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SOME APPLICATIONS OF MONOTONE
TRANSFORMATIONS IN STATISTICS!

By ALLAN R. SAMPSON
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A number of results concerning monotone transformations of random
variables are reviewed. Particular attention is paid to the effects of choice
of monotone scaling in two settings: (a) describing and quantifying depen-
dence between two random variables, and (b) comparing two populations
with ordinal categorical responses.

Properties of the concordant and discordant monotone correlation co-
efficients (Kimeldorf, May and Sampson (1982)) between random variables
X and Y are discussed, and computational approaches are considered.

The two sample problem is explored where responses are ordinal cat-
egories and typical statistical procedures involve the arbitrary choice of
monotone scales. The effects of the choice of scaling upon the resultant

analyses are examined in detail.

1. Introduction

In a variety of situations, it is of interest to consider how the results of
the analyses change when we transform the relevant random variables by
monotone functions. The usual purpose of this is to study the effects of
monotonically rescaling the measured random quantities. Depending on our
needs, we might want a statistical procedure that is invariant to monotone
scale changes, or we might want to choose an appropriate scaling in situations
where the natural choice of scales is not clear. The purpose of this paper is to
review some results in this area focusing on a somewhat less than standard
usage of monotone transformations.

Traditional concerns about monotone invariance can lead to various no-
tions. In some settings it leads to considering statistical procedures which
depend only on ranks of the data. For jointly distributed random variables,
it can lead to a discussion of procedures which depend solely on the copula

!Research supported by National Security Agency Grant No. MDA-904-90-H-4036.
Reproduction in whole or part is permitted for any purpose of the United States Govern-

ment.

AMS 1991 subject classifications. Primary 62F03, 62H02; Secondary 62A05.

Key words and phrases. Scaling, monotone dependence, two-sample, ordinal variables,
contingency table, concordant monotone correlation, correspondence analysis.

359



360 Allan R. Sampson

(Sklar (1959)) or uniform representation (Kimeldorf and Sampson (1975)),
or in the case of data, upon the multivariate empirical rank distribution
(e.g., Block, Chhetry, Fang and Sampson (1990)). For ordinal contingency
tables, invariance leads to other related notions.

The focus of this paper is somewhat different than these preceding tra-
ditional concerns about invariance. We are interested in describing how
certain probabilistic concepts and statistical notions depend on the choice
of monotone scales, and utilizing this knowledge for assessing appropriate-
ness of scales. This idea of sensitivity to scales and rescaling is particularly
important in statistical usages where there is no natural choice of scales.
Ordinal contingency tables offer such an example where, for instance, one
variable might be an evaluative response such as excellent, very good, good,
etc., and the other is degree of involvement such as none, some, etc. In
Section 2, we discuss the effects of monotone scaling on certain measures of
dependence and in Section 3 we consider how various two—sample tests are
affected by choice of monotone scores.

2. Measures of Dependence and Scaling for
Bivariate Random Variables

Lancaster (1969) interweaves several lines of research to present a set of
techniques concerning bivariate random variables X and Y which describe
their structure and measure their degree of relationship. Many of these
results rely on the canonical decomposition of a bivariate p.d.f. See also

Kendall and Stuart (1979, Chapter 33). We review some relevant definitions
below.

DEFINITION 1

(i) Random variables X and Y are mutually completely dependent (MCD)
if there exists a one-to—one function v so that Y = 4(X) w.p. 1.

(ii) The sup-correlation between random variables X and Y, denoted by
p'(X,Y), is defined as sup p(f(X),9(Y)), taken over all suitable functions f
and g. ,

(iii) The support S x T of (X,Y) is said to consist of (at least) k disjunct
pieces if there exists partitions Si,...,S; of S and T1,...,T) of T such that

P(X,Y)e SixT;)>0, i=1,...,k

and
P((X,Y)e SixT;)=0 for all 7 # j.

