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1. Introduction

This paper discusses the analysis of 'failure
1
 time data, when predictor

variables are subject to measurement error. The author's symposium presentation

concentrated on a partial likelihood approach to relative risk estimation when

covariates are subject to measurement error; material that mostly will appear

in Prentice (1982). To avoid undue repetition the presentation here will empha-

size full likelihood and marginal likelihood approaches to this problem. The

accommodation of covariate measurement errors in the context of case-control

sampling will also be briefly considered.

In failure time studies, as well as in many other areas of application,

covariate values are subject to measurement errors. Particular applications

that motivated this work include a study of the relationship between radiation

exposure level and cancer mortality in atomic bomb survivors and a study of

cardiovascular disease risk factors in a large cohort study. In the former

study, one is interested in cancer mortality dose-response effects corres-

ponding to individual gamma and neutron exposures. These exposure level esti-

mates were, however, imputed from distance (from the presumed hypocenter) and

shielding information obtained by interview. Such estimates may differ sub-
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stantially from the 'true* exposure levels; in fact, the quality of the dosi-

metry data has recently been the subject of much controversy (e.g., Marshall,

1981). In the cardiovascular disease study, data on covariates such as blood

pressure, serum cholesterol level and leukocyte counts were obtained in biennial

clinic visits, taking place over a 20-year period. Each of these measured pre-

dictor variables is subject to considerable variation partially due to limitat-

ions of the measuring process but primarily because a large number of additional

factors influence the measured values. For example, one may be interested in

the relationship between some intrinsic blood pressure level and coronary heart

disease incidence, but the measured blood pressure may be a rather imprecise

approximation thereto, since it depends so heavily on the personfs recent

activities, state of relaxation, and current position in the diurnal cycle, to

name a few factors. In many studies it will be possible to make some reasonable

specifications of the error distributions associated with covariate measurements.

Whether or not there is much basis for such specification, the sensitivity of

results to various error distribution assumptions will be of interest,

2. Induced Models and Parametric Estimation

Consider a failure time random variable T >_0 and, for the moment, a

fixed covariate z= (z , ...,z ). Throughout f will be used generically to denote

probability, or probability density, function, so that f(t|z) denotes the con-

ditional density for T given z. Characteristics, such as relative risk para-

meters, used in the specification of f(t|z) will usually be the primary target

of estimation. Now suppose that, rather than z, one observes only the 'measured1

covariate x = (x ,...,x ). Usually there will be a one-to-one correspondence

between components of x and z, and p =q, but this is not required in the dis-

cussion that follows. In considering error distribution assumptions it is

natural to think of a specification of the distribution of x given z, along with

a marginal distribution for z. As will be seen below, however, it is only

necessary to specify the conditional probability distribution, f(z|x), for z
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given x, rather than their joint distribution, in order to proceed with esti-

mation of f(tIz).

We will require a conditional independence between T and x, given z; that

is,

(1) f(t|z,x) = f(t|z) .

This condition is a statement that the measured covariate has no prognostic

value if the true covariate is known. If (1) does not hold, x is not simply an

'estimator
1
 of z and direct modelling of f(t|z,x) is indicated.

The induced probability function for T given the measured covariate x is

readily derived as the expectation over the distribution of z given x of

f(t|z,x), which under (1) can be written

(2) f(t|x) = E
χ
{f(t|z)} .

If the error distribution f(z|x) is completely specified, this induced model

f(t|x) will involve only the parameters of f(t|z). It is then of interest to

identify failure time and error distribution models that lead to tractable in-

duced models for failure time, given the observable covariate. Such induced

models can then be applied to failure time data in order to carry out inferences,

on parameters of interest.

In order to develop mathematically convenient induced models (2), it is

natural to consider normally distributed failure time and error random variables.

