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Hazard rate models with a change-point allowing for random censorship
are considered. An estimator of the change-point is proposed by examining a
functional of Nelson-Aalen type estimator in the context of counting processes.
Consistency and asymptotic distribution of the proposed estimator are estab-
lished by martingale inequalities and Poisson approximation respectively. The
performance of the proposed estimator is compared with that of a constrained
maximum likelihood estimator using simulations. Robustness of the proposed
estimator is also discussed.

1. Introduction. Let X be a random variable representing the time

to some event, for example, the time-to-relapse after remission for leukemia

patients. Several authors considered a model for the distribution of X specified

by the hazard rate

X(x) = β + θl[TtOθ)(x), (1.1)

where I5 is the indicator function of a set S,β > 0,/3 + θ > 0 and r is a

change-point parameter.

In particular, Matthews and Farewell (1982) and Matthews, Farewell

and Pyke (1985) studied the problem of testing for a constant hazard rate

against alternatives with hazard rates involving a single change-point. The

former presented a likelihood ratio test, and the latter proposed tests based

on maximal score statistics and derived the asymptotic significance levels.

Recently, Henderson (1990) suggested some modified likelihood ratio tests and

presented an extensive literature review. Loader (1991) derived large deviation

approximations to the significance level of the likelihood ratio test by a random

change of time scale for the empirical process.

As for the problem of estimation, Nguyen, Rogers and Walker (1984)

observed that the likelihood function is unbounded when r is just before the

largest observation and proposed a consistent estimator of the change-point by
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examining certain properties of the moments of the mixture density for a com-
plete sample. Later Yao (1986) suggested the use of the maximum likelihood
estimator for r subject to the constraint that r is not greater than the second
largest observation, and obtained consistency and limiting distributions for
the proposed estimators under a complete sample.

A related problem has also been worked on by Akman and Raftery (1986),
who analyzed a change-point Poisson process and provided point and interval
estimates of the change-point. Mύller and Wang (1990) considered a different
approach to model change-points by using kernel methods in estimating the
point of the most rapid change of a continuous hazard function.

In this paper, we take account of random censorship in the model and
investigate the estimation procedure in the context of counting processes. We
provide an estimator of the change-point by examining a functional of Nelson-
Aalen (1978) type estimator. Consistency of the proposed estimator is es-
tablished by some martingale inequalities and the asymptotic distribution is
obtained by Poisson approximation. We would like to point out that the ap-
proach in this paper is nonparametric in nature and can be applied to more
general change-point models than (1.1). The expected robustness of the pro-
posed estimator will be discussed at the end of this paper.

This paper is organized as follows. Section 2 defines the estimator of the
change-point and establishes its asymptotic consistency. The weak conver-
gence is obtained in Section 4. Section 5 and 6 compare the present approach
with the constrained maximum likelihood estimates by providing simulation
studies, which require estimates of the hazard rates given in Section 3.

2. A Consistent Estimator of the Change-Point. Let (X;,d),i =
1, , ra, be a random sample of positive vectors and the X{ and C t be inde-

pendent. Assume that the hazard rate of X{ is of the form (1.1), and there

are known constants r i , r 2 such that 0 < r 1 < r < r 2 < o o . We assume also

that θ > 0. The case θ < 0 can be treated similarly.

Let Ti = X{ Λ Ci and assume P{Ti >t}>0, for all t > 0. Based on the

right censored data {(Γz , l{χ <Ci})^ = l, ,n}, the estimation procedures

are derived as follows. Let ΛΓt (t) = l[χitOO)(t A C t ),fΓt (ί) = l(0,τ<](<)> a n d

Mt)= f {ί>* ω} ^;£>w,*>o, (2.i)

be a Nelson-Aalen (1978) type estimator for the cumulative hazard A(t) =
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J* \{s)ds. Considering the basic martingale

J o i=

we know that

An(t Λ Γ ( n ) ) - A(t Λ Γ( n ) ) = / \Σ Hi(s) dM

is a mean zero, square integrable martingale, where Γ(n) = max{Ti, 1 < i < n},
and

n(ί Λ Γ ( n )) - A(ί Λ Γ ( n ))}2 = E / ] £ 1Γ, (5) λ(β)dβ. (2.3)

Let Γ > r2, and flf(a ) = a;p,0 < p < 1. Define

,)),. < < < Γ, (2.4)

) , o < ( < τ . (2.5)

Then,

Y(t) = A(T)g(t(T - t))/(T - t) - A(ί)ff(ί(T - t))T/{(T - t)t}

Observing that Y(t) is increasing on [0, r] and decreasing on [r, Γ], we consider
the estimator

fn = inf{ί G [ri,r2] : Yn(t±) = supyn(«)}, (2.7)

with sup hereafter abbreviating for the supremum attained in [ri,r2J. Here
Yn(t±.) denotes the right hand limit or left hand limit at t.