Intuitively MCD was thought to be an antithesis of independence and the
sup—correlation was a method of measuring how dependent random variables
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X and Y are. Clearly, X and Y are independent if and only if p'(X,Y) = 0;
and if X and Y are MCD, then p’(X,Y) = 1. However, the converse to the
latter is not true. If p/(X,Y) = 1, then under suitable regularity conditions,
it can be shown that the support of X,Y consists of at least two or more
disjunct pieces.

Lancaster (1969) discusses in great detail the above notions as well as
many other related ones. The sup—correlation has been discussed in further
detail as a measure of dependence, particularly for contingency tables when
it is readily computable. Additionally, these notions form, in part, the ba-
sis for correspondence analysis. More recently, the notion of the canonical
expansion of a joint p.m.f. has been explored statistically by Gilula (1984).

Kimeldorf and Sampson (1978) and others, including Vitale (1990), have
shown that MCD is not an appropriate antithesis to independence. In fact,
there exists {X,,Y,} all with the same respective univariate marginals such
that X,,,Y,, are MCD for each n and yet, X,,,Y; converge in distribution to
independent random variables X,Y. Obviously, for large enough =, if one
were to take a random sample of such X,,,Y,, this sample for all intents and
purposes would look like a sample from independent random variables.

To counter this difficulty Kimeldorf and Sampson (1978) introduce the
notion of X and Y being monotone dependent if in Definition 1(i), v is a
monotone function. (If 7 is increasing we say X and Y are increasing de-
pendent, and similarly for v decreasing). Moreover, they show that if X,,,Y,
are monotone dependent for each n, and X,,Y, converge in distribution to
X,Y, then X,Y are monotone dependent. This, and other reasons, suggest
that monotone dependence serves as a suitable antithesis to independence.

To measure the degree of monotone dependence between a pair of random
variables X and Y, Kimeldorf and Sampson (1978) introduce the notion of
monotone correlation p*(X,Y), where f,g are required in Definition 1(ii)
to be monotone functions. Additionally, Kimeldorf and Sampson (1978)
observe the following straightforward properties: (a) p*(X,Y) = 0, if and
only if X and Y are independent; (b) |[p(X,Y)| < p*(X,Y) < p/(X,Y); and
(c) for the bivariate normal, the inequalites in (b) become equalities.

The monotone correlation is further refined by Kimeldorf, May and
Sampson (1982). If in Definition 1(ii), f and g are both required to be in-
creasing (or both decreasing) the resulting measure of dependence is called
the concordant monotone correlation (CMC). Motivated to study the mono-
tone correlation notion when f is increasing and g is decreasing (or equiva-
lently, vice versa) Kimeldorf, May and Sampson (1982) observe that

sup p(f(X), g(Y))= sup p(f(X), =-9(Y)=— inf p(f(X),9(Y)).
gl 191 1.9t

This observation leads them to define the discordant monotone correla-
tion (DMC) by inf p(f(X),9(Y)), taken over all f,g both increasing or
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both decreasing. Clearly there is the following relationship: p*(X,Y) =
max(CMC(X,Y),-DMC(X,Y)).

Kimeldorf, May and Sampson (1982) also introduce the iso-CMC (ICMC)
and iso-DMC (IDMC) when f is restricted to equal to g in the preceding
definitions of the CMC and DMC, respectively. (Interestingly they show
that if X and Y have an exchangeable distribution, it is not necessarily true
that ICMC(X,Y)=CMC(X,Y).)

While both the CMC and DMC are measures of association, respectively,
for increasing monotone dependence and decreasing monotone dependence,
they serve another very useful purpose: for any increasing functions f, g

(1) DMC(X,Y) < p(f(X),9(Y)) < CMC(X,Y).

The implications of (1) will be discussed shortly.

