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Covariance structure analysis is a well-known method for testing theories

on nonexperimental data. Under the null hypothesis, the population covariance

matrix Σ is hypothesized to be a function of a vector of more basic parameters

0, i.e., Σ = Σ(0). An illustration is Σ = ΛΦΛ' + Φ, the confirmatory factor

analysis model. The null hypothesis is typically evaluated with test statistics

that are presumed to have X distributions in large samples. Previous work

by Satorra and Bentler (1986, 1988a, 1988b) has shown that the general null

distribution of these statistics is not \ (df), but rather a weighted sum of 1-

df X statistics. In this paper, this mixture distribution is suggested to be

approximated using a method proposed by Gabler and Wolff (1987). A sampling

experiment evaluates the performance of this approximation. When applied to

correcting the estimated probability of the maximum likelihood test statistic, it is

found to work well under conditions of independence of latent variates underlying

the model, except at the smallest sample sizes, but to perform poorly under

conditions of dependence. When applied to correcting the Satorra-Bentler scaled

test statistic, it is found to work well under independence, but to overcorrect

under dependence. A theoretical basis for these divergent results remains to be

found.

1. Introduction. Hu, Bentler, and Kano (1992) recently studied the
performance of six goodness-of-fit test statistics in covariance structure analy-
sis using Monte Carlo sampling under the null hypothesis. For an introduction
to covariance structure analysis, see, e.g., Bollen (1989). Under an assumed
distribution of variables and a hypothesized model Σ(0) for the population
covariance matrix Σ, these statistics have an asymptotic central χ2
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distribution that describes the mean, variance, and tail performance of the
statistics. Hu et al. investigated three ways of violating theoretical conditions
relevant to the choice of χ2 as the reference distribution: they violated distribu-
tional assumptions, assumed independence conditions, and asymptotic sample
size requirements. The effects of these violations on normal theory maximum
likelihood (ML) and generalized least squares (GLS), elliptical theory (ERLS),
heterogeneous kurtosis (HK), asymptotic distribution-free (ADF), and scaling-
corrected (SCALED) test statistics (TML,7GLS 97ERLS,THK,ΪADF,7SCALED)

were studied. They found that: the normal theory tests worked well under
some conditions but completely broke down under other conditions; the ellipti-
cal test performed variably; the heterogeneous kurtosis test performed better;
the asymptotic distribution free test performed very badly at all but the largest
sample sizes; and the scaled test statistic performed best overall. In related
work, Chou, Bentler, and Satorra (1991) and Muthen and Kaplan (1992) also
found that standard test statistics in covariance structure analysis could per-
form badly under conditions of violation of assumptions. Since the statistical
theory is asymptotic, an especially important practical problem continues to
be how to improve the performance in small samples of the existing statistics.

The purpose of this study is to propose a method for more accurately
approximating the distribution of the TML and TSCALED test statistics and
to evaluate the performance of this approximation. Satorra and Bentler (1986,
1988a, 1988b) had shown that test statistics used in covariance structure analy-
sis are not in general χ2 distributed, though under precise modeling conditions
this reference distribution would be appropriate. These modeling conditions
reduce a mixture distribution to that of the standard χ2 variate. Satorra
and Bentler provided no procedures for actually implementing their theory in
practice. The contribution of this paper is to propose an implementation of
the Satorra-Bentler theory using an approximation developed by Gabler and
Wolff (1987) for a similar problem. This implementation is evaluated with a
small sampling study based on the Monte Carlo conditions previously studied
by Hu et al.

2. Test Statistics. In this section, the notation is introduced,
some currently available test statistics in covariance structure analysis are
reviewed, and the technical problem is defined. This review must necessarily
be short; summaries of various aspects of the theory are provided, for example,
by Bentler and Dijkstra (1985), Browne (1984), Satorra (1989), and Wakaki,
Eguchi, and Fujikoshi (1990). The review is provided to provide a context for
the current work, as well as to provide the definitions needed to compare the
proposed method with previously existing methods.

