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ABSTRACT

Many procedures in statistical image restoration can be regarded
as regularization techniques involving a scalar smoothing parame-
ter. The paper collates several methods for choosing the smoothing
parameter, including model-based maximum likelihood. Minimum
risk, generalized cross-validation, choice based on fit to the data, and
"equivalent degrees of freedom" choice. Some theoretical and empir-
ical comparisons are summarized.
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1. Introduction to the image restoration problem

The basic structure of our version of the image restoration problem is as follows.
A vector x, of length N, contains the description of a true scene made up of N pixels.
Thus, the z'th element of x, #,-, provides the true label, color, grey-level or intensity of
pixel i, i = 1,.. .,iV.

Although x is the quantity of direct interest, it is not directly available. Instead,
our data consist of a vector j/, the observed record of the true scene. Typically y and
x are not the same, y being a blurred and noisy version of x. The image restoration
problem is, therefore, to construct some "estimate" of x on the basis of y and any other
relevant information. Such a restoration of x will be denoted, generically, by x.

2. The need for regularization

Statistical image restoration is a model-based activity and we motivate the general
discussion of this section by a simple example.

Example: Additive linear model

Suppose x and y are related by

y - Hx + ε,

where H is an N x N matrix and ε represents a vector of noisy disturbances. Thus,
H represents the systematic blur (or point-spread matrix) imposed by the sensor. Its
elements are usually assumed to be known, and we shall follow this assumption here.
For simplicity, we assume that ε represents a Gaussian white noise vector; that is,

ε ~ !\Γ(0, σ2/),

where 0 is a vector of zeroes, I is an identity matrix and σ2 may or may not be known.

In the statistical literature, H might be called the design matrix and a natural
estimator of x, based on y, is the least-squares estimator (or "direct deconvolution")

xo = H~ly = x + H-h. (1)

The motivation for the subscript on xo will become clear later. Equation (1) in-
dicate that E(XQ) = x, a good property, but that cov x0 = σ2H~1(Hτ)~1. The latter
could be disastrous if H is ill-posed and unfortunately this is often the case in image
restoration, where the dimension of iJ, indicated by AT, is very large.

In this respect, we are being confronted with just one of a very wide range of
so-called ill-posed inverse problems. To motivate a general approach to counteract
this numerical instability, note that we can interpret the least-square estimators as the
solution of the optimization problem

), (2)

where
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Note the following remarks,

(i) Δ(y, x) represents a measure of "distance" between the data, y, and the scene, x.

(ii) Alternatively, Δ(y, x), as x varies, gives a measure of lack of fidelity of the restora-
tion to the data.

(iii) Δ(y, x) is equivalent, as a function of x, to — logp(y|x), where p(y\x) denotes the
probability density of y, given x. Thus, if x is regarded as a set of parameters, XQ
represents the maximum likelihood estimator.

The unsatisfactory nature of xo can be ameliorated by solving, not (2), but

min{Δ(y,*)+/?Φ(z)}, (3)

where Φ(x) is some penalty for "roughness" and β > 0 is a scalar. This constitutes
the method of regulaήzation: β is a regular iz at ion or smoothing parameter whose value
dictates the trade-off between fidelity to the data and smoothness. Construction of a
specific restoration involves the choice of Φ, which dictates the manner of smoothing,
and of β, which determines the degree of smoothing.

The regularization prescription appears in a wide variety of problems in statistical
smoothing and image restoration (Titterington, 1985a, 1985b). The following versions
are of particular relevance here.

(i) If Δ(y,x) = —logp(y\x) and βΦ(x) = — logp(x), where p(x) is some marginal
density for x, then the minimizer of (3) is the maximum a posterior estimator of x
(Geman and Geman, 1984).

(ii) If Δ(y, x) is quadratic in x) as in the Example, and if Φ(x) = xτCx, where C is
a non-negative definite matrix, then (3) leads to a ridge-regression estimator of x.
For the Example as stated, the formula is

assuming that the inverse exists. Note how the subscript notation Xβ fits in with
the earlier case based on zero smoothing.