When X and Y are jointly discrete random variables with finite support,
a number of additional useful results can be obtained. If in Definition 1(iii),
§ <S5 L LS and Ty £ (2)T; £ (2)-- £ (2)Tk, where U <
V means for all u € U, v € V, v < v, we say the support consists of
increasing (decreasing) disjunct pieces. (Obviously, this definition extends
beyond the discrete case.) Chhetry, DeLeeuw and Sampson (1990) show
that the CMC = 1, if and only if the support of X and Y consists of two
or more increasing disjunct pieces (and equivalently DMC = -1, if and
only if the support consists of two or more decreasing disjunct pieces). To
compare p'(X,Y) and CMC(X,Y), we recall Lehmann’s (1966) notion of
Y being positively regressive dependent (PRD)on X if P(Y >y | X =z)is
nondecreasing in z for all y. Schriever (1983) showed that if Y is PRD on X
and X is PRD on Y, then p'(X,Y) = CMC(X,Y). However, Chhetry and
Sampson (1987) give an example where X and Y are not mutually PRD,
yet p'(X,Y) = CMC(X,Y). Lastly, under the assumption of finite discrete
support (with the number of support points of X being three or more, or of
Y > 3) we have CMC(X,Y) = DMC(X,Y), if and only if X and Y are
independent random variables.

To explore the uses of the inequalites in (1) for arbitrary X and Y, we be-
gin by noting that various measures of dependence are defined as correlations
between certain increasing functions. Spearman’s rho, ps, can be defined by
p(F(X),G(Y)), where F and G are, respectively, the marginal c.d.f.’s of
X and of Y. Another possible measure is given by p(®!F(X),® 1G(Y)),
where @ is the standard normal c.d.f. Let m(X,Y) generically denote a mea-
sure of monotone dependence between X and Y of the form p(¢(X),%(Y)),
where ¢, 1 are particular increasing functions. Such measures are discussed
by Agresti (1984) and Williams (1952). Then from (1), any such m(X,Y’)
must lie in the interval [DMC(X,Y),CMC(X,Y)]. If in addition we require
¢ = 1, denoting the resulting measure by my(X,Y), then IDMC < m; <
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ICMC. Now consider a situation where we are not certain which measure of
monotone dependence is most meaningful for a problem being analyzed. If
the CMC is relatively close to the DM C, the problem is rendered moot, in
that the inequality of (1) yields that all measures of monotone dependence
must be close to each other.

This observation is more pertinent when measuring dependence for a
bivariate ordinal contingency table (or equivalently dealing with bivariate
discrete random variables with finite support). Here there is an extensive lit-
erature for measures of positive dependence (e.g., Agresti (1984) or Schriever
(1985)), with a number in the form of a measure of monotone dependence.
In this situation, oftentimes appropriate scalings for the ordinal X and Y
variables are not available. Thus, having the knowledge that the CMC' and
DMC are close indicates little sensitivity of a measure of monotone depen-
dence to the choice of scalings.

To illustrate these notions, we consider in Table 1 the “father-son British
social mobility data” (Glass and Hall (1954)). In this case since the variable
being measured for both father and for son is the same occupational status
variable which is ordinal in nature, it is appropriate to use iso-scaling, (that
is, requiring ¢ = ). In this table Status S1 is professional, and high admin-
istrative; Status S2 is managerial, executive and higher grade supervisory;
Status S3 is lower grade supervisory; Status S4 is skilled manual; and Status
S5 is semi-skilled and unskilled manual. A son in Status j whose father is
in Status ¢ is said to be upwardly mobile if j < ¢ (e.g., Bishop, Fienberg,
and Holland (1975, p. 321)).