Let Tn\ < Tn2 < - - < TnUn be the order statistics of the uncensored
Γi's. If p > | , it can be shown that on each interval [Γn>ι _i,Γm ), Yn(t) =
t*-ι(T - t)v~*{tAn{T)-TAn{Tn,i-ι)} is increasing. This shows that fn equals
to some uncensored time Γm , or one of the end-points τ\ and T2

The consistency of fn is established in the following.

THEOREM 2.1. The estimator fn is consistent for r.
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PROOF. For e > 0 sufficiently small, there exists a constant ci, which
depends only on €, ri,T2,0 and p, such that Y(τ) — Y{τ ± e) > c\. Then, for
sufficiently large n,

P{\fn - τ\ > e} < P{\Y(fn) - Y(r)\ > Cl}

)|>d/2}

where Un(t) = An(t) — A(t) is a martingale. We note that the second inequality
in the above follows from the fact that Y and Yn attain their maximum at
r and fn respectively. Consequently, it follows from (2.8) that there exist
C2 > 0,c3 > 0, depending on ci,7Ί,T2,T and p such that

P{\rn ~ τ\ > e} < P{sup |i7n(<)| > c2} + P{\Un(T)\ > c3}. (2.9)

Let the first term on the right of (2.9) be denoted by / and the second term
by //. Thus

/ < P{sup \Un(t)\ > c2,τ2 < Γ(n)} + P{T{n) < r2}
71

< P{sup \Un(t A Γ ( n ))| > c2} + J ] P{Ti < τ2} (2.10)

2 \Un(t Λ Γ ( n )) |) 2

In view of (2.2), (2.3) and a martingale inequality (Metivier, 1982, p. 60),
the first term on the right of (2.10), denoted by 7χ, satisfies

Jo I .=1

Since j Q

2 ( n ) n{ ΣΓ=i ^ ( s ) } λ(s)ds converges to a constant almost surely,
(2.11) converges to zero as n tends to oo. This implies that / tends to zero as
n tends to oo. Next,

// < P{\Un(T)\ > c3,T < Γ(n)} + P{T{n) < T}

< c-2E(Un(T Λ Γ ( n ))) 2 + (P{Γj < T})n

Then the convergence of II to zero is clearly true as for /. Thus, fn is consistent
for r. This completes the proof. I
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If θ < 0, then Y(t) in (2.5) is decreasing on [0, r] and increasing on [r, T].
Thus, a consistent estimator for r, in this case, can be obtained by defining

fn = inf{te[r 1 ,r 2 ]:y n (t±)= inf Yn(u)}.
T<U<T

3. Consistent Estimators for the Hazard Rates. Following the
estimation of the change-point, we can estimate the two hazard rates by con-
sidering the score functions. Since the score functions with respect to β and θ
under the true parameters have zero expectations and fn is a consistent estima-
tor of r, it suggests that the solutions βn{τn) and θn(τn) oϊdln{β, 0, fn)/dβ = 0
and dίn(β,θ,τn)/dθ = 0, where ίn is the log likelihood, be reasonable estima-
tors of β and θ respectively. Note that d£n(β,θ,r)/dβ = β"1 ΣΓ=i Ni(τ) +
(β + θ)~ι Σti W°o) " Ή(r)} - ΣILi Ά = 0, and dίn(β, 0, τ)/dθ = (β +
Ό " 1 ΣΓ=i {Ni(oo) - Ni(τ)} - Σ"=i{Ti - τ)+ = 0. Thus, we propose the esti-
mators

βn(fn) = T Ni(fn)f V( f n Λ TO, (3.1)

t = l i=l

THEOREM 3.1. For βn(τn),θn(tn) as above and fn as in (2.7), βn(τn)
converges to β and θn{τn) converges to θ in probability respectively.