(iii) If the elements of x are positive and p, = Xi/Σxj, then the maximum entropy
method of Gull and Skilling (1984) is revealed as a special case with

Φ(x) = Σpi log pi.

In this paper, we concentrate on the crucial choice of the smoothing parameter, β.

3. General methods for choosing the smoothing parameter

We consider, in the following subsections, several systematic approaches to the
choice of β.

(i) Modelling approach
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(ii) Minimum risk approach

(iii) Generalized cross-validation

(iv) Choice based on fit to the data

(v) Equivalent degrees of freedom approach.

3.1 Modelling approach

To motivate this method, it is helpful to regard the image restoration problem
as a missing-data problem in which, corresponding to the available data, y, there are
complete data, x. Given a probabilistic structure, in the form of p(y\x) and p{x), with
β interpreted as a parameter within the latter, it is natural to base inferences about β
on the likelihood corresponding to the observed data. This is, therefore, p(y) = p(y\β),
where

p(y\β) =

= Jp(y\x)P(χ\β)dx

where explicit indication is now made of the dependence of p(x) on β and where the
integral would be replaced by a summation in discrete problems.

In view of the "incomplete data" interpretation of the problem, a maximum like-
lihood estimate of β might be computed using the EM algorithm of Dempster, Laird
and Rubin (1977). This algorithm generates a sequence {β^} of values by repeating
the following double-step.

^-step: Given β(r\ evaluate Hr(β) = E{\ogp(x,y\β)\y,βW}.

M-step: Choose β = /?(Γ+1) to maximize Hr(β).

The convergence properties of {β^} may or may not be straightforward.

One can dress up this approach in Bayesian terminology. If p(x\β) is regarded as
a "prior" density for #, then the above method of choosing β constitutes an empirical
Bayes technique.

If the elements of x are label indicators associated with a finite palette of colors,
then the problem can be interpreted as a variation of the analysis of mixture data: see
Titterington, Smith and Markov (1985).

Were p{x) such that the elements X{ are independently and identically distributed
and were the y, also independent, conditionally on x, , then the data would be standard
mixture data, for which both E- and M-steps are straightforward and explicit. However,
although the second assumption is plausible, p(x) typically does not factorize in plausible
image models, because of natural, local association among the ar, .

In the case of one-dimensional images, one natural model assumes that the Xj follow
a Markov Chain. Maximum likelihood analysis of such a so-called "hidden" Markov
Chain is described by Baum et al (1970) and by Pickett and Whiting (1987). For this
case the E and M-steps are often explicit, but the #-step is complex, involving forward
and backward recursions over the set of pixels.
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In the obvious generalization to two-dimensional images, Markov Random Field
models are adopted. Now, however, the £"-step is computationally intractable and even
the M-step is non-trivial; see Chalmond (1988) and, for a treatment of the Markov Mesh
model, Devijver (1988). In practice, analytical computation is substituted by simulation,
based on the Gibbs Sampler of Geman and Geman (1984). Alternatively, maximum
likelihood estimation is abandoned in favour of the method of moments (Chalmond,
1988) or other techniques (Derin and Elliott, 1987, Possolo, 1986).

3.2 Minimum risk approach

The motivation here is to find a restoration that is "as close as possible to the true
scene" in some sense. If Xβ denotes the restoration, then one might choose β to solve

where 8 is a measure of distance, now to be interpreted as a loss function. Examples
of this general approach are those of minimum total mean-squared error (TMSE) and
minimum total prediction mean-squared error (TPMSE).

Recalling our criticism of the unstable, but unbiased least-squares estimator in the
example, we see that these risk criteria should achieve some sensible trade-off between
bias and "variance".

Example: Additive linear model

Suppose Φ(x) = xTCx. Then

and the TMSE is

ΎMSE(β) = \\{(HτH+βCyιHτH-I}x\\2Wtτ{(HτH^βC)-1HτH(HτH+βCy1}.