Following Hu et al. (1992, Appendix), let S represent the usual unbiased
estimator based on a sample of size n of a p X p population covariance matrix
Σ, whose elements are functions of a q x 1 parameter vector θ : Σ = Σ(0).
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A discrepancy function F = F(S,Σ(Θ)) can be considered to be a measure of
the discrepancy between S and Σ(θ) evaluated at an estimator θ. The normal
theory maximum-likelihood (ML) discrepancy function (Jδreskog, 1969) is :

F M L = log |Σ | - log |5 | + t r ^ E " 1 ) - p.

At the minimum, Σ = Σ(θ) and FML takes on the value FML, where T M L =
{Π-1)FML is distributed, under the null hypothesis, as an asymptotic goodness-
of-ίit χ2 variate with (p* - q) degrees of freedom, where p* = p(p + l)/2. TML
can be used as a test statistic to evaluate the null hypothesis Σ = Σ(0). The
null hypothesis is rejected if TML exceeds a critical value in the χ2 distribution
at an α-level of significance.

A quadratic form discrepancy function is:

where s and σ{θ) are p * x l column vectors formed from the nonduplicated
elements of S and Σ(0), respectively, and W is a p* X p* positive-definite
weight matrix. The asymptotically distribution-free (ADF) covariance struc-
ture method used by Hu et al. minimizes FQV under the choice of optimal
weight matrix W with typical elements

where σijki = E(xu — μi)(xtj — βj)(χtk — μ>k)(%tι — μι) is the fourth-order mul-

tivariate moment of variables X{ about their means /ij, and σij is an element of
Σ. In practice, sample moment estimators Sijki = Σι(xti-Xi)(%tj — Xj)(%tk-
Xk)(xtι-%ι)/n and S{j = Σi(χti-Xi)(χtj-Xj)/(n-l) are used to consistently
estimate σ^x and σ2j. The ADF estimator provides an asymptotically effi-
cient estimator θ without the need for distributional assumptions on variables.
Under the null hypothesis, the associated test statistic TADF = (n — 1)FQD

has an asymptotic χ2 distribution based on (p* - q) degrees of freedom. See
Browne (1984) or Chamberlain (1982).

The fitting function FQD for normal theory GLS can be simplified to

if W = 2K'p(V ® V)KP, where V is a positive definite matrix that converges
to Σ probability, and Kp is a known transition matrix. At the minima of
the respective functions, both Γ M L and TGLS = (n - 1)FGLS have asymptotic
χ2 distributions with (p* - q) degrees of freedom; they are asymptotically
equivalent when the model is correct. Browne (1974) has shown that if V
converges in probability to Σ (V = S is typically used in practice) then GLS
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estimators are asymptotically equivalent to maximum likelihood estimators.
See also Lee and Bentler (1980).

Under the assumption that all marginal distributions of a multivariate
distribution are symmetric and have the same relative kurtosis, elliptical the-
ory parameter estimators and test statistics can be obtained by readjusting
the statistics derived from normal theory methods. Let n = σuu/3σ^i — 1
be the common kurtosis parameter of a distribution from the elliptical class.
Multivariate normal distributions are members of this class with K = 0. The
fourth-order multivartiate moments σijki are related to K by

= (« + l){σijGkι + σikσji +

where σ^ is an element of Σ. As a result of this simplification, the discrepancy
function for an elliptical distribution may be written as

FE = \{κ + l)"1tr((5 - ΣiθW-1)2 - δ(tτ(S -

where as before V is any consistent estimator of Σ, and δ = «/(4(« + I) 2 +
2pκ(κ+l)) (Bentler (1983); Browne (1984)). The selection of V as a consistent
estimator of Σ leads, under the model and assumptions, to an asymptotically
efficient estimator of θ with Tβ = {n - l)Fβ at θ asymptotically distributed
as a χL*_ ) variate. A standard implementation is to choose V = Σ at the
minimum and (K + 1) = Σ i ((& ~ x)S~1(x - x))2/np(p + 2). Since the models
to be investigated are invariant with respect to a constant scaling factor, at
the minimum of Fβ the second term drops out yielding TE — TERLS

 a s used
in the Hu et al. study. See Shapiro and Browne (1987).