PROOF. Standard arguments show that as n tends to oo, βn{τ) converges
to P{Xλ < (τΛCi)}/E(τΛTi) = β and {βn(r) + θn(τ)} converges to [P{Xχ <
d} - P{Xi < ( r Λ Ci)}]/ E(Γi - τ)+ = β + θ in probability. Finally the
consistency is obtained by making use of Theorem 2.1 and continuity via the
inequality, for δ > 0,

[fn Λ Ti)/n - E(τ Λ Γi)| > δ\ (3.3)
2 = 1 J

n v

In - E(τ A Γχ)| > ί, |fn - τ\ < e \ + P{\fn - τ\ > e}.

4. Asymptotic Distribution of the Change-Point Estimator. The
purpose of this section is to obtain the limiting distribution of the change-
point estimator fn. For this, we will first apply the Poisson approximation
of empirical process to get a weak convergence theorem for the local process
Qn{x) = n(Yn(τ + &) - Yn(τ)), defined in terms of (2.4), and then apply
continuous mapping theorem to it to obtain the limiting distribution of τn.
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In order to facilitate the discussion of weak convergences, we will intro-
duce some function spaces. Let Do[0, a] be the standard D space of real-valued
functions on [0,α] equipped with Skorohod topology, (cf. Billingsley (1968)).
Let D\[—α,α] be the space of real-valued functions / defined on [—a,a] such
that (i) both /|[0,α]( ) a n d ff(') a r e i n A)[0,α], where g(x) = /|[_α j 0](-z),
and (ii) /(0) = 0. We will give D\[—a,a] the natural topology adapted from
Do[0,a]. Let D2[-a,a] be the subspace of Z>i[-α,α] consisting of piecewise
increasing functions. Let Ds[-a^a] be the subspace of D2[-a,a] consisting of
functions being piecewise constant with only jumps of size one. We note that
both D2[-a,a] and Dz[-a,a} are closed in Z?i[—α,α].

Let M+[-a,a] denote the set of non-negative Radon measures on [—α,α],
which can be made into a complete, separable metric space. We note that
Ds[—a,a] can be viewed as a subset of M_j_[—α,α]. (cf. Resnick (1987), p.
147). It can be shown that the relative topologies on Dz[-a,a] induced by
M+[—a,a] and Dι[-a,a] are identical.

We are now in a position to present the weak convergence more efficiently.

The following is a weak convergence of local process for the empirical
process with censored data. The case with no censoring variable was obtained
by Al-Husaini and Elliott (1984) using martingale theory. Our approach seems
more elementary and shorter. Let XL, X2, be independent random variables
with common distribution function F(x) and density function /(#), which
needs not satisfy (1.1). Let Cχ,C2, be independent random variables with
common distribution function G(x) and density function g(x). Assume the
C s and X's are independent. Let Nn(t) = ΣΓ=i l[x<,oo)('ΛCt ). For a fixed r,
we define Zn{x) = Nn(τ + f) - Nn(τ). Then for each a > 0, Zn is a random
element of Dβ[—α, a].

LEMMA 4.1. Zn converges weakly to a process Z on Z)3[-α,α], where
{Z(x)\x £ [0,α]} is a Poisson process with intensity f(τ+)(l—G(τ)), {-Z(-x)\
x 6 [0, α]} is a Poisson process with intensity / ( r - ) ( l - G(τ)), and {Z(x)\x 6
[0,α]} and {Z(x)\x 6 [-α,0]} are independent.

PROOF. This lemma is proved by making use of the following weak
convergence criterion (4.1) for point processes, which reduces the problem
to the weak convergence of finite dimensional distributions of Zn. We shall
first compute the finite dimensional distribution of Zn(x),-α < x < α. For
-α < x2 < x\ < 0,0 < y\ < y2 < α,kι,k2,lul2 being non-negative integers,
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P{Zn(Xl) = -ku Zn(x2) - Zn{xx) = -k2, Zn(yi) = h, Zn(y2) - Zn{yi) =

r n n
= P\ Σ 1[τ+ϊ<λi<τΛ<Ci] = *l'Σ1[τ+^<Xi<τ+^,Xi<Ci] = *2,

1 t = l i=l

n n N

Σ 1[T<J?<<T+^,X.<C<] = ' i ' Σ 1[τ+^-<xi<τ+^-,Jϊ,<σ,] = 'a f
» = 1 i = l J

-G(r) + o(^(F(r+^)-F(τ + ^)
Th Th Th

which, as n goes to infinity, converges to

^(/(r-X-*!))*1 (1 - G(r)) V ^

/l (1" G(r)) V '

In general, the finite-dimensional distributions of {Zn(x), —a < x < a} con-
verges to those of {Z(x), -a < x < a}.