Similarly,

ΎPMSE(β) = E\\y-K(β)y\\2

where K(β) = H{HTH + βC)-ιHτ. Thus,

TPMSE(/3) = \\{I - K(β)}Hx\\2 + σhτ{(I - K(β))2}.

The practical difficulty with this approach is the dependence of TMSE (/?) and
TPMSE (/?) on x. In practice a preliminary estimate, x, might be substituted at this
point or the criterion function might be averaged, using some weighting measure on the
space of x, to create a minimum Bayes risk choice for β.

3.3 Generalized cross-validation (GCV)

The method discussed here avoids the dependence on x experienced in Section 3.2.
The motivation now is to choose β to optimize average prediction of individual observed
values using all the remaining data. This leads to a criterion function of the form CV(/?),
where

N

= N-ίγ^δ(yi,E(yi\ί<p)),
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in which xrp is the restoration computed on the basis of all observations except for x, .
The generalized cross-validation function GCV(/?) is a slight variation on this and is
best illustrated by example.

Example: Additive linear model

If RSS (β) denotes the residual sum of squares and we use a simple quadratic loss
for £, then

= \\{I-K(β)}y\\2

and
GCV(/?) = RSS(/?)/[tr{J - K(β)}2].

Note that GCV(/?) depends only on β and the data. Generalized cross-validatory
choice leads to β = /?GCV to minimize GCV(/?). It turns out that /?GCV has asymptotic
optimality properties, in a certain sense, in some problems including many versions of
the present example; see Golub, Heath and Wahba (1979).

3.4 Choice based on fit to the data

Suppose, for some measure of distance, έ, δ(y, x) is regarded as a measure of
goodness-of-fit and that, conditional on x, δ(y,x) has a probability distribution, Fβ.
Suppose that q(F$) denotes some measure of the location of Ft, such as the mean or
some percentile. Then the present approach selects β to satisfy

δ(y,xβ) =

Example: Additive linear model

Find β to satisfy

RSS(/?) = Nσ2.

(The justification for this, of course, is that E\\y - Hx\\2 = Nσ2. ) If the errors of
observation are Gaussian, then ||y — Hx\\2 ~ X2(N). As a consequence, we call the
resulting β, βCm

The criticisms of this approach are that^σ2, or an estimate thereof, is required
in order to implement the method, and that /?CHI tends to oversmooth; see Hall and
Titterington (1986, 1987), for theoretical and empirical evidence to this effect. The
method has, however, been very popular in the regularization literature.

3.5 Empirical degrees of freedom (EDF) choice

Example: Additive linear model

We choose β = /?EDF to solve

The motivation here is twofold:
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(i) Wahba (1983) suggests using

RSS(^GCv)/tr{7 - K0GCV)}

as an estimator of σ2;

(ii) the method imposes less smoothing than does /?CHI

As in the case of /?CHI> however, a value for σ2 must be available.

4. References to theoretical comparisons

In this short section we make brief reference to previous work on theoretical com-
parisons among some of the above methods. Most of the material refers to the Additive
Linear Model, in which

τ ι τ

Hall and Titterington (1987) investigated deterministic versions of the minimum
risk, CHI and EDF methods, to compare the degrees of smoothing thereby imposed.
Three values of β were defined, as follows:

/?TP : minimizer of TPMSE (/?)

/?CHI : solution of E RSS (β) = Nσ2

βEΌF : solution of E RSS (β) = σ2tr{7 - K(β)}.

Example: Special case with H = C = I

In this case, /?EDF = /?TP = r*1, where

r = xτx/(Nσ2)i

a signal-to-noise ratio, and

The summary of this is that, if the signal-to-noise ratio is large, so that /?EDF is

small, then /?CHI is less small, thereby illustrating the over-smoothing characteristics of

βcm

One way of illustrating the differential effects of the methods is to evaluate tr/^/?)
which, if regarded as the number of degrees of freedom associated with the smoothed
fit, measures the complexity of the fitted regression. For this example, the following
results obtain (Titterington, 1986).

1
3
8

0.5JV

0.75JV

0.89ΛΓ

0.29ΛΓ

0.5JV

0.67ΛΓ
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Hall and Titterington (1987) also look at the case of a class of periodic smoothing
splines and show that

/ W / ? E D F = 0(1).

