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1. Introduction

It is good statistical practice to perform more than one analysis on a

given data set. Normal theory methods usually provide one alternative. By

employing transformations their domain of application can be greatly extended.

Under normal theory, we have the advantage of simple interpretations of linear

regression and interactions. Coupled with the relative ease of computation and

availability of diagnostic techniques, for complete samples, normal theory has

much to recommend it. Except for computational ease, the other advantages are

retained in the survival analysis setting.

By transforming survival data, and then applying parametric estimation

methods, we obtain an estimated survival curve which may be compared to the

Kaplan-Meier (1958) estimate. In a regression setting comparisons could be

made with the analysis based on the Cox (1972) proportional hazards model, or

the methods of Miller (1976), Buckley and James (1979) and Koul, Susarla and

Van Ryzin (1981).

2. Background and Notation

We briefly review the literature that pertains to our extensions. Box

and Cox (1964) suggest the family of transformations
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We remark that X cannot be exactly normal, except possibly for λ =0 , since

its support has a finite lower bound.

Hernandez and Johnson (1980) show that, asymptotically, selecting λ to

maximize the expression (2) is equivalent to selecting λ to minimize the

Kullback-Liebler information number between g, (z), the true pdf of X , and a

λ

normal distribution φ (z). That is, the information number

g
λ

( z )

g
λ
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dz

is minimized by this choice of λ,μ,σ. Since gτ,(z) = g((λz+l) ) (λz+1)

where g( ) is the pdf of X, the information number can also be expressed as

(4) g(χ)
g(χ)

λ-1
dx
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Several examples appear in Hernandez and Johnson (1980)»

In Section 3, we treat transformation of survival data. Because the trans-

formation technique has proven especially effective in a regression setting, in

Section 6 we extend its domain of application to survival analysis with co~

variates.

Carroll (1980) and Bickel and Doksum (1981) raise some question about the

sampling properties of estimators determined by the Box-Cox procedure. Recent

evidence, however, indicates that predictions and tests for significance of

regression parameters remain valid (see Carroll and Ruppert (1981)).

3. Survival Analysis Setting

In the survival analysis setting, the times of entry into the study are

haphazard or random. We assume the arrival process, for items or persons, is

independent of life length. Consequently, we model the life lengths as in-

dependent identically distributed random variables with c.d.f. G( ). The time

on test for the i person will be denoted by L. = (current time) - (entry time).

We either observe x. = life length, or censor the test at L.. We tentatively

assume that some power transformation is normal. The likelihood is then

μ )
2

L(λ,y,σ) = Π — V e 2σ
2

iεF (2τr)
 2
σ

where F = {i:x.<L.} is the set of items that fail during the trial.

The log-likelihood can be maximized numerically over λ,μ and σ. Because

of the censoring, there is not even a partial analytic solution as in the

complete sample case.
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EXAMPLE: [Stanford Heart Transplant Data]

We consider the first n = 184 patients reported in Miller and Halpern (1981).

Numerical minimization of -in L(λ,μ,σ) provides the estimates (we replaced the

Olifelength by .5)

λ = .0042 , μ = 6.3706 , σ = 2.4956

and

-in L(λ,μ,σ) = 859.0402 .

The log-normal has λ = 0, μ(0) =6.2833, σ(0) =2.4452 and -in L(0,μ(0),σ(0)) =

859.044. Because of the near equivalence of the maximized likelihoods, it is

just as reasonable to take in X. as approximately normal. In fact, Miller and

Halpern (1981) use in X. without explanation. Figure 1 displays the graph of

-in L(λ,μ(λ) , σ(λ)) versus λ. If the usual asymptotic theory

-2 in [L(λ,μ(λ),σ(λ)) /L(λ,μ,σ)] approximately χ

applies, values of λ in the interval -.09 to .10 should be considered reasonable

choices.