Suppose Y =log T satisfies the normal linear regression model

Y = log T = α + z$ + σV ,

where α, σ > 0 and 3(p
χ
l) are real parameters and V is a standard normal random
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variable. Also, suppose that the true covariate distribution, given the corres-

ponding measurement x, is normal with mean vector (l
χ
ρ) y and variance matrix

£ . The induced model (2) for Y = log T given x is then readily shown to be

normal with mean vector α + y 3 and variance σ + 3^ I 3, where 3" denotes the

x x

vector transpose of 3. This simple result may provide an adequate basis for

exploring the implications of covariate measurement errors on regression testing

and estimation, in a variety of failure time and non-failure time applications.

Specifically, an iterative maximum likelihood procedure could be readily imple-

mented for 3 estimation, that would not be unduly complicated by the presence

of right censorship.

Other distributional assumptions may also yield explicit induced models.

For example, a Weibull regression model with
 !
linear

τ
 hazard ratio (l+zβ)j>0,

can be written

λ(t|z) = λpCλt)
13
"

1
 (1+zβ) ,

where λ denotes the hazard, or instantaneous failure rate function, and λ, σ > 0

and 3(p
χ
l) are parameters. A normal distribution for z given x yields, after

some algebra, an induced hazard function

λ(t x) = λp(λt)
P
~ [l + {y - (λt)

p
 3" T } 3] .

In fact, some bounds on the support for z given x will be required in order

that l+z32_0
 n o t

 be violated. A normal model for z given x, and the above in-

duced model λ(t|x) should, however, provide adequate approximations if 3, y

and £
χ
 are such that l+z3^0 with probability close to one at each x. Note

that the hazard ratio corresponding to any pair of x-values is no longer con-

stant, but rather converges monotonically to unity as t->«>. Computational

methods for fitting this induced model could be derived, though the model is

perhaps too complicated to expect much use.
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The fitting of such models to failure time data will, as usual, require an

independent censorship assumption in order that (2) be identifiable. Such an

assumption can be written

(3) λ{t|x, no censorship in [θ,t)} = λ(t|x) .

In some problems an independent censorship assumption applied to t given z,

rather than t given x, would be more appropriate. In such circumstances cen-

soring will typically be mildly dependent and (2) will not strictly be identi-

fiable. This seems unlikely to be a practical problem, however, unless co-

variate errors are very substantial and censorship depends heavily on z.

In order to use standard likelihood expression one will also require the

independence of failure times given the corresponding measured covariate x.,

i = 1,...,n. Such independence will follow, for example, if z., i = 1,,..,n

can be viewed as i.i.d. from some distribution and both t. given z. and x.

given z. are independent for i = 1,...,n.

It seems appropriate to make some comment on the specification of the pro-

bability function f(zjx). For example, in order to specify the mean μ and

variance matrix £ in the above normal densities, one might suppose that the
x

basic regression vector z can be viewed as normally distributed with mean μ

and variance £ and that the measured covariate x arises via x = z+w, where w is

normal with mean zero and variance matrix C. If z and w are independent the

density for z given x is then normal with mean μ = μ + JY£ 4- C) (x-μ) and

variance matrix £
 =
I~I(I + w I»

 t n e
 latter of which is independent of x. In

the normal regression model described above (for Y = log T ) the induced re-

gression equation in x will then have regression coefficient J Π + Cj β.

Ignoring covariate measurement, errors would then give rise to coefficient

estimates that are systematically too close to zero in simple linear regression

and that are 'deflated
1
 by the matrix £f£ + CJ in the multiple regression

problem. More generally, z and w may be allowed to be correlated. A normal
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distribution for z given x is readily derived from any joint normal distribution

for z and w. In the very special case, sometimes referred to as the Berkson

model, z and w have a joint normal distribution as above except that the co-

variance of z and w is -C. It follows that μ =x and £ = C. It is worth noting

x x

again that specification of the joint distribution of z and x is unnecessary,

since only the distribution of z given x appears in (2). Joint normal distri-

butions, of the type just described, may then be used as a guide toward the
specification of μ and £ in a normal model for z given x, but do not need to

x x

be explicitly assumed. The reader is referred to the review paper, Cochran

(1968), for further comments on error distribution specification and on the

effects of measurement errors in the ordinary regression model.