In order to show that Zn converges weakly to Z on Z^f—α,α], it suffices
to show that for all h £ C+([—a,a\),

/ h(x)dZn(x) converges weakly to / h(x)dZ(x). (4.1)
J—a J—a

(See e.g. Exercise 3.5.1 of Resnick (1987)). Here C+([-a,a\) is the set of

continuous, non-negative functions on [—a, a}.

For h = Σ ί = i c t l ( α , ,δ<]ϊ ci > 0 and {(α t , δ t ],i = 1, •••,/} being disjoint

intervals in [—α, α], (4.1) holds due to the finite-dimensional convergence of

Zn( ) . Now let h € C+([-a,ά\). For e > 0, there exist simple functions ht,ht

of the previous form such that 0 < ht < h < ht and \ht(x) - h€(x)\ < e for
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every x £ [-α,α]. Applying standard approximation arguments to Λe,/fc, and

Λe, one can show that J*a h(x)dZn(x) converges to J*a h(x)dZ(x) weakly. The

proof is thus complete. I

In order to get the weak convergence of the local process n(Yn(τ + ~) -

*n(r))> w e shall first get the weak convergence of the local deviation process

n(An(τ + ;•) — An(τ)) on D2[-a,a], where r is the change-point.

LEMMA 4.2. n{An{τ + ^) - An(τ)} converges weakly on D2[-α^α] to

P~λ{X Λ C > τ}Z(x), where Z(x) is defined in Lemma 4.1 with f(τ+) =

PROOF. n{An(τ + ^) - An(τ)}

= P~λ{X Λ C> τ}(Nn{τ + -)- Nn(τ))

(4.2)
Λ

Let In(x),IIn(x) denote respectively the first and the second term in (4.2).

Observe

sup |//n(a:)| < sup
fΣ?=l1(Ot^Λfi](g)Ί

- 1

-P-Ύ{XΛC>τ} (*.(r + ϊ)-Λ(r-ϊ)) (4.3)

m a x

ί ΣΓ=1 ifr+^ΛCd r 1 _ p _ 1 { χ Λ c > Λ
^ 72- J J } ^ ( )

Since the first factor in (4.3) goes to zero almost surely and, by Lemma

4.1, the second factor has a limiting distribution, sup_α<£P<α |/Jn(#)| converges

to zero in probability.

It follows from Lemma 4.1, (4.2) and (4.3) that n{An{τ + ^) - An(τ)}

converges weakly to P~1{X Λ C > τ}Z(x). The proof is complete. |

Let Qn(x) = n{Yn(τ + f) - Yn(τ)}9Q(x) = xv - wZ(x) with υ =

-\T - τγ-2(pT - 2pτ + r) - TA(τ)τ^2(T - rf-2(T - 2τ)(p — 1), ti; =

T - τy-χP-ι{X AC > r}, and Z{x) being defined in Lemma 4.2.

Assume p > | , then Qn|[-α,α] ίs a random element of JD2[-α,α].

THEOREM 4.1. Qn converges weakly on D2[-α,α] to Q.
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PROOF. Using the fact that Yn(t) = An(T)tP(T - tf'1 - An(t)Ttp-χ(T
i)v~λ, we know

{n{+)n()}
Th

= nAn(T){{τ + £)'(Γ - r - -)1"1 - τ*(T - r)^"1)

- TnAn(τ){{r + ̂  (T - r - X-)P~l - τ*~\T - Tf'1)

- Tn(An(τ + £) - An(r)) (r + (γ-\τ - r - i ) ' " 1 .