Father’s Son’s Occupational Status

Occupational
Status S1 S2 S3 S4 S5
S1 50 45 8 18 8
S2 28 174 84 154 55
S3 11 78 110 223 96
S4 14 150 185 714 447
S5 3 42 72 320 411

Table 1. British mobility data (3,500 father-son data values).
(Glass and Hall (1954))

In this case the ICMC = .496 and IDMC = .242, (see Kimeldorf, May
and Sampson (1982)) indicating that regardless of the monotone scaling
for these five ordinal categories, the resulting correlation is between .242
and .496. (The monotone scales corresponding to the ICMC assign S5,
S4, S3, S2 and S1, respectively, the values 0, .077, .158, .373, and 1. The
monotone scales corresponding to the IDMC assign to S5, 54, 53, S2, and
S1, respectively, 0, 1, 1, 1, and 1.)
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Another focus of this development is examining and interpreting the re-
sulting monotone scales for the CMC. In dual scaling (Nishisato (1980)) or
in correspondence analysis (Benzecri (1973)), the scalings derived for contin-
gency tables are those which maximize p(a(X),b(Y)) over all a,b, whether
or not they are monotone. Obviously these a( ) and b( ) are the functions
which yield the sup—correlation between the row and column classifications.
If the classifications are categorical, these resulting scalings have standard
interpretations. However, when the classifications are ordinal, a natural re-
quirement is that the scales be monotone. There is no guarantee for this in
the usual dual scalings, whereas, our scales obviously guarantee monotonic-
ity.

Using a random generation procedure described in their paper, Kimel-
dorf, May and Sampson (1982) generated the following random 10 x 10
probability matrix with a slight amount of positive dependence.

Y

b b2 b3 by bg bg b7 bg by 519

ay 0.0331 0.0111 0.0092 0.0049 0.0016 0.0028 0.0009 0.0108 0.0096 0.0007
a 0.0101 0.0361 0.0057 0.0081 0.0133 0.0062 0.0121 0.0066 0.0003 0.0020
a3 0.0102 0.0059 0.0347 0.0027 0.0055 0.0020 0.0104 0.0046 0.0069 0.0056
a4 0.0144 0.0018 0.0065 0.0342 0.0006 0.0071 0.0055 0.0066 0.0084 0.0113
X asg 0.0006 0.0016 0.0087 0.0132 0.0435 0.0061 0.0100 0.0046 0.0044 0.0053
ag 0.0022 0.0035 0.0151 0.0015 0.0056 0.0427 0.0062 0.0035 0.0089 0.0125
a7 0.0002 0.0084 0.0026 0.0020 0.0005 0.0086 0.0387 0.0007 0.0034 0.0111
ag 0.0084 0.0100 0.0079 0.0036 0.0100 0.0128 0.0044 0.0303 0.0121 0.0065
ag 0.0028 0.0079 0.0141 0.0008 0.0133 0.0077 0.0064 0.0139 0.0402 0.0068
a10 0.0009 0.0149 0.0042 0.0108 0.0022 0.0144 0.0130 0.0151 0.0146 0.0438

Table 2. Random 10 x 10 probability matrix.
(Kimeldorf, May and Sampson (1982))

For this joint distribution the CMC = .443 and the monotone scales are
given in Table 3.

1 2 3 4 5 6 7 8 9 10
X 0. .461 .461 461 .872 .872 .872 .872 .873 1.
Y 0. .537 .541 .541 .842 842 .842 .842 .842 1.

Table 3. Monotone Scales for Table 2.

It is interesting to observe that for the X variable, there are only 5 dis-
tinct scores for the 10 ordinal categories and for the Y variable, the same
is true. This suggests that for cross—prediction purposes the appropriately
collapsed 5 x 5 distribution with the noted monotone scales allows for the
best linear predictability. Although this approach to obtaining monotone
scales requires further development, it appears to provide a notion of dual

scalings for ordinal contingency tables or may form a basis for “ordinal cor-
respondence analysis.”
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For bivariate discrete distributions on an m X n lattice {u1,...,un} X
{v1,...,vn}, the dual scalings can be computed from a spectral decompo-
sition of the matrix Q@* = D7Y?2QD7M?, where Q = {gi;} = {Prob(X =
u;, Y =v;)}, D, = Diag(qi4,...,¢m+) and D, = Diag(g41,...,¢4+n). Forin-
stance, the sup—correlation is the square root of the second largest eigenvalue
of Q*Q*'. On the other hand, to compute the CMC and the corresponding
monotone scores is a more difficult computational problem. An analogy of
this increased difficulty, is the comparative difficulty of the following two
optimization problems.