3. Cox Model Estimation with Covariate Errors

The models described above, particularly the induced log-normal model

for T given x, provide the basis for a parametric approach to accommodating

measurement errors in failure time analyses. The partially parametric re-

gression model of Cox (1972) is an attractive alternative to failure time

analyses. Desirable features include the ability to interpret the regression

parameter in terms of relative risk, substantial model flexibility, and the

availability of many important generalizations, as summarized in Kalbfleisch

and Prentice (1980). In its most general form the method gives a computat-

ionally feasible method of exploring the dependence of the relative risk

function on covariates and follow-up time, without placing any model restrict-

ions, except the presumed parametric form for the relative risk function.

The special case of the Cox model in which the relative risk is independent

of t can be written

(4) λ(t|z) = λ (t) g(z3) ,

o

where λ (•) >0 is unrestricted, g( ) > 0 is a specified function standardized so

o — —
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that g(0) =1 and 3(p
χ
l) is a regression parameter to be estimated. Note that

g(zβ) = λ(t|z)/λ(t|z= 0) is the risk associated with regression vector z,

relative to that at z = 0 . Usually the relative risk function has been defined

by g(u) =exp(u), though other forms such as g(u) = l + u have also sometimes been

used.

Various approaches have been considered for the estimation of 3 in (4) most

notably, the partial likelihood approach of Cox (1972,1975), Kalbfleisch and

Prentice (1973) utilized a marginal likelihood approach that was based on the

distribution of failure time ranks.

In the presence of covariate errors the model induced from (4) via (2) has

the rather complicated corresponding hazard function

(5) λ(t|x) =

ϊ( (t Π f11 1
λ Q (t) lg(z&) exP{-g(z3) I λQ(u)du} f (z | x )dx/ j exP{-g(z3) I λQ (u)du} f (z |x)dz ,

where the integrals (or sums) are over the range of z, given x. In the special

case g(zβ) = 1+zβ, and z given x normal with mean μ and variance matrix £ , (5)

x x
simplifies to

rt

"J
 λ

0
(

u ) d u
 e' Σ

x
>β] >

generalizing the Weibull regression result given above. In spite of the com-

plexity of (5), the induced class of models retains the property of functional

invariance under monotone-increasing differentiable transformations on t. One

can show, as in Kalbfleisch and Prentice (1973), that the distribution of the

failure time ranks does not involve the baseline hazard function λ (•). In

o

fact, the failure time rank vector is marginally sufficient for (3 in the sense

described by Kalbfleisch and Prentice. Assuming the expectation operators and

order statistic integrals in the generalized rank vector probability can be
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interchanged, the marginal likelihood for 3 in (5) can be written

(6) L(3|X) = E
χ
L(β|z) ,

where X has been written for the set of measured covariate vectors over the

sample; that is, X={x ,...,x }, Z has been written for {z ,.,.,z }, the ex-

pectation is over the distribution of Z = {z ,...,z } given X = {x , .,, ,x } and

L(β|z) is the marginal likelihood that would arise if the true covariate vectors

Z, rather than only X, were observed. Specifically,

k r
(7) L(3|Z) = Π Π g(zo3)i

£εR(t.)

where t , ...,t, represent the distinct (uncensored) failure times in the sample,

F(t
i
) is the set of m._>l study subjects that fail at t. and R(t.) is the risk

set just prior to time t.. Note that the denominator of (7) involves an

approximation (Breslow, 1974) to accommodate any tied failure times. The score

statistic from (6) is

(8) 3 1og L (3|x)/33 = L(3|X) λ Eχ{L(β|z) 3 log L(β| Z) /33l ,

a weighted average of the score statistics corresponding to possible values

of Z, given X. Similarly, the observed information matrix can be written

(9) -3 2 logL(3 |x)/33 2 =

LC3IX)"1 E χ[L(3|z) {-32 logL(3|z)/33 2 - 9 log L(3| Z)/33' 3 log L(3| Z)/33]