Their asymptotic results for the additive linear model are extended by Kay (1988).

In Hall and Titterington (1986), models are formulated for second-order, stationary,
one-dimensional images and a variety of restoration procedures are described. In a
comparison between the corresponding /?EDF and /?CHI, it is shown that, if the signal-to-
noise ratio is large, restorations using /?EDF fit the data "more closely", in a well-defined
sense, than do those with /?CHI Equivalently, /?CHI smooths more strongly than does
/?EDF

5. Empirical comparisons

As in the previous section, we restrict ourselves to providing references to more
extensive descriptions of numerical studies and to giving a more flavor of the main
trends revealed therein.

Hall and Titterington (1987) report a simulation study based on a periodic regres-
sion function, fitted using periodic smoothing splines. Figures therein, in particular,
show that, for this example, cross-validatory choice produces a fitted curve that fol-
lows the true regression fairly well. The curves corresponding to /?EDF and /?CHI are
progressively smoother.

A very detailed study in Thompson, Brown, Kay and Titterington (1988) compares

/?TP> /?CHIJ AGΪCV and /?EDF
 o n a very simple, piecewise-constant, 47-pixel image defined

by
ft =100, ι = l,...,14

= 50, i = 15,... ,36
= 100, i = 37, ...,47.

The only non-zero elements in H (assumed known) were

ft* =0.6, i=l, . . . ,ΛΓ(=47)

Ai.i+1 = Λi+M = 0.2, i = l , . . . , Λ Γ - l

= ΛJVI = 0.2.

The noise variance was σ2 = 100 and first order regularization was imposed, so
that C had non-zero elements given by

dj=2 i = l , . . . , Λ Γ - l
C M + 1 = G +i,< = 1, i = 1,.. ., N - 1

= CNN = l

Altogether, 1000 realizations of the observed image were created. Among the many
comparative exercises carried out by Thompson, Brown, Kay and Titterington (1988)
we restrict attention here mainly to one aspect to performance, namely, the effectiveness
in recovering the true scene.

As criterion functions, we use measures of average (per pixel, per simulation)
squared errors, and partitions of this into components measuring bias and variance.
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Suppose from the rth simulation, a restoration x^ results. (For clarity^ the depen-

dence on β is omitted.) Then the indicators of bias, 5 , and variance, V, are given

by

B = N-*\\x-xtf
and

r = l

where R = 1000 and
R

r = l

For this problem the "optimal" /?TP takes the value /?χp = 0.928.

All methods except for /?GCV rely on knowledge of σ 2 . The use of purely data-based
estimates of σ 2 is currently under investigation. Here, we provide results based on both
σ2 and σ^, where σ2

D is the estimator of σ2 based on the true residuals associated with
a given set of data. In other words, given y and x,

The value obtained for Vy B and B ~\-V are provided in the following table.

TABLE

Comparison of performance among /?TPJ/?CHI> /?EDF a n d /?GCV

Method

TP
σ CHI

EDF

GCV

TP
σD CHI

EDF

V

27.3
19.2
57.4

102.0

27.0
16.3
39.6

B

27.7
49.7
23.6

18.1

27.6
50.5
23.5

B + V

55.0
68.9
81.0

120.1

54.6
66.8
63.1

Several interesting points arise from the table.

(i) Although /?χp is unattainable in practice, it is included as a benchmark,

(ii) The "over-smoothing" imposed by βcm is betrayed by the large bias contribution.

(iii) EDF choice performs quite well, particularly in terms of bias, if a value of σ 2 can
be used that is appropriate to the individual realizations. This provides further
encouragement for the search for good, data-based, estimators of σ 2.
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(iv) GCV is also good, so far as bias is concerned, but V is disappointing. This is very
largely due to a few (about 5%) realizations in which GCV results in grossly un-
dersmoothed restorations. This and other awkward features of GCV are discussed
in detail in Thompson, Kay and Titterington (1988).
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