(2) sup z'Sz
r'z=1
and
(3) sup 'Sz,
z'r=1
z1 S ...Swp

where § is a symmetric p X p matrix.

Kimeldorf, May and Sampson (1982) express the monotone correlation
problem as a nonlinear programming problem with linear constraints and
then employ a numerical optimization algorithm of May (1979). The result-
ing software package, called MONCOR, is described by Kimeldorf, May and
Sampson (1981) and is available from the author (written in FORTRAN and
requiring IMSL routines.)

When dealing with continuous bivariate random variables, the problems
are obviously compounded. To compute the sup—correlation and correspond-
ing canonical variables requires solving a continuous eigenfunction problem,
although for some bivariate distributions, certain classical bivariate expan-
sions yield these. We are unaware of any technique like these to bring to
bear for the CMC and the corresponding monotone scalings.

Based upon a random sample from a bivariate continuous distribution,
the ACE algorithm of Breiman and Friedman (1985) can be applied to esti-
mate the sup—correlation and corresponding canonical variables. There ap-
pear to be monotonicity constraints within the ACE algorithm which would
allow the estimation of the monotone correlation and corresponding mono-
tone scalings.

No explicit sampling results are applicable to the CMC and DMC, even in
the case of multinomial sampling. Perhaps bootstrapping may be effective
in some of these cases. An asymptotic distribution for the sample sup-
correlation has been obtained by Sethuraman (1990).

No extensions of monotone dependence notions to three or more dimen-
sions are available.
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3. Two—Sample Ordinal Data

Suppose we have random samples from two populations or treatments
where each observation falls into one of & levels of an ordinal categorization.
There are a variety of standard statistical procedures for comparing the two
populations or treatments based upon these data.

An example of this type of problem is in clinical trials, where there is an
experimental procedure (E) and a control (C), and the evaluations of each
patient are the physician’s global rating. These ratings are typically 5—point
or 7-point scales, e.g., very improved, moderately improved, no change,
moderately deteriorated, and very deteriorated. The standard analysis pro-
cedure typically involves: scoring the responses, on an equal-spaced scale,
or using rank scores, or even dichotomizing the response. The interpretative
difficulty is that the scorings are in some sense arbitrary, as would be any
dichotomization.

More specifically, let Ly < --- < Ly denote the ordinal categorical levels’
labels where “<” denotes the underlying experimental order. The arbi-
trariness in many of these two sample procedures comes from the choice
of increasing scores z; < --- < zr (27 # i) that one can assign to the
respective levels Ly,...,L;. Among the standardly used scoring systems
are: (i) 1,...,k, (ii) Ry,..., Ry, where R; is the marginal mid-rank score
for level 4; (iii) ridit scores (and modified ridits), and (iv) 0,...,0,1,...,1
which proves a dichotomization of the levels.

As Kimeldorf, Sampson and Whitaker (1992), hereafter denoted by KSW,
note, the commonly used procedures: (a) Wilcoxon-Mann-Whitney, (b) x?2
on the dichotomization, (c) scored two sample t-test, (d) Cochran-Armitage
test, and (e) appropriate log-linear models all share a common feature. For
all sample sizes (or asymptotically in case (e)), the resultant test statistics
are monotonically increasing functions of a certain correlation r(zy,...,zx).
Denote the resulting data in the form:

Levels
Ly Lo Ly Total
C my meo my m
E n N9 ng n
Total | my +nq | mq + 1o mg + ng N

Then 7(21,...,zx) is the Pearson correlation coefficient based on the scores
Z1,...,2, and the values 0 assigned to C, and 1 to E.