+ {3 logL(3|x)/33'}{3 logL(3|x)/33} .
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At 3 = 0, L(β|z) is independent of Z and (8) simplifies to

k
(10) g'(0) E ( z 0 ) - m . n . I E_ ( z . )

where n. is the number of subjects in R(t.). It follows that it is only

necessary to specify the expectations of each z-value given the corresponding

x-value in order to carry out a score test for 3=0, a point that was made

somewhat more generally, in the context of partial likelihood, in Prentice

(1982).

In order to use (6) for general inference on the regression parameter 3

one needs to contend with a complicated expectation. The possibility of

developing useful analytic expressions for (6) seems remote, even if mathema-

tically convenient choices for g and f(z|x) are entertained. An approximate

estimation procedure, based on Monte Carlo sampling is suggested by (8) and

(9). In particular, suppose that sets of regression vectors Z ,...,Z are

-L S

sampled from the joint distributions of Z given X. The score statistic (8)

is then estimated by

s / s
v = I L ( 3 | Z . ) 3 l o g L ( 3 | z . ) / 3 3 / I L ( 3 | Z . )

/ s

.)/33/ I
J
 / j=l

while the corresponding observed information matrix is estimated by

s

I L(3|Z.) {-a
2
 io

g
L(3|z.)

j=l
 J J

/
 s

- 3 1 o g L ( 3 | z . ) / 3 3 " 3 l o g L ( 3 | z . ) / 3 3 } / I L ( g | z . ) + v ' v .
J 3 / j = 1 J

Existing computer software could then be readily adapted to carry out a Newton-

Raphson maximization for 3 This idea amounts simply to approximating (6) by
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s
 λ
 I L(β|z )
3=1

 J

As such, the approximation can be made to be as close as desired by making s

large. This is a computation-intensive approach to regression estimation. It

is, however, very flexible in terms of both the relative risk function, g , and

error distribution f(z|x). In fact, it is not even necessary that z-values on

distinct study subjects be independent, given the corresponding measured x-

values. It is hoped to pursue this idea in more detail elsewhere.

A nonparametric maximum likelihood approach to estimation in (4) would lead

in the presence of measurement errors to a likelihood function for β that can

again be written

L(β|x) = E
χ
L(β|z) ,

where L(β|z) is the likelihood function, given the 'true
1
 covariate values Z,

after maximizing out the baseline hazard function. The approximate likelihood

of Breslow (1974) would lead once again to (6), in the presence of covariate

errors.

Prentice (1982) considered a partial likelihood approach to this problem.

A partial likelihood function for (3, given the measured covariate values, X ,

in the sample can be written

(11) Π Π E
Ct x

 g ( z
ϋ

3 )
/ Σ E g(z B) ^

1=1 [£εF(t
i
)

 C
V

X
A ) * / AεR(O

 (t
i' £) * J

where a tied failure time approximation has again been made and the expecta-

tions in the i
t n
 term of the product are conditional on both T>_t. and the

measured covariate values. The partial likelihood approach accommodates time-

dependent covariates as may be defined to test or relax the proportional
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hazards assumption in (4) or may be utilized to relate failure rate to some

stochastic covariate process. The result (10) could equally well be derived

from (11). Unfortunately, however, (11) does not provide an adequate answer to

more general testing and estimation problems in many applications, since the

expectations in (11) typically involve the baseline incidence function λ (•),

o

as is evident from (5) upon noting that

λ(t|x) = λ (t) E g(zβ)

