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0. SUMMARY

It was demonstrated by Aalen (1978) how the theory of multivariate

counting processes gives a general framework in which both censored survival

data and inhomogeneous Markov processes may be analyzed, and how by means of

martingale central limit theory the asymptotic distribution for all the classi-

cal linear nonparametric two-sample tests and their generalizations to censored

data may be derived. In this paper these results will be surveyed and further

developed to both the case of the comparison of k(>2) distributions (see

Andersen, Borgan, Gill & Keiding, 1981) and to the case of regression models

for survival data (Cox, 1972; Andersen & Gill, 1981).

1. Introduction

In survival analysis one is interested in the distribution of the time T

to some event, usually denoted death, and very often the object of a study is to

relate this distribution to individual characteristics which in the simplest

form are group indicators. Frequently statistical models for survival data are

specified via the intensity or hazard function ot(t) for T. The hazard function

denotes the infinitesimal probability of dying at time t given survival up to

time t, and hence α(t) may be interpreted as the rate at which the event in

question occurs at time t.



A survival model is the simplest example of a Markov process model in that

there are only two states, "alive" and "dead", with an intensity equal to α(t)

of a transition from the former state to the latter. In more general Markov

processes the basic parameters are the forces of transition between the states.

From these facts it seems obvious that the natural framework in which to

analyze such phenomena is one where various types of events may happen during

time and where the rate at which the events occur can be specified. One such

framework can be introduced by the notation of a multivariate counting process.

A univariate point process is a countable random set of points on the real

line, and a multivariate point process is a collection of, say k univariate

processes. If N.(t) is defined as the number of points in [0,1] from the i
t h

process, then N. can be thought of as counting the events of type i before t,

and N. is called the counting process corresponding to the iΛ" point process.

Let (F ) _ be an increasing family of σ-algebras. One possibility would be

to let F be the σ-algebra generated by the multivariate counting process

((N-(s) ,. . . ,N, (s)), sε[0,t]), but a larger family can also be considered,

-L K.

Note that the fact that (F ) is increasing reflects that time moves in a

certain direction. We shall assume that the limit

(1) Λ (t+) = lim i E(N.(t+h) - N.(t)|F ) , t >0, i=l, . . . ,k ,

hΨO

exists and we shall call the random process Λ.(t) the intensity process of
i

N this concept generalizes the notion of a hazard rate.

The idea of using counting process theory in the analysis of survival data

and other Markov processes is due to Aalen (1975, 1978). There the so-called

multiplicative intensity model was introduced, this statistical method being

specified by assuming that the intensity process has the form

(2) Λ(t) = α(t) Y(t), t > 0 .



Here α(t) is an unknown function and Y(t) is an observable stochastic process

adapted to F _. In a survival study α(t) will be the hazard function and Y(t)

the number of individuals at risk just before time t, while in a more general

Markov chain α(t) is a force of transition and Y(t) is the number at risk just

before time t for the transition in question.

The intensity property (1) of Λ.(t) is (up to regularity conditions) equi-

valent to the fact that the processes

(3) M
±
(t) = N

±
(t) - Λ

i
(u)du,

are martingales, i.e., E(M.(t)|F )=M.(u), t>u. This observation is the basis

for making a unified approach to the proofs of asymptotic properties of many

estimators and test statistics known from the survival data literature since

these statistics can often be expressed as stochastic integrals with respect

to martingales, and since furthermore central limit theorems and other pro-

perties of martingales are very well studied.

The typical feature of survival data is that one is not always able to ob-

serve all the lifetimes; rather, for some individuals it is only known that the

true lifetime T. exceeds some quantity t.. We denote the corresponding obser-

vation a (right) censored observation. Another advantage of using the counting

process description of survival data is that it accommodates fairly general

censoring patterns (see e.g., Gill, 1980, Section 3.1, or Andersen, Borgan,

Gill & Keiding, 1981, Sections 2D and 3D).

The rest of this paper contains examples from survival analysis of the use

of the theory of counting processes, martingales and stochastic integrals. For

a more detailed survey of the probabilistic background the reader is referred

to Aalen (1978), Gill (1980) and-Andersen, Borgan, Gill & Keiding (1981) and

the references therein.



2. The One-Sample Situation

The simplest situation with censored data is the one-sample set-up,

where out of n independent identically distributed lifetimes T., some are obser-

ved, but for the rest it is only known that they are larger than some times t..