The weak convergence of Qn(x) is then obtained by Lemma 4.2 and the con-
vergence in probability of An(t). This completes the proof. |

Using the arguments of Lindvall (1973), one can extend Theorem 4.1 to
get Qn converges weakly to Q on 2}2(-oo,oo). Here the domain of definition
of an element / in D2[-a,a] can be extended to JD2(-OO,O°) by defining
f(x) = f(a) for x > a and f(x) — f(-a) for x < -α. Asymptotic distribution
of the change-point estimator fn can now be obtained as a consequence of the
continuous mapping theorem for weak convergence as follows.

LEMMA 4.3. Assume v > 0. ΓΛen with probability one the limit process
Q(x) in Theorem 4.1 has a unique supremum point d*.

PROOF. Since the supremum of Q(x) must occur at 5 j±, where Bj are
jump points of the process Z(x), it suffices to show that for every j φ fc,
P{Q(Bj±) = Q(Bk±)} = 0. This is true because (Bj,Bk) has joint density,
and the proof is complete. I

For / G ΰ2(-oo?oo), let h(f) be the smallest number in TZ satisfying
f(x) < f(h(f)±) for every x. Lemma 4.3 implies that h(Q) is a well-defined
random variable. We note that lim^-^oo Q(x) = —oo.

Assumep > \. In this case, Qn(x) is increasing on each interval [n(Γn>ί_i-
r),n(Γ m - T)), which says that Qn(-) £ JD2(-OO,OO). It can be shown by
the arguments in Lemma 4.3 that P[Q € {/ G JD2(~°°?o°) : h is dis-
continuous at /}] = 0. This together with Theorem 4.1 and the continu-
ous mapping theorem implies h(Qn) converges weakly to h(Q) = cf*. Since
P{n(τι - T) < h(Qn) < n(τ2 - r)} —• 1 , as n goes to infinity, we have

COROLLARY 4.1. Assume that υ > 0 and p > | , n{τn — r) converges
weakly to d*, where d* is the supremum point ofQ(x), denned in Lemma
4.3. I
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5. Comparisons.

5.1. A Constrained Maximum Likelihood Estimator of τ. In the follow-
ing we investigate the relative performance of the proposed estimators to a
constrained maximum likelihood estimators (CMLE). Let Γμ), 1 < i < n, be
the order statistics of the uncensored and the censored observations. Then,
we may extend the constrained maximum likelihood estimator in Yao(1986) to
the case of random censoring by imposing a constraint that τ < Γ(n_!), if Γ(n)
is uncensored, which removes the singularity of the likelihood. In this case,

ln(βn(τ)A(τ),τ) + Sn = Sn\θg L { ]Γ(7 - A ] , if T < Tnl] OΓ

]
+ (Sn - Rn)log [(Sn - Λn)| £ ( r < - r)+J ] , if T > Γn l;

= Sn log \sn I Σ(Ti Λ r ) } I ' i f T(^" 1) - r < T^) and Γ W is censored'

where /?n(r), and θn(τ) are given in (3.1) and (3.2),5n = ]^?=i ^(° °) a n d

i?n = Σ?=i Ni(τ). It follows that ^ n (^ n (τ),^n(^)^) is strictly convex in
P(i_i),ϊ( t ))for2 < i < n - 1 . Consequently, the maximizer of-ίn(/3n(r),βn(r),r
denoted by f, lies either just before or just after a Tλ \. Thus, (f,^,^)=
(f, /?n(f), βn(f)) are the constrained maximum likelihood estimators for (r, /?, ^).

5.2. Simulation Procedures. In the simulation study, we generated 1000
random samples from each of the following two change-point hazard rate mod-
els: (a) r = 1,/? = 1,0 = l,ri = 0.75 and r2 = 1.15, (b) r = 1,/J = 0.25,0 =
1.25, ri = 0.5 and r2 = 1.25. Uniform censoring times were generated in the
interval (0, U) with U selected to give expected censoring proportions of 20%
and 40%, respectively. We used IMSL subroutine DRNUN to generate pseu-
dorandom numbers. For each censoring proportion, sample sizes of n = 50
and 100 were generated.