The issue as discussed by KSW (1992) is how does the choice of scores
effect r(z,,...,2) and, consequently, the noted standardly employed pro-
cedures.
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The approach taken by KSW (1992) is to find

T™MAX = max 7(Z1,...,%)
xls...Sxk

T1#T)
and
™MIN = min r(z1,...,%k)
T1#£Tk
and, thus, by monotonicity obtain the max and min of any of the related
test statistics.

For example, suppose that our goal is to test Hy : E = C versus the
alternative that E produces “larger” values than C, and we plan to use
a scored t—test and the t distribution as the approximate null hypothesis
distribution. If the resulting minimum ¢-statistic, ¢tMiN, is greater than <,
the appropriate one-sided a-level critical value, then all scoring systems
produce a statistically siginificant result. Similarly if tMax < t®, then no
scoring system can produce a significant result. If we face the situation
tMIN < t%* < tmax, which we call the “straddling” case, then the results
depend on the choice of scoring system. In this case, much care must be
taken in the choice of scales and in justifying them.

The computational approach of MONCOR. could be used to compute
rmiN and rvax. However, an analytical solution is possible in this setting.
We now briefly describe our approach to computing rvin and 7max, noting
that since r is location and scale invariant, we can, if convenient, assume
that z; = 0 and zx = 1.

REsuLT 1 The empirical distribution for treatment E is stochastically
greater (smaller) than that of C, if and only if r(Xy,...,Xx) > 0 (< 0)
for all possible 1 < --- <z (z1 # zx).

The applications of Result 1 are immediate. If treatments E and C are
not stochastically comparable, then there exist scores, so that the one—sided
or two-sided t-test, etc. will not reject Ho : E = C. In fact, in this situation
there exist scorings which yield both positive and negative t—values.

REsuLT 2A  If E is stochastically incomparable to C, then rpmax occurs at
the scores yi < --- < y; that minimize

k
(4) Y (mi + ni){ni/(mi + i) — y:}?
=1

among y1 < -+ < yx; and TMIN occurs at the scores 2§ < -+ < zf that
minimize L

() Y (mi+ ni){mi/(m; + ni) - ui}?

=1
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among y1 < -+ < Yk

REsuLT 2B If E is stochastically greater than C, ryax occurs at the yi <
.-+ < Y% given in (2A) and rmN occurs at one of the k—1 monotone extreme
points, namely, (0,1,...,1),(0,0,1,...,1),...,(0,...,0,1).

REesuLT 2C If E is stochastically smaller than C, then rpmax occurs at a
monotone extreme point and rMiN occurs at the z; < -+ < zj given in (24).

The solutions to (4) and (5) can be obtained, respectively, from the iso-
tonic regression of n;/(m; + n;) and of m;/(m; + n;), both with weights
(m; + n;). Robertson, Wright and Dykstra (1988) give a variety of algo-
rithms to compute these isotonic regressions, including the simple Pool-
Adjacent-Violators-Algorithm (PAVA). KSW (1992) illustrate the applica-
tion of the PAVA technique to solve a number of examples. For moderate k,
it is straightforward to directly compute rvn and rpmax.

KSW (1992) provide proofs for Result 1 and Result 2. They also discuss
the further interpretation of these results in data analysis but no distribu-
tional results have been obtained for the statistics: rpmmn and rmax. Further

research on this class of problems is considered by Gautam (1991) in his
dissertation.

4. Discussion

For both the problems, correlation between ordinal variables and test-
ing two ordinal populations, we have considered the effects due to arbitrary
monotone scorings. In each case we obtain min and max bounds on the ap-
propriate statistics. The correlation problem requires extensive computation
and the two—sample problem is solved simply.

Further discussion of the problematic “straddling” case for the two sam-
ple problem is given by KSW (1992). The extension of the two sample case
to the one—way analysis of variance and the multivariate setting are being
established by Guatam, Kimeldorf and Sampson.
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