Heterogeneous kurtosis theory (Kano, Berkane, & Bentler, 1990) defines
a more general class of multivariate distributions that allows marginal distri-
butions to have heterogeneous kurtosis parameters. The elliptical distribution
is a special case of this class of distributions. Let κ\ = σmt /3σ?t represent a
measure of excess kurtosis of the i-th variable, and the fourth-order moments
have the structure

where oy = (κi + Kj)/2. If the covariance structure Σ(0) is fully scale invariant
and the modeling and distributional assumptions are met, the JFQD discrepancy
function can be expressed as

where C = A * Σ, and * denotes the elementwise (Hadamard) product of the
two matrices of the same order. Hu et al. used A = (αy) = (ίq + Kj)/2
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based on the usual moment estimators /?2 = saa/Ssf^ with C = A * 5.
Kano et al. (1990) demonstrated that the simple adjustment of the weight
matrix C of the normal theory generalized least squares procedure (see FGLS

above) produces asymptotically efficient estimators. The associated test statis-
tic THK = (n- l)ίHK at the minimum has an asymptotic χlp*_q) distribution
under the assumed model.

Satorra and Bentler (1988a, b) developed two modifications of any stan-
dard goodness of fit statistic test T = (ΓML?ΪHK etc.) so that its distributional
behavior should more closely approximate χ 2 . One of these, the scaled test
statistic, is available in the computer program EQS (Bentler, 1989, p.218) and
is studied here. Satorra and Bentler (1986) noted that the general distribution
of T is in fact not χ 2, but rather a mixture

df

where α t is one of the df (=degrees of freedom ) nonnull eigenvalues of the
matrix UVSS, Vss is the asymptotic covariance matrix of y/n(s - σ(0)), % is one
of the df independent χ2 variates, and, when there are no constraints on free
parameters (as in this study)

U = W'1 - W^σi&'W^σ^σ'W'1

is the residual weight matrix under the model and the weight matrix W used in
the estimation. The scaled statistic used by Hu et al. was based on ΓML ? with
W = 2Kr

p(Σ ® Σ)/ίp, the normal theory ML weight matrix at the minimum
of FML and σ = dFMh/dθf evaluated at θ. The mean of the asymptotic
distribution of ΓML is given by tτ(UVss). Then, defining the scaling estimate
k =tτ(UV88)/df , where U is a consistent estimator of U based on 0, and Vss

is the distribution-free estimator with elements Sijki — SijSki (see above), the
scaled ML statistic

ΪSCALED =

defines Satorra and Bentler's SCALED test statistic as applied by Hu et al.
This statistic is easier to implement than the general form.

3. The Hu, Bentler, and Kano (1992) Study. The Hu et al.
sampling study is now described further to provide a more detailed summary
of prior findings, and also because their conditions are replicated in the current
investigation to study the tests proposed below. They used the confirmatory
factor model x = Λ£ + ε to generate measured variables x under various
conditions on the common factors ξ and unique variates ("errors") ε. They
used 15 measured variables in z, with Λ being a 15 X 3 matrix having a simple
cluster structure. See Hu et al. for details. In the standard approach to factor
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analysis, factors and errors are assumed to be normally distributed, factors are
allowed to correlate with covariance matrix ε(f £') = Φ, errors are uncorrelated
with factors, i.e., ε(ξε/) = 0 and various error variates are uncorrelated and
have a diagonal covariance matrix ε(εε') = Φ. As a result, Σ = Σ(0) =
ΛΦΛ' + Φ, and the elements of θ are the unknown parameters in Λ, Φ, and
Φ. Hu et al. had one condition in which factors and errors were multivariate
normally distributed, so that the latent variates that are uncorrelated in the
factor model are also independent of each other. They also used conditions in
which the factors and/or errors were not normally distributed. In some of these
conditions, factor/error variates that are uncorrelated under the model also
were independent, while in other conditions these variables were uncorrelated
but not independent. Independence of latent variates is a key condition in
so-called asymptotic robustness theory that describes conditions under which
normal theory ML and GLS test statistics are robust to violations of normality
(e.g., Amemiya k Anderson (1990); Anderson k Amemiya (1988); Browne k
Shapiro (1988); Mooijaart k Bentler (1991); Satorra k Bentler (1990)).

