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AND CONDITIONALLY PARAMETRIC FITS

BY WILLIAM S. CLEVELAND

AT&T Bell Laboratories

Conditionally parametric regression surfaces provide parsimonious fits in the

common situation where the effects due to some factors are small but significant,

and the effects of other factors are large, complicated, and require nonparametric

fitting. One approach to nonparametric regression is local regression, specifically

the local fitting of linear and quadratic polynomials of the factors. Recent work

of Fan and of Hastie and Loader has shown that local regression is superior to

kernel estimation and modified kernel estimation, two methods that have had

extensive theoretical investigation and that work poorly in practice. Local re-

gression can be modified in a simple way to produce conditionally parametric

fits. The coplot is a graphical method that is particularly helpful for carrying

out regression studies, in particular, for determining factors that can be taken to

be conditionally parametric.

1. Introduction. Graphical methods are critical tools for analyzing
and modeling multivariate data. For example, coplots are particularly useful
for regression studies, both parametric and nonparametric (Cleveland (1993
to appear)). Coplots are the first topic of the paper.

Many multivariate data sets are better fitted by nonparametric regres-
sion surfaces than parametric ones because the latter lack the flexibility to
track all but very simple patterns. One method of nonparametric regression
is local fitting. The method is an old idea first used by time series analysts
to smooth their data (Macauley (1931)). It was brought to more general re-
gression studies in the 1970s (Cleveland (1979), Stone (1977)). Making this
computer-intensive method a practical one required that a number of compu-
tational methods be developed (Cleveland and Grosse (1991)), but this work
proved successful, and local regression is now regularly used in regression stud-
ies (Cleveland et al. (1991)). There are a multitude of other nonparametric
regression methods. One is splines (Reinsch (1967), Silverman (1985), Wahba
(1978)). But for two or more factors, splines have resisted solutions to nasty
computational problems, and at this writing are still an n3 operation. Another
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is kernel estimates (Nadaraya (1964), Watson (1964)) and their adaptive ver-
sions (Gasser and Miiller (1979)). But kernel estimates have the disadvantage
that they do not work. All it takes is a serious effort to use them in practice to
find this out. New and exciting theoretical results of Fan (Fan (1992, 1993))
and Hastie and Loader (Hastie and Loader (1993)) show why this is the case
and why local fitting of linear and quadratic polynomials does far better. The
second topic in this paper is nonparametric regression, in particular, what
works and what does not.

Nonparametric regression surfaces can consume a large number of degrees
of freedom in following the patterns of complex data. One way to conserve
degrees of freedom is to fit a special class of nonparametric regression surfaces
called conditionally parametric fits. This class is the third topic of the paper.

Finally, an appendix provides information about a package of public-
domain subroutines, written in Fortran and C, that carry out local fitting,
including conditionally parametric fitting.

2. Coplots. Figure 1 is a scatterplot matrix that graphs data from
an industrial experiment (Brinkman (1981)). A single cylinder engine was run
and three variables were measured. The response, which will be denoted by
N 0 x , is the concentration of NO plus the concentration of NO2 in the engine
exhaust, normalized by the amount of work of the engine. The units are μg of
N 0 x per joule. One factor is the equivalence ratio, JB, at which the engine was
run. E is a measure of the richness of the air and fuel mixture; as E increases,
the amount of fuel increases. The second factor is C, the compression ratio of
the engine. There were 88 runs of the experiment, so the data consist of 88
measurements of three variables. The scatterplot of N0 x against E shows a
strong nonlinear dependence with a peak between 0.8 and 1.0. The scatterplot
of NOX against C shows no apparent dependence; however, we should not at
this point draw any firm conclusion since it is possible that a dependence is
being masked by the strong effect of E. The scatterplot of C and E shows
that the values of the two variables are nearly uncorrelated and that C takes
on one of five values.

These data have been ill treated in the past. In the original analysis,
log NOX was modeled (Brinkman (1981)). This makes the variance of the
errors decrease with the mean of the response. A fourth degree polynomial
of E and C was fitted to the data by stepwise regression. Such high-order
polynomial fitting is at best a dubious practice. Another analysis of these
data ignored an interaction between C and E that cannot be removed by
transformation (Rodriguez (1985)). Finally, (Gu (1992 )) concluded that NOX

does not depend on C, which, as we will see, is manifestly not the case.
Figure 2 is a coplot of NOX against C given E. The dependence panels

are the 3 x 3 array, and the given panel is at the top. On each dependence
panel, NOX is graphed against C for those observations whose values of E
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lie in an interval, and a smooth curve has been added using the nonpara-
metric regression procedure loess, which will be described in the next section.
Thus each panel shows how N0 x depends on C for E held fixed to an in-
terval. The intervals are shown on the given panel; as we move from left
to right through these intervals, we move from left to right and then from
bottom to top through the dependence panels. The intervals have two proper-
ties: approximately the same number of observations lie in each interval and
approximately the same number of observations lie in two successive inter-
vals. The data analyst specifies the number of intervals, 9 in Figure 2, and
the target fraction of points shared by successive intervals, 1/2 in Figure 2.
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Figure 1. Scatterplot matrix of the engine data