The application that motivated Prentice (1982) was such that the dependence of

E, . g(zβ) on the condition T^t, and hence the dependence of the expectation

on λ (•), could be ignored. If such dependence cannot be ignored, it would be

o

useful to consider iterative estimation procedures in which a trial value of 3

is used to produce an empirical estimate of the cumulative hazard function

Λ (t) = λ (u)du that appears in (5), which in turn, is used to obtain an

0 J o 0

updated (S-value on the basis of (11). Even in the simple special case g(u) =

1-Ki with normally distributed covariate errors, a nonparametric maximum likeli-

hood approach to estimating Λ (t), at a specified β, is complicated. On the

o

other hand, unless covariate errors are quite substantial, it would presumably

be accurate enough to obtain an empirical estimate of Λ (t), ignoring covariate

o

measurement errors, and subsequently use this esimate in the partial likelihood

function (11). Such a usage would be quite routine, for example, in the circum-

stances mentioned above in which z, given x, is normally distributed and the

relative risk function g is of a linear form. Numerical evaluation of this

proposal would be worthwhile.

4. Covariate Errors in Case-Control Studies

Suppose now that a Cox-type model (4) holds for the incidence (or

mortality) rate for a disease. A case-control study involves selecting both

diseased (cases) and disease-free (control) subjects and sampling their
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corresponding covariate data z. Often z will include summarizations of certain

exposure histories along with personal characteristics. In the presence of

covariate measurement errors one will sample the measured covariate x, rather

than z.

To be specific, consider the type of case-control study described in

Prentice and Breslow (1978), in which for each case a set of time (age) matched

controls are selected. The hazard function induced from (4) can, in general,

be written

(12) λ(t|x) = λ (t) E . g(zβ)
o vL,χ;

that is, the induced relative risk of time t is the expectation of g(z|3), given

the measured covariate x and given T>_t. By the same argument used in Prentice

and Breslow, a conditional likelihood for this relative risk function can be

developed by conditioning on the set of exposure histories corresponding to each

case and its matched controls. The conditional likelihood function can be

written

k

(13) L(β) = Π E
( t
 ^

 }
 g(

Z l
β) / I E

( t
 ^

 }
 g(z

£
3) ,

i=l i' i / ZεR
±
 i' I

where t ,...,t denote the incidence times for the cases and R. denotes the i
t n

-L k. i

case and its matched controls. As with the partial likelihood described pre-

viously, however, the induced relative risk function will depend to some extent

on the baseline incidence function λ (•) due to the inclusion of {T>t.} in the

o — i

conditioning event. If, however, the study disease is rare the distribution of

z-values that correspond to a measured covariate x will be very similar among

subjects without failure at some time t as was the case at t = 0. In this

circumstance, the relative risk function will be well approximated by
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(14) E
χ
 g(zβ)

and straightforward asymptotic likelihood procedures can be applied to (13)

for 3 estimation. In the special case g(u) = 1-Ki one then fits a relative risk

model

(15) 1 + E
χ
(z|x)

to the case-control data using (13). As a practical approach to accommodating

covariate measurement errors in the estimation of exposure-response relation-

ships Armstrong and Oakes (1982) have suggested replacing z-values by corres-

ponding E (z|x) values, and carrying out standard analyses. With a linear

relative risk function, their proposal is supported by the development given

here provided the condition {T^t} can be ignored in the induced relative risk

function. Estimation with a multiplicative relative risk function g(u) =exp(u)

can be readily carried out with error probability functions f(z|x) that have

simple moment generating functions. For example, the normal probability

function for z given x mentioned above, gives for (14)

expίμ β + k$' £ 0}
A X

which may be inserted into (13) for estimation of 3.

Similar results could be developed for more general case-control study

designs and, for example, logistic disease incidence models.

5. Concluding Remarks

Failure to acknowledge covariate measurement errors in some regression

problems may lead to results that lack a useful interpretation or that are

misleading. Greater effort seems warranted in respect to methods to estimate

covariate error distribution properties and to utilize information on covariate
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error distributions toward the estimation of key regression parameters. This

paper described several approaches to the latter problem in a failure time

regression context. Clearly the surface has merely been scratched on this

important statistical topic.
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