After generation of the population covariance matrix Σ under the as-
sumed conditions, random samples of a given size from the population were
taken, the null model was estimated, and the statistics T = (n - 1)F (for
T = TML,TGLSJTERLS,THK,TADF and TSCALED) were computed. The per-
formance of these statistics across the sampling replications at a given sample
size were the main data of their study. They used sample sizes of 150, 250, 500,
1000, 2500, and 5000 to evaluate the effects of sample size. In each condition
at each sample size, 200 replications (samples) were drawn from the popula-
tion, and the various estimators and goodness-of-fit tests were computed. The
mean values and standard deviations of T across the 200 replications, and
the empirical rejection rates at the α = .05 level based on the assumed χ2

distribution, were used to compare their methods.

Hu et al. found that when the latent common and unique factors were
independently distributed, the anticipated asymptotic robustness properties of
the χ2 test were retained for normal theory methods when the sample size was
relatively large. That is, the test statistics behaved as χ2 variates even though
assumed distributional assumptions were violated. Asymptotic robustness,
however, could not be guaranteed at smaller sample sizes with ML. ERLS
slightly, and HK somewhat more, overcorrected the test statistics when some
or all the latent variates were nonnormal. The ADF method was very sensitive
to sample size except under normality, it did not even perform acceptably
with a sample size as large as 2500. The SCALED statistic outperformed ADF
at all but the largest sample sizes. They also found that under conditions of
dependency among latent factors and unique variates, normal theory methods
could not be trusted, HK worked substantially better, ADF performed well
only at very large sample sizes, and, across all sample sizes, the Satorra-Bentler
SCALED statistic performed at closest to nominal levels of all the methods
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considered.
The question is whether a new approximation to the distribution of statis-

tics T = Γ M L,^GLS,^ERLS,ΪHK,2ADF and ΓS CALED could perform better
under the same conditions. For simplicity, this study is limited to the per-
formance of ΓML and ΓSCALED when evaluated not by χ2 but rather by the
proposed approximation to the weighted sum of 1-df χ2 variates. In addition,
the performance of these statistics at smaller sample sizes than considered by
Hu et al. is evaluated.

4. Approximating the General Distribution. As noted above,
under general conditions the distribution of T is the distribution of a weighted
sum of chi-square variables

dfJ
where OL{ is one of the nonnull eigenvalues of UV8SJVS8 is the asymptotic
covariance matrix of yfn(s — σ{θ)), U is the residual matrix U = W~λ —
W~1σ(σfW~1σ)~1σfW~1, and % is one of the df independent χ2 variates.
Specific implementation depends on the estimator, here taken to be ML.
Thus, W = 2Kf

p(Σ ® Σ)KP and σ = dFuh/dθ'. In practice these matri-
ces are evaluated at the ML estimator θ, yielding c?;.

An explicit expression for the distribution of T is given in Johnson and
Kotz (1970), but it is difficult to evaluate in practice. Gabler and Wolff (1987)
proposed to do this by constructing a random variable Y that has the same
first three moments as those of Γ, and has only minor differences in the higher
moments. They standardized the problem so that Σα; = 1, and took Y to be
the positive random variable with density function

For m = 1,2, , they verified that E(Tm) < E(Ym), derived the distribution
function of Y, obtained the laplace transforms of T and Y, and showed that
for small t > 0

is a good approximation for the distribution function F(t) of Γ where 7 denotes
the incomplete gamma function. Based on this theory they proposed an algo-
rithm for approximating the probability Pr(X)f afc < t) by the minimum of
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the functions G(t) and H(t), where

A

and

They indicate that comparisons made for those cases in which exact results
are available showed extremely good accuracy to their approximation.