The value of T for calculating Yn{t) in (2.5) was set to satisfy P{T{ >
T} w 0.01. The proposed estimator f was computed with p=0, 0.25, 0.5,
0.75, and 1, respectively, in g(x) = xp. For p=0 and 0.25, r was computed
using the IMSL optimization subroutine DBCPOL based on a direct search
complex algorithm. All the computations of (f,/3,0) and (f,/?, θ) are subject
to specified bounds τ\ and r2.

The averages (AVE) and the square-roots of mean square errors (RMSE)
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of the estimators (f,/3,0) and (f,/?,#), respectively, in 1000 replications were
computed.

5.3. Results. The simulation results pertaining to the evaluation of
(τ(p),β(p),θ(p)), only for p=0.5 and 1, and (f,/?,0) are presented in Table
1. The results for p=0.75, that are similar to those for p=0.5 or 1, are omit-
ted. Since the root mean square errors of τ{jρ) with p < 0.5 are sometimes
double those of f (0.5), (τ(p),β(p),θ(p)) with p < 0.5 are not recommended in
practice.

Table 1
Parameter estimates and their square-root mean

square errors with 1000 replication
(a) Model r = 1, β = 1, ux = 0.75 and r2 = 1.15

n

50

50

100

100

Censoring
proportion

20%

(IT = 4.1,
T = 2.4)

40%
(U = 2.0,
T = 1.8)

20%

( f = 4.1,
T = 2.4)

40%

(U = 2.0,
T = 1.8)

Parameters

Estimators

p = 0.5
p = l
CMLE

p = 0.5
p=\
CMLE

p = 0.5
p = l
CMLE

p = 0.5
p = l
CMLE

r

AVE

0.981
0.990
0.973

0.969
0.966
0.971

0.999
1.010
0.987

0.997
0.993
0.987

RMSE

0.108
0.102
0.110

0.118
0.117
0.121

0.096
0.091
0.096

0.101
0.100
0.106

AVE

0.955
0.959
0.977

0.978
0.978
0.997

0.982
0.985
0.989

0.974
0.973
0.977

β

RMSE

0.195
0.193
0.200

0.203
0.204
0.216

0.132
0.130
0.133

0.141
0.141
0.145

AVE

1.415
1.428
1.275

1.715
1.691
1.600

1.250
1.262
1.175

1.507
1.493
1.438

θ

RMSE

0.860
0.874
0.791

1.610
1.561
2.156

0.556
0.569
0.513

1.028
1.003
1.044
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(b) Model r = 1, β = 0.25, θ = 1.25, τx = 0.5 and r 2 = 1.25

Parameters τ β θ

Censoring

n proportion Estimators AVE RMSE AVE RMSE AVE RMSE

50 20% p = 0.5 1.031 0.077 ,0.243 0.079 1.400 0.351

(U = 7.0, p = 1 1.055 0.093 0.255 0.080 1.417 0.371

Γ = 3.5) CMLE 1.009 0.078 0.251 0.083 1.328 0.321

50 40% p = 0.5 1.053 0.098 0.253 0.083 1.480 0.522

(U = 3.5, p = 1 1.048 0.089 0.251 0.081 1.473 0.512

T = 2.0) CMLE 1.009 0.098 0.244 0.084 1.385 0.438

100 20% p = 0.5 1.026 0.055 0.255 0.057 1.320 0.229

(tf = 7.0, p=l 1.054 0.086 0.271 0.066 1.328 0.238

T = 3.5) CMLE 1.009 0.041 0.256 0.056 1.281 0.214

100 40% p = 0.5 1.036 0.071 0.256 0.062 1.359 0.308

(U = 3.5, p = 1 1.030 0.061 0.253 0.061 1.353 0.304

Γ = 2.0) CMLE 1.008 0.054 0.249 0.061 1.309 0.276

With both sample sizes n = 50 and 100, the biases and the mean square

errors of (f,/3,0) with p > 0.5 are of the same magnitudes as (f ,/?,#). More-

over, the performance of p=0.5 and 1 is not distinguishable. The biases and

the mean square errors of (f, β) and (f, β) are satisfactory even in the case of

40% moderate censoring. Those of θ and θ are noticeable even in the case of

20% light censoring, but have improvements when n = 500. The mean square

errors of θ and θ greatly increase in heavier censoring case, but not those of

the estimators for r and β.