Figure 3 is a coplot of N0 x against E given C. Since C takes on five
values, we have simply conditioned on each of these five values.

The coplot in Figure 3 shows that N0 x has a strong nonlinear dependence
on E with a peak value near E = 0.9 for each conditioning on C. The coplot
of Figure 2 shows that N0 x depends on C, but less strongly. That is, over the
range of values of E and C in the data set, N0 x undergoes greater change as a
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function of E for C held fixed than as a function of C for E held fixed. Given
E, the surface appears to be linear as a function of C; as E increases, the slope
first increases and then decreases to zero. The complex nonlinear behavior of
the data as a function of E given C makes the fitting of a parametric surface
an unsatisfactory approach. Nonparametric regression is the appropriate tool
here. But the observation of a simple function of C given E is exactly the
property that will be exploited by the conditionally parametric fits of Section
4.
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Figure 2. Coplot of NOX against C given E
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Figure 3. Coplot of N0 x against E given C

3. Nonparametric Regression

3.1. Local Regression Models

Let 2/i, for i = 1 to n, be a measurement of the response, and let X{ be
a vector of measurements of p factors. The model for local regression has the
same basic structure as that for parametric regression:

y% = g(xi) + εi,

where g is the regression surface and the Si are random errors. In carrying out
a local regression, we specify properties of the errors and the regression surface.
We will suppose the errors are i.i.d. Gaussian, or relax this assumption and
suppose only that they are i.i.d. and symmetric. For each x in the space of the
factors, we suppose that in a certain neighborhood of x, the regression surface
is well approximated by a linear or quadratic polynomial in the factors. We will
let λ be the degree of the polynomial. The overall sizes of the neighborhoods
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are specified by a parameter, α, that will be defined shortly. Size, of course,

implies a metric in the space of the factors, which we will also define.

3.2. Loess

Loess is one particular method of estimation for local regression models

(Cleveland (1979), Cleveland et al. (1988); Cleveland and Devlin (1988)). The

following describes the loess computation at one point, x, in the space of the

factors.

Let Ai(x) be the Euclidean distance from x to X{. This provides a metric

in the space of the factors, but the X{ do not have to be the raw measurements.

Typically, it makes sense to take the X{ to be the raw measurements normalized

in some way. Here, we normalize by dividing the factors by their 10% trimmed

sample standard deviation. Let Δ( ι )(x) be the values of these distances ordered

from smallest to largest.

The smoothness of the loess fit depends on the specification of a neigh-

borhood parameter, a > 0. Suppose a < 1. Let q be equal to an truncated

to an integer. Let

T(u) = {
\θ, for u > 1

be the tricube weight function. We define a weight for (xι, t/j) by

Wi(x) = T(Ai(x)/Aiq)(x)).

For a > 1, the Wi(x) are defined by the same formula except that ^

is replaced by Δ(nj(x)α1/p. The W{(x), which we will call the neighborhood

weights, decrease or stay constant as X{ increases in distance from x.

If we have specified the surface to be locally well approximated by a linear

polynomial — that is, if λ is 1 — then a linear polynomial in the factors is

fitted to yi using weighted least squares with the weights W{(x); the value of

this fitted polynomial at x is the loess fit, g(x). If λ is 2, a quadratic is fitted.

In fitting quadratics it is also sometimes useful to drop the squares of some or

even all of the factors in doing the fitting. An example will be given later.

This loess fitting method applies when the data are Gaussian. Modifica-

tions can be made in straightforward ways to produce a robust procedure that

accommodates a specification of a symmetric, possibly long-tailed, distribution

(Brillinger (1977), Cleveland (1979)). In the Gaussian case, sampling distri-

butions of the estimates have been worked out (Cleveland and Devlin (1988)),

but only very rough approximations exist for the symmetric case (Cleveland

et al. (1991)).

How do we decide between locally linear and locally quadratic fitting?