In the application of this approach to covariance structure analysis, spe-
cific test statistics T must be chosen. Here, only TML and ^SCALED are stud-
ied. Further, the population eigenvalues ai have to be replaced by their sam-
ple counterparts 2;. The accuracy of the procedure thus depends on several
features. First, is the distribution of TML and TSCALED well described as a
mixture of 1-df χ2 statistics under the conditions of the study (small sample
size, dependence, nonnormality). Second, is the Gabler-Wolff approximation
a good one to the theoretical distribution. Third, what is the quality of the
estimators of the population eigenvalues. The proposed procedure can break
down due to problems at any of these points. Regarding the eigenvalues,
only the simplest estimator is considered based on the eigenvalues of the sam-
ple moment matrix product UVSS. These eigenvalues can be computed using
standard approaches for obtaining the eigenvalues of nonsymmetric matrices.

5. Simulation Results. Seven conditions were studied using the Hu,
Bentler, Kano (1992) procedures. These conditions depended on the distribu-
tion of the common factors ξ and the unique factors ε, as well as the mutual
dependence/independence of these sets of factors. The conditions were as
follows:

1. Normal ξ Normal ε Mutual independence of f and ε
2. Nonnormal ξ Nonnormal ε Mutual independence of ξ and ε
3. Nonnormal ξ Nonnormal ε Mutual independence of ζ and ε
4. Normal ξ Nonnormal ε Mutual independence of ξ and ε
5. Nonnormal ξ Nonnormal ε Dependent ξ and ε
6. Nonnormal £ Nonnormal ε Dependent £ and ε
7. Nonnormal ξ Nonnormal ε Dependent ξ and ε

The conditions varied in several ways beyond that stated above, see Hu et
al., but for the current purpose the main points are that: condition 1 is the
standard case, leading to multivariate normal measured variables; conditions
3-4 with mutually independent latent variables are consistent with the theory
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of asymptotic robustness for normal theory test statistics; and conditions 5-7
violate asymptotic robustness conditions. In all conditions except condition
1, the measured variables were symmetrically but nonnormally distributed.
Marginal kurtoses for factors and errors were in the range 0-28. In conditions
2 and 3, the true kurtoses for the nonnormal factors were -1.0, 2.0, and 5.0.
In conditions 2-4, the kurtoses of the unique variates ranged from -1.0 to 7.5.
In conditions 5-7, similarly defined nonnormal factors and errors were further
divided by a rescaled chi random variable that was independent of the factors
and errors. In addition to the sample sizes 150-5000 as studied by Hu et al.,
samples of size 50 and 100 also were drawn in the current study.

The behavior of the statistics TML and TSCALED were evaluated in the
simulation using proposed procedure to obtain estimated probability values.
With 200 replications, at a nominal alpha level of .05, the true model should
be rejected about 10 times. The following table summarizes the rejection rate
under the seven conditions for the statistic

Table 1. Summary of Simulation Results for
Number of Model Rejections

Condi-
tion

1

2

3

4

5

6

7

50

195

198/199

195

191

177/177

—

—

100

7

9

4

5

148

140

134

Sample Size

150

7

7

8

8

158

147

141

250

12

8

6

8

175

172

169

500

6

9

9

7

195

190

188

1000

5

17

15

15

197

196

195

2500

4

14

10

9

200

199

199

5000

8

10

10

9

199

200

199

Several major results can be seen in Table 1. When the data are normal
(condition 1), the proposed procedure works well at all sample sizes except the
smallest. At n = 50, the true model is rejected in 195 out of 200 replications.
Essentially the same results are obtained even if the factors and errors are
not normally distributed but they are mutually independent (conditions 2-4).
At the smallest sample size, fewer than 200 replications sometimes yielded
converged solutions. For example in condition 2, 199 out of 200 replications
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yielded converged solutions; all but one of these yielded a probability value
suggesting model rejection. Most dramatically, the true model was rejected
in an extremely high proportion of model tests under factor and error depen-
dence (conditions 5-7). At the smallest sample sizes in conditions 6 and 7,
no converged solutions were obtained, while at larger sample sizes about 3/4
to almost all true models were rejected. Results for the ΓSCALED statistic are
given in Table 2.