It is also possible to estimate the survival function. Proceeding as if

X has a normal distribution with mean μ and variance σ
2
, we consider the

survival estimate

(6) S(x) = P[X > x] = 1 -
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FIGURE 1: The negative of the partially maximized log-likelihood.
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Figure 2 displays the estimated survival function (6), along with the Kaplan^

Meier estimate, for the heart transplant data.
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FIGURE 2: Estimated survival functions S from (6) and the Kaplan-

Meier estimate.
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4. Large Sample Properties

For ease of exposition, we establish our results for trials conducted

over a fixed time period [0,T] and where items enter only at one of the K fixed

times

0 = t
± T .

Let n. = number of items entering at time t. and n = £ n.. Setting L. = T - t .
i i

 i = 1
 i x i

and T). =£im(n./n), we introduce

K

H (λ,μ,σ) = I η. [1-GOU)] In
1

L i

s σ

- G(L ±

Yl/

(7)

which is the negative of the Kullback-Leibler information number between X

and some normal distribution obtained by weighting the K censored population

numbers by the proportions η..

THEOREM 1 :

Let n./n -> η.(O<η. < 1) and suppose the following conditions are

satisfied:

3
(i) the parameter space Ω is the compact subset of R defined by

= {θ= (λ,μ,σ)' M, c < σ < c ? , a < λ < b f o r some

0<M,c^,C2,b < °° and - °° < a<0},

(ii) the moments E (X
 a
) and E (X

2 b
) are finite,

g g
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(iii) H (λ,μ,σ) has a unique global maximum at (
n̂
>y

n
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 =
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s a n
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a
 £κi(X)]

2
 and E [X

b
 £tt(X)]

2
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(vi) VH (λ
Λ
,μ

Λ
,σ ) = 0 ,

η 0 0 0 ~

(vii) V = {V
2
H (λ

n
,μ

Λ
,

,-1
exists,

then, (2) VτΓ (λ-λ , μ-μ
π
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 f
 —> N (O,VWV

T
) as n -> «> , with the elements

of W = (w ), u,v = 1,2,3, given by

(λ)

+ E
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PROOF: The log-likelihood, divided by the sample size n = ][ n., is the

i=l
 1

of the K terms

K n.

a / +(λ-l)£n(χ
jL
.)

1-Φ
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n
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where m_. = Y I
/ τ
 -,(x_.J. The terml*

(i) is dominated by a g-integrable function uniformly in θ = (λjμjσ)' εΩ and

(ii) is equicontinuous in θ for fixed x, on the set S =[θ,L. - — ]U [L.+ -,m].

~ m i m i m

The uniform strong law (see Rubin (1956)) applies.

°i jίΛ
 σ
 -

for i = l,2,...,K uniformly in (λ,μ,σ). The strong law of large numbers applied

n
±

 n
i

to I £n(X..)/n. and £ I -,(X..)/n., for i = l,2,..,,K, establishes the
j=l ^

 x
 j=i VL

±
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almost sure uniform convergence
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Moreover, H^(λ,μ,σ) is continuous and, by assumption, has a unique maximum at

(λ
o
,μ

o
,σ

Q
). Consequently, (λ,μ,σ) •> (

λ
Q>ViQ»

σ
o)

 a
l

m o s t
 surely.

The asymptotic normality follows upon expanding the first partial deri-

_ 1 ^ /\ /\ /\

vatives of n
 2
i in a Taylor series about (^Q'^Q^Q) Since (λ,μ,σ) +CK*, ̂ n'

/\ /\ Λ.

which is interior to Ω, V£ (λ,μ,σ) =0 for all sufficiently large n. Similar

to the treatment of the single sample problem in Guerrero (1979) and Guerrero

and Johnson (1979), we can dominate the individual terms in n V
2
&

n
(λ,μ,σ) to

obtain uniform convergence to its expected value V
2
H . In particular,

n V £n(λ
Λ
,μ

A
,σ

A
) converges a.s. to V

2
H (λ_,μ_,σ.) where (λ.,μ.,σ.) is any

ϊ] U 0 υ
 w

 * *

sequence of intermediate values between (λ,μ,σ) and (λ ,μ ,σ ), Since
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n
~"