Locally linear fitting is sufficient when the curvature in the surface is relatively

gentle. But if there is substantial curvature, in particular, peaks or valleys,
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locally quadratic fitting almost always does better. A locally quadratic surface
that fits such data without substantial lack of fit will typically be smoother
than a locally linear surface that fits the data. The reason is that the added
flexibility of the quadratic polynomial often allows us to substantially increase
the value of α.
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Figure 4. Coplot of local regression fit with
pointwise 99% confidence intervals

The engine data described earlier require locally quadratic fitting because
there is substantial curvature: a ridge in the surface near E = 0.9 that was
revealed by the coplots. Diagnostic plotting of residuals shows leptokurtosis,
so robust fitting is needed. Diagnostic plotting also shows that with this
specification, an a of about 1/4 is the largest the data will tolerate without
lack of fit. The resulting fit has 21.6 equivalent degrees of freedom.

Figure 4 shows a coplot of the surface as a function of E given C. For
each of a collection of values of C, shown at the top on the given panel, the
surface is graphed as a function of E. In other words, we are graphing slices of
the surface using planes perpendicular to the C axis. 99% confidence intervals
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are shown at selected positions. Figure 5 shows a coplot of the surface as a
function of C given E. There is one distressing property — too much variation
as function of C, but we will cure this problem shortly.

3.3. Why Kernel Smoothers Do Not Work

Kernel smoothers amount to locally constant fitting, that is, λ = 0. In
practice, the trade-off between variance and bias almost never makes it worth-
while to use this crude method of approximation. Locally constant fitting
cannot even accommodate a linear effect at the boundaries of the design space
of the factors. For the NOX data, a kernel estimate would perform wretchedly.
In fact, even locally linear fitting does poorly and locally quadratic fitting is
needed.

Fan shows that locally linear estimates have the same asymptotic vari-
ance properties as the standard kernel estimates and the same asymptotic bias
properties as modified kernel estimates that correct for bias but inflate vari-
ances by 50% (Fan (1992, 1993)). In other words, locally linear estimates have
the good variance properties of kernel estimates and the good bias properties
of corrected-kernel estimates. More recently, an excellent study by Hastie and
Loader (Hastie and Loader (1993)) — one that balances mathematics, sta-
tistical methods, computing, and the processes of data analysis — provides
particularly deep insight into this issue.

4. Conditionally Parametric Fits. A nonparametric surface is con-
ditionally parametric if we can divide the factors up into two disjoint subsets
A and B with the following property: given the values of the factors in A,
the surface is a member of a parametric class as a function of the the factors
in B. We say that the surface is conditionally parametric in A.

It makes sense to specify a regression surface to be conditionally paramet-
ric in one or more variables if exploration of the data or a priori information
suggests that the underlying pattern of the data is globally a very smooth
function of the variables. Making such a specification when it is valid can
result in a more parsimonious fit.

An exceedingly simple modification of loess fitting yields a conditionally
parametric surface. We simply ignore the conditionally parametric factors
in computing the Euclidean distances that are used in the definition of the
neighborhood weights, W{(x).
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Figure 5. Coplot of local-regression fit with
pointwise 99% confidence intervals.

The idea of conditionally parametric surfaces and the approach to fitting
them with the simple modification of loess were introduced and put to practical
use in (Cleveland et al. (1991)). The idea has been further discussed and
expanded in (Hastie and Tibshirani (1993)).
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Figure 6. Coplot of conditionally parametric local-regression
fit with pointwise 99% confidence intervals.

4.1. Back to the Engine Data

Figure 5, the coplot of the NOX surface as a function of C given E,
does not reflect the linearity in C given E strongly suggested by the coplots.
Furthermore, the departures from linearity are not large compared with the
sizes of the confidence intervals. We can have conditional linearity in C by
specifying the fit to be conditionally parametric in C and dropping C2 from
the local fitting monomials; that is, we fit just C, E, CE, and E2. The
diagnostic plots of residuals now show that we can increase α to 1/3 without
introducing significant lack of fit. The resulting equivalent degrees of freedom
is 13.6, a substantial reduction from the 21.6 of the original fit. Thus by
specifying a conditionally parametric fit, we have driven down the degrees of
freedom without introducing lack of fit. The coplots in Figures 6 and 7 show
the resulting fitted surface.
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Figure 7. Coplot of conditionally parametric local-regression
fit with pointwise 99% confidence intervals.