Table 2. Summary of Simulation Results for Γ'SCALED-

Number of Model Rejections

Condi-

tion

1

2

3

4

5

6

7

50

11

13/199

9

10

2/177

—

—

100

10

11

4

8

14

12

24

Sample Size

150

11

11

9

8

0

0

0

250

16

9

8

7

0

0

0

500

4

9

7

8

0

0

0

1000

5

15

15

15

0

1

0

2500

5

11

9

11

1

1

1

5000

8

7

10

9

2

1

1

When evaluating the results using the Gabler-Wolff procedure as imple-
mented here, it appears that as compared to the ΓML statistic, the ΓSCALED

statistic performs better under conditions 1-4 at sample size 50. At n — 100
or beyond, in conditions 1-4 the results for Γ M L and ΓSCALED are approxi-
mately the same. On the other hand, under conditions of variate dependence
(conditions 5-7), ΓSCALED generally yields probability estimates that are too
high. At sample sizes 150 and larger, the true model is almost always accepted
rather than rejected at the nominal alpha level. An exception seems to be oc-
cur at n = 100, where performance closer to nominal is found. But this trend
does not hold for n = 50, where nonconvergence is a major problem.

6. Conclusions. The proposed method for evaluating the fit of covari-
ance structure methods seems to be only marginally better than previously
reported methods. Hu et al. (1992) had reported that the ML method un-
der conditions of variate independence performed well when sample size was
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500 or greater, but that at samples size 150 and 250 the statistic TML? when
evaluated according to the χ2 reference distribution, rejected models about
twice as often as would be expected nominally. When evaluating TML using
the weighted sum of χ 2 ( l ) variates as proposed here, the proportions of model
rejections are much closer to nominal at samples sized of 100 or above. This is
a clear impiovement. On the other hand, at sample size 50, model rejections
are so frequent as to make the proposed procedure useless. At this time, there
is no explanation for this surprising decrement in performance at the smallest
sample size. It is likely that it has to do with the inadequate estimation of
the eigenvalues of UVSS, especially the smallest nonzero population eigenvalues
which may be null at the smallest sample size . Further research will have to
evaluate this hypothesis.

On the other hand, the proposed method when applied to evaluating TML
under conditions of dependence of factors and errors was no better than when
TML was evaluated with reference to the χ2 distribution. Since this method was
inadequate at even the largest sample size, and since the method does work
well under conditions of variate independence, the poor performance must
stem from either the fact that the distribution of TML is n°t well described
as a mixture of χ 2 ( l ) variates, or the fact that the Gabler-Wolff approxima-
tion breaks down under these conditions. Clearly, the derivations of Satorra
and Bentler (1986, 1988a, 1988b) and Gabler and Wolff (1987) will have to
be examined to determine whether there is a failure in some theoretical as-
sumption that may invalidate either or both of their results under conditions
of dependence.

Hu et al. had already shown that the TSCALED statistic performed better
on average than any other statistic they considered, when evaluated against a
χ2 distribution. In the present study, this statistic was referred to the Gabler-
Wolff approximating distribution. As with the TML statistic, the TSCALED

statistic performed better at smaller sample sized under conditions of variate
independence. However, when evaluated under conditions of variate depen-
dence, TSCALED under Gabler-Wolff performed substantially worse than when
evaluated by the χ2 distribution. Thus, there does not seem to be much virtue
to the use of TSCALED using the probability calculations based on Gabler and
Wolff (1987) as applied in this study.

As noted by a reviewer, there is some non-smoothness in results across
sample sizes for both test statistics. In Table 1, an example occurs at n = 1000
for condition 3-4. In Table 2, an example occurs at n = 100 for conditions 5-7.
An obvious problem with the simulation is that the number of replications is
undoubtedly too small to accurately describe the tail behavior of these test
statistics. However, it does not seem likely that this design feature explains
the apparent anomalies in trends of results, so there may be other technical
difficulties with the simulation that we have not been able to locate.
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