the exponential tails, we suggest using the test based on

Δ (F,M ) with M = c(ln n )
a
, c > 0, 0 < a < 1 .

4. Proof of the Main Theorem

The technical details of the proof are similar to those in Section 7 of

Koul, Susarla and Van Ryzin (1981). We provide only a sketch of the proof

here. Write F = HW where (n+1) H = 1+N and W = G " , the second factor in (4).

Write M for M . Observe that
n

F - F = G ~
1
 (ίί - H) + H (W - G ~

1
 ) , H = GF .

n n

Hence,

- , /
o
r M

Λ
 .. #

0
 rM

 Λ Λ
 -. Γ ^ _ I / N

n ' (F-F )h = n
 / Z
 [ H(W-G )h + G (H-H)h]

J
o

 n n
 J

0

 n
 Jθ

 n

= 1 + 1 1 , (say) .

The term II is a sum of centered independent r.v
f
s. We only need to ap-

proximate I by a sum of independent r.v
f
s. To this end we write

W =exp(£n W ) , G =exp(-£n G ) , and use a Taylor expansion to obtain
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(19) I (W-G
 l
 ) - G

 X
 (£n W + in G) I < 2G

 X
 (in W + £n G)

 2
 .

From the details similar to those in Section 7 of Koul, Susarla and Van Ryzin

(use Lemma 7.1 with p. =F G. and the details similar to those in the proof of

Lemma 7.2), one obtains

E(RHS ( 1 9 ) ) £ - k n 1 G 1 F H 4 d G , ( f o r some c o n s t a n t k ) .

•Ό
 n

Therefore,

n
1 / 2
 I h H G"

1
 (in W + in G) + o (1) .

J
o

 n
 P

provided n
 7
 |h (x)|G (x)( F H dG)dx = o(l), which in turn is im-

J
 n

 >o
 n

h (x)|G (x)(
n

plied by (Cl). The next step is to approximate in W. Again, carrying out de-

tails similar to those in Koul, Susarla and Van Ryzin, one obtains

ί
M
 1/2 f

X
 -2 * - ,

(20) I = F h n ' { (2H-H )H dH +£nG(x)} +J
o
 n n J

Q
 n n

where

H = n^N, nH*( )

The first r.v. on the right-hand side of (20) can be expressed as a U-statistic

and, hence, by the projection technique, one can show that, under (Cl),

(21) I = f h (x) F (x) n
 1/2
 I ί[(l-δ.)][Z.<x] H

 l
 (Z ) - [

 i
 H

J
o
 n

 ±
 i i - J

-2 -
dG

+ in G(x)}dx + o (1) .

P
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Combining (21) with (19), the final approximating r.v. is the sum of II and

2
the first r.v. on the right hand side of (21). Its variance is σ^ and (C2)

implies the asymptotic normality (6) by the Lindeberg-Feller CLT.
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