4.2. Why Conditionally Parametric Fits Work

A number of methods have been introduced to add structure to non-
parametric surfaces to cut back on the degrees of freedom of the fit without
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sacrificing lack of fit (Breiman and Friedman (1985), Friedman et al. (1983),
Friedman and Stuetzle (1981), Hastie and Tibshirani (1990)). In any applica-
tion, this works if the pattern of the data is reasonably well approximated by
such a surface. The above methods ultimately rely on the pattern being well
approximated by a sum of univariate functions, either of the original predic-
tors or of linear combinations of them, or of transformations of the response
and factors.

A growing list of practical applications has shown that conditionally para-
metric fits add structure in a way that is quite useful in practice (Cleveland
et al. (1991), Hastie and Tibshirani (1993 to appear)). This is to be expected
because there is a good argument for why we would expect conditionally para-
metric surfaces to frequently provide a good fit. If a surface has, instead of
no effect, a very limited effect due to these factors compared to other factors,
it is reasonable to expect that the effect would be nearly linear or quadratic
in these factors given the others. One way to argue for this is to think of
Taylor series approximations. Consider the NOX surface as a function over all
imaginable values of C and E. Suppose it is very complex function of both
C and E with many peaks and valleys. Taylor series arguments make it clear
that C can be varied by a sufficiently small amount in an experiment so that
the surface is well approximated by a function that is constant in C given E.
If the domain of variation of C is enlarged, the next approximation is a linear
function of C given E, and then quadratic. This argument carries with it a
corollary; we would expect that, overall, the influence of the variables in which
the surface is conditionally parametric would be less than the influence of the
other variables. The coplots in Figure 6 and Figure 7 show this to be the case
for the engine data; the surface changes less as a function of C, the factor in
which the surface is conditionally parametric, than as a function of E.

Acknowledgments. The Symposium on Multivariate Analysis that
stimulated this collection of papers was held at Hong Kong Baptist College
in March 1992. One extraordinary aspect was its organization. The myriad
tasks of the conference were carried out by 78 undergraduates and 4 graduate
students in maths and stats. Energy abounded. There was a striking efficiency,
enthusiasm, and pride with which they ran the conference. Figure 8 is a
quantile plot — the ith order statistic graphed against (i - 0.5)/78 — of the
time in hours spent by the undergraduates. The mere existence of the data
speaks to the fastidiousness of the operation. For a citizen of the United
States, even a well-traveled one, this was a revelation. Sometimes the march
of history — often thought to move to the loud beat of political leaders'
machinations — steps to other things, seemly small, but the real drivers of
revolutions. In this case it is a quest for knowledge, a penchant for perfection,
constancy of purpose, and teamwork. Those in the West have felt their effects
acutely as drastically shifting national economies. The Symposium provided
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the opportunity to see the drivers first hand.
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Figure 8. Quantile plot of times spent by undergraduates
organizing and running the Symposium.

Appendix: Obtaining the Loess Routines Electronically
The C and Fortran routines, all of which are freely available, may be

obtained by sending electronic mail to

NETLIB@RESEARCH.ATT.COM

a mailbox at AT&T Bell Laboratories in Murray Hill, NJ. The message

SEND DLOESS FROM A

should be sent. The routines are double precision.
The file DLOESS is a so-called "shell archive" or "bundle". Moreover, in

order to send this 172 kilobyte file to you by email, netlib breaks it into pieces
which are themselves shell archives. So you'll need to run SH once on each
piece of mail to reconstruct the file DLOESS, then run SH DLOESS to finally
reconstruct all the source files.

Subroutines from Linpack, which are called by the Fortran code, are not
included. If they are not already on your system, send the message

SEND DlMACH DNRM2 DSVDC DQRDC DDOT DQRSL IDAMAX FROM

LINPACK CORE

to the same address. When installing, don't forget to uncomment the appro-
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priate DATA statements in dlmach, as described by the comments in those
functions.

A PostScript file of a manual on how to use the loess routine for data
analysis is also available by email

SEND CLOESS.PS FROM A

but since it is over half a megabyte, ftp is a better choice

FTP RESEARCH.ATT.COM

LOGIN: NETLIB

PASSWORD: (YOUR EMAIL ADDRESS)

BINARY

CD A

GET CLOESS.PS.Z

QUIT

UNCOMPRESS CLOESS.PS

Bug reports will receive prompt attention. Send electronic mail to

SHYU@RESEARCH.ATT.COM

or send paper mail to

MING-JEN SHYU

AT&T BELL LABORATORIES

600 MOUNTAIN AVENUE, ROOM 2C-263
MURRAY HILL NJ 07974
USA
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