Let X. =min(T.,t.) and 6. = I(T.£t.). From these data we want to estimate the

distribution F of the T.'s. The product-limit estimator (Kaplan & Meier, 1958)

of the survivorship functions S = 1-F is given by

/ δ \

S(t) = Π (1 - * ),t>0 ,
i:X.<t \

 Y ( X
i

}
 / ~

where Y(t) = #{i:X _> t}. Let N(t) = #{i:X <_t, δ =l}. Then N is a counting

process with intensity process α(t) Y(t) (cf. ( 2 ) ), where α(t) =- -r- log S(t)

is the hazard function (see Aalen (1978, Example 1)). It follows that

S(t) = Π (1 w ^ v
 a n d f r

°
m t h i s f a C t a n d f r

°
m
 ^

 i ϋ W a S n o t e d h
y Aalen

and Johansen (1978) (see also Gill, 1980, Lemma 3.2.1) that S(t)/S(t) is a

martingale, where S(t) converges to S(t) at an exponential rate; hence the

asymptotic properties when n •* °° of S also proved by Breslow and Crowley (1974)

can be derived very simply (see Gill, 1980, 1981).

The Nelson estimator (Nelson, 1969, 1972) for the cumulative hazard function

ft
3(t) = α(u)du is given by

Jo

, t » 0 ,

(Aalen, 1978, Section 6.1), and using ( 3 ) we see that 3(t) - 3(t) is a martin-

gale (aside from a term that converges to zero at an exponential rate), being

a stochastic integral of the process Y with respect to a martingale; hence

the asymptotic properties (see also Breslow & Crowley, 1974) can be found

directly. Ramlau-Hansen (1981) used counting process and martingale techniques

to study kernel function estimation

/v Γ°°
α(t) = (1/b) K((t-s)/b) djS(s) ,

Jo



of the hazard function α(t) itself rather than the integrated hazard 3(t). Here

the kernel function K is non-negative with integral 1 and the window b is a

positive parameter. Thus simple proofs of consistency and asymptotic normality

of α(t) were obtained.

We shall conclude this section by noting that the tests studied by Breslow

(1975), Hyde (1977), Hollander and Proschan (1979) and Harrington and Fleming

(1981) for comparing the distribution of the T.
?
s with a known distribution F

i o

(with hazard function α , say) can be shown to have essentially the form

o

ft

(6) Z(t) = L(u) (d3(u) - α (u)du) , t > 0 ,

for various choices of the process L(u) (see Andersen, Borgan, Gill & Keiding,

1981, Section 4). It follows that under H :F=F , Z is a martingale, and from

o o

this fact the asymptotic distribution of the test statistics can be derived.

3. The k-Sample (k>_2) Situation

In this situation the problem is one of comparing the survival of k

distinct groups. In each group i we have the Nelson estimator £.(t) given by

(5) for the cumulative hazard function β.(t) = α.(u)du. Under the null
1
 ft

hypothesis H : α = ...=α (=α,say) we can estimate β(t) = α(u)du by
o i fc J

o

(7) g(t) - Γ # i
}
 , t > 0 ,

j
o Y(u)

where N = N + +N , Y = Y + +Y , N.(t) is the stochastic process counting the

number of failures in group i in [0,l], and Y.(t) is the number at risk in

group i at time t-. A general test statistic for H based on the processes

o

(8) Z
4
(t) = I L(u) Y

±
(u) (dβ

i
(u) - dβ(u)), t ^ O , i=l,.

t
.,k ,

comparing the individual estimates β.(t) with the common value 3(t) was intro-

duced by Andersen, Borgan, Gill & Keiding (1981, Section 3A). These authors
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proved that special choices of the stochastic process L(t) correspond to various

previously suggested test statistics from the literature. Thus, L(t) = 1 yields

the logrank test (Peto & Peto; 1972), L(t)=Y(t) corresponds to the generalized

Kruskal-Wallis test of Breslow (1970); L(t)=(Y(t))
P
 for p in [0,1] corresponds

to the family of statistics suggested by Tarone & Ware (1977); and L(t) =

[S(t-)]
P
 (cf. ( 4) ) gives the class of tests considered by Harrington &

Fleming (1981) generalizing the Kruskal-Wallis type test of Prentice (1978),

which is obtained for p = l . The counting process formulation reveals that

under H we may write

o

ft Y.(u)

(9) Z
±
(t) = L(u) (dM

±
(u) -

 =

i
 dM(u)) , t>_0 , i=l k ,

o

where M.(t) = N . ( t ) - α(u) Y.(u)du, and M = M +• +M hence Z. i s a m a r t i n -
l l J o l I k l

gale. This gives a general way of finding the asymptotic distribution of the

test statistics. (See Crowley & Thomas (1975) for a derivation of the asymp-

totic distribution of the logrank test using a different approach).