2 V £ ( λ μ σ )
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the normal convergence for (λ,μ,σ)* follows.

5 Checking the Adequacy of the Transformation

The power transformation was selected by maximizing the likelihood (5)

obtained under the tentative assumption that some transformation (1) is normal*

Although Theorem 1 gives one set of conditions that insure that, asymptotically,

the power transformation closest to a normal is selected, this choice may not

be good enough. Therefore, it is necessary to check that the transformation

χ
(λ)

has achieved near-normality.

In order to obtain diagnostic plots, a censored observation x. =L. is

assigned the value

i
( λ )

(8)

where h( ) = φ( ) /[l-Φ( )] is the hazard rate for the standard normal (see

Schmee and Hahn (1979)). That is, the expectation is computed as if X^ ' is

normal with mean μ and variance σ . Using these estimates, we have

, if failure

/L
( λ )

-G
x. = μ + σ hi — — • — ) , if censored

V 5 /

These can be ordered and displayed in a normal Q-Q plot.
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Figure 3 shows a plot of the transformed heart transplant survival times

versus the approximate normal scores Φ (i/(n+l)). The predicted values,

plotted as open squares, do not seem to conform to the straight line pattern,

At this state of development, it is not clear that (8) provides the proper

estimates for diagnostic plots. Figure 4 shows the transformed failure times

by themselves, plotted against the same scores as in Figure 3. It is these

uncensored observations on which the adequacy of the normal approximation should

be judged.

In the complete sample situation, goodness-of-fit can be tested using the

correlation coefficient calculated from the normal Q-Q plot. Verrill (1981)

has recently determined the large sample distribution of the correlation coef-

ficient calculated from data that are right^censored. His results apply to

either fixed order statistic censoring or fixed time censoring but not to the

staggered entry situation graphed in Figure 3.

6. Survival Analysis Setting with Covariates

When r predictors z
f
 = (z_,...,z ) are available, the tentative assump-

tion becomes

^ ^ is distributed N(α + 3
f
z,σ

2
)

for some choice of λ. Under this assumption, the likelihood becomes

(9)
1 - Φ



129

STflNFORD HEflRT TRflNSPLflNT DflTfl

α:

10.

9. -

L
E

N
G

T
.I

FE

1

CD
LJJ

FO
R

r

8

7

6

5

4

3

I i i i i I i i i ι l i i i ι l i i i I I I i n I n I i I n i i I i i n I i i i i h i i i l l n

2. -

0 - 2 . 0 - 1 . 0 0 l O 2.0 3.0

NORIiflL SCORES

FIGURE 3: Normal scores plot of heart transplant data.
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FIGURE 4: Portion of normal scores plot from death times.
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Our parametric approach is to maximize (9). Miller (1980) contains a discussion

of several alternative methods for formulating the regression model,

EXAMPLE:

We return to the Stanford heart-transplant data and use z = age as a pre-

dictor variable. A computer calculation provides the estimates

λ = .0090 , α = 7.9339 , £ = -.0349 , σ = 2.5490

and

-in L(λ,α,3,σ) = 857.3343

The maximized likelihood for λ =0 , the log-transformation, is nearly the

same. Note also that -2 £tt[L(λ,μ,σ) / L(λ,α,£,σ)] is less than χ ( 05),

suggesting that age is not a good predictor.

Regression diagnostics need to be developed to check both the normal

assumption for X and the regression equation. To obtain plots, we replace

each censored value by its conditional expected value

(10) x
( λ )

= α + β'z + σhl

x
(λ)
-S-β'z

The residuals, divided by σ, are then

(11) ε = <

/V -α-3
f
z\

, if failure

, if censored
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A normal Q-Q plot of ε for the heart transplant data looks almost identical

to Figure 3. A plot of ε versus x (or x ) is shown as Figure 5 where

squares represent the residuals from censored observations. A plot of ε versus

patient number is given as Figure 6. Note how the predicted residuals from

the later cases in the study form a bounding curve.