6. Discussion. We extend the model in Nguyen, Rogers and Walker

(1984) to randomly censored data. Their estimator for r is of rather com-

plicated form based on certain moment properties of a mixture density. Our

proposed estimator f is much easier to implement and can be viewed as a

nonparametric counterpart of the estimator resulting from the score process

in Matthews, Farewell and Pyke (1985). In fact, the former focuses on the

difference between two slopes before and after an uncensored time on the

cumulative hazard plot, while the latter process can be interpreted as the dif-

ference of parametric estimators of the hazard rates multiplied by a scaling

factor.

In comparison with the likelihood-based estimator, the proposed estima-

tor with p > 0.5 behaves almost as well as the constrained maximum likelihood
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estimator with respect to negligible differences in their biases and mean square
errors. The restricted range [TΪ,T2] of r chosen in the proposed procedure is
actually needed in all available methods. This restriction is inherent in the
consistency of all such estimators for r. In our simulation study, the estima-
tors (f, /3, θ) and (f, /?, θ) without the restriction of [ri, T2] were also computed.
The corresponding biases and mean square errors are all eminently large.

Furthermore, all the results regarding fn in this paper are valid when
X(x) in (1.1) is replaced by λ(x) = λ(x) + eh(x) for some continuous functions
h(x) and e > 0, or any hazard rate model which satisfies the property that
the maximum point of Y(x) is at the change-point r. Simulations given in
Table 2 also indicate that the proposed change-point estimator of this paper
is more favorable than the constrained maximum likelihood estimator under
some perturbated change-point models. In summary, under the two-step model
(1.1) neither the proposed estimator nor the CMLE is dominant, while the
proposed estimator seems more favorable in a larger class of models. This
may be an advantage of the present approach.

Table 2
Estimates for the change-point r under deviated models

and their square-root mean square errors with 1000 replications

(a) Model λ(x) = X(x) + e(x) τ = 1, β = 1, θ = 1, τλ = 0.75 and r2 = 1.15

e 1.0 0.5 0.1

n

50

50

100

100

Censoring
proportion

20%

40%

20%

40%

Estimators

p = 0.5
p=l
CMLE

ί> = 0.5
p=l
CMLE

p = 0.5
p=l
CMLE

p = 0.5
p=l
CMLE

AVE

0.961
0.951
0.936

0.947
0.926
0.940

0.982
0.968
0.934

0.967
0.935
0.937

RMSE

0.124
0.124
0.133

0.132
0.138
0.133

0.114
0.115
0.134

0.125
0.134
0.135

AVE

0.969
0.969
0.955

0.954
0.943
0.956

0.989
0.989
0.956

0.975
0.954
0.957

RMSE

0.118
0.117
0.124

0.126
0.128
0.124

0.110
0.105
0.122

0.117
0.120
0.123

AVE

0.973
0.981
0.967

0.971
0.964
0.975

0.996
1.005
0.984

0.994
0.984
0.980

RMSE

0.115
0.111
0.117

0.118
0.117
0.117

0.100
0.096
0.103

0.109
0.107
0.113



p = 0.5
p=l
CMLE

p = 0.5
p = l
CMLE

p = 0.5
p=ί
CMLE

p = 0.5
p=l
CMLE

0.994
1.011
0.887

0.996
0.988
0.868

1.029
1.033
0.891

1.021
1.003
0.863

0.153
0.125
0.216

0.170
0.152
0.238

0.119
0.101
0.196

0.149
0.124
0.228

1.019
1.046
0.955

1.019
1.029
0.937

1.035
1.054
0.970

1.036
1.038
0.958

0.117
0.107
0.148

0.136
0.121
0.175

0.091
0.096
0.105

0.112
0.098
0.131

1.037
1.065
1.008

1.040
1.059
1.006

1.032
1.062
1.007

1.035
1.052
1.005

0.091
0.103
0.092

0.097
0.102
0.104

0.068
0.098
0.048

0.076
0.089
0.061
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(b) Model λ(x) = X(x) + ex,τ = l,β = 0.25, θ = 1.25, τx = 0.5 and r 2 = 1.25

e 1.0 0.5 0.1
Censoring

n proportion Estimators AVE RMSE AVE RMSE AVE RMSE

50 20%

50 40%

100 20%

100 40%

The simulation program and the exact values of T and U used for each model

can be provided for interested readers.
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