In the case k=2, we can equivalently test for H using the process

o

ϋ(10) Z(t) = I K(u) (d3
2
(u) - dβ

1
(u)),

see Aalen (1978, Section 7). As special cases of (10) we get the logrank test

(K = Y Y /(Y +Y )), the Wilcoxon test of Gehan (1965) ( K - Y ^ ) , and the test

of Efron (1967) (K= S ^ ). These tests were studied carefully by Gill (1980),

who verified the conditions for normality for special censoring schemes and

gave a discussion of efficiency properties of the tests.

The problem of estimating hazard ratios using counting process techniques

in the two-sample model was discussed by Andersen (1981) following up the

results of Crowley (1975). See also the paper by Crowley, Liu & Voelkel (this

volume).

The use of the tests (8) and (10) in more general Markov processes was

discussed by Aalen (1978), Aalen, Borgan, Keiding & Thormann (1980) and



Andersen & Rasmussen (1982). Examples of the applicability in analyses of

Markov processes is found in Borgan (1980).

4. The Cox Regression Model

The semiparametric regression model of Cox (1972) specifies the hazard

function of an individual i with (possibly time-dependent) covariates z.(t) to

have the form

(11) α.(t) = λ (t) e
 x

 , t > 0
i o —•

Here 3 is a vector of unknown regression coefficients and λ is an unknown

o o

and unspecified underlying hazard function. The problem of estimating 3 and

o

λ was discussed by Cox (1972,1975), Breslow (1972,1974), Kalbfleisch & Prentice

o

(1973) and Tsiatis (1981a), and reviewed by Kalbfleisch & Prentice (1980).

The counting process formulation of ( 1 1 ) (cf. Andersen & Gill, 1981)

specifies the intensity process Λ. for the counting process N. corresponding to

the i
t h
 individual to have the form

β'z.(t)

(12) A
±
(t) = λ (t) e ° Y

i
(t) , t >_0 ,

where Y.(t) =1 if i is under observation at time t- and 0 otherwise. It was

proven by Johansen (1981) that in an extended model, replacing the absolutely

ft
continuous measure Λ (t) = λ (u)du by an arbitrary measure Λ on [0,°°) and

o J
o
 o

allowing jumps with a Poisson-distributed size, the joint likelihood L(3,Λ) for

3 and Λ (t) based on independent processes N-,.,.,N is maximized for fixed 3
oo In

by

(13)
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The estimate (13) was also considered by Tsiatis (1981a), and by interpolating

( 13) between failure times we get the estimate of Breslow (1972, 1974). In-

serting (13) in L(3,Λ) yields a partially maximized likelihood L (3) =

max L(3,Λ) proportional to the well known Cox's likelihood (cf. Cox 1972, 1975),

Λ
Hence the Cox likelihood is an also reasonable basis for the estimation of 3

o

in the counting process model ( 12 ) . It was noted by Andersen & Gill (1981)

that evaluated at the true value 3 the score statistic U(3) = To 1°8 L (3)

o dp c

has the form

n β'z.(u)

n
 Γ Γ

 Σ V
(14) U(3

o
) - I z.(u) dM.(u) - ^

i-l o ° £ YY.(u) e

ft

where M. is the martingale N.(t) - Λ.(u)du and M = M-+ ' +M . Hence, the
l i l l I n

o
process U(3 ,t), obtained by replacing °° by t in ( 14 ) , is a martingale, and

o

this fact gives a simple way of proving asymptotic normality of the score

statistic (see also Tsiatis, 1981b and Sen, 1981). In the usual way this

result extends to a proof of asymptotic normality of the solution 3 to the

likelihood equation U(3) =0. (See Andersen & Gill, 1981, for details). Naas

(1982) obtained the same results under stronger conditions using discrete time

martingale results.

/\

The weak convergence of Λ (•) - Λ (•) to a Gaussian process on a compact

o o

interval [0,τ] (Tsiatis, 1981a) can be obtained by first rewriting this differ-

ence as

Λ (t) -Λ (t) = I ( „ - — \ dN(u)

Y.(u) e
r z

j
( u )

 I Y.(u

(15)

- Λ (t)
o



The second term in ( 15 ) is (asymptotically equivalent to) a martingale, and by

a Taylor expansion of the first term around 3 this fact can be combined with

o

the asymptotic normality of β to prove the weak convergence of Λ (•) - Λ (•)•

o o

An example of using the model ( 12 ) in a Markov process situation is found

in Andersen & Rasmussen (1982) (see also Andersen & Gill, 1981).

Lustbader (1980) and Oakes (1981) showed how several well-known two-sample

test statistics could be obtained as score tests from (11) by appropriate

choices of time-dependent covariates. In fact, every k-sample test statistic

of the form ( 8 ) can be obtained from ( 12 ) as a score test by letting

z..(t) =L(t) if individual i belongs to group j at time t and 0 otherwise.
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