133

STflNFORD HEflRT TRflNSPLRNT DRTfl

CO
_ I
cc

CO
Lϋ

Q
Lϋ
M

CD

CC

CC
J—
CO

1 .5

1.0

.5

.0

- . 5

-1 .0

-1 .5

- 2 . 0

- 2 . 5

- 4-

m

m

\B a •

a
B

+. ++ ++

m m

Θ

4-

4- + +

4- 4-

4-

4-

•
3
£ . i • I , i • I • i , I • i • I • i • I • i • I , i • I • i • I , i • I . i •

6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7-2 7.4 7.6

FITTED VflLUES

FIGURE 5: Standardized residuals versus fitted yalues when age is

a covariate. E3Censored value*



134

STflNFORD HEflRT TRRNSPLflNT DflTfl

CO
__l
cr
ZD
CD

UJ

cc
Q

Lϋ
M

α:
CD
z
α:
I —
CO

.0

— O

- 1 . 0

- 1 . 5

-2.0

-2.5

-3

an ΐoft
CID[τίί

++ ++
+ + + +
+ + +

+ + + +

I i I i I i i i I i i . I . i . I , i i I i i , I , i , I , i .

2 0 . 4 0 . 6 0 . 8 0 . 1 0 0 . 1 2 0 - 1 4 0 . 1 6 0 . 1 8 0

PflTIENT NUMBER

FIGURE 6: Standardized residuals versus patient number.

E3 Censored value.



135

ACKNOWLEDGEMENT

This research was sponsored by the Office of Naval Research under Grant No.

N00014-78-C-0722.

REFERENCES

Bickel, P.J. and Doksum, K. (1981). An analysis of transformations revisited.

Journal of the American Statistical Association, 76, 296-311.

Box, G.E.P. and Cox, D.R. (1964). An analysis of transformations. Journal of

the Royal Statistical Society B, 26, 211-243.

Buckley, J. and James, I. (1979). Linear regression with censored data.

Biometrika 66, 429-436.

Carroll, R.J. (1980). A robust method for testing transformations to achieve

approximate normality. Journal of the Royal Statistical Society B, 42,

71-78.

Carroll, R.J. and Ruppert, D. (1981). On prediction and the power transfor-

mation family. Biometrika 68, 609-615.

Cox, D.R. (1972). Regression models and life tables (with discussion). Journal

of the Royal Statistical Society B, 34, 187-202.

Guerrero, V. (1979). Extensions of the Box-Cox transformation to grouped-data

situations. Ph.D. Thesis, Department of Statistics, University of

Wisconsin.

Guerrero, V. and Johnson, R.A. (1979). Transformation of grouped or censored

data to near normality. Technical Report 542, Department of Statistics,

University of Wisconsin-Madison.

Hernandez, F. and Johnson, R.A. (1980). The large-sample behavior of trans-

formations to normality. Journal of the American Statistical Association,

75, 855-861.

Koul, H., Susarla, V. and Van Ryzin, J. (1981). Regression analysis with

randomly right censored data. Annals of Statistics 9, 1276-1288.

Miller, R.G. (1981). Survival analysis. John Wiley, New York.



136

Miller, R.G. (1976). Least squares regression with censored data. Biometrika

63, 449-464.

Miller, R.G. and Halpern, J. (1981). Regression with censored data. Technical

Report No. 66, Division of Biostatistics, Stanford University.

Rubin, H. (1956). Uniform convergence of random functions with applications

to statistics. Annals of Mathematical Statistics 27, 200-203.

Schmee, J. and Hahn, G.J. (1979). A simple method for regression analysis

with censored data. Technometrics 21, 417-432.




