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ABSTRACT

We (i) outline a general framework for generating solutions to un-
derdetermined systems of equations, (ii) review properties of several
specific methods, including minimal norm and maximum entropy, (iii)
introduce specific alternate methods for generating non-negative solu-
tions, (iv) compare, via systematic numerical examples, the solutions
generated by these methods with those generated by the maximum
entropy and minimum norm methods, and (v) consider the nature of
the positivity constraint by studying a transparent example.
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1. Introduction

This study is an attempt to obtain some understanding of the nature of certain
solutions of underdetermined systems of linear equations with a view to their role in
the analysis of various practical inverse problems, specifically those associated with im-
age restoration and computed tomography. For example, one of the questions we are
interested in is the following: under what conditions, if any, is the so-called maximum
entropy solution better than solutions obtained by other methods. To this end we in-
troduce alternate methods for generating non-negative solutions and discuss the results
of several systematic numerical experiments.

More specifically we (i) outline a general framework for generating solutions to
underdetermined systems of equations, (ii) review properties of several specific meth-
ods, including minimal norm and maximum entropy, (iii) introduce specific alternate
methods for generating non-negative solutions, (iv) compare, via systematic numerical
examples, the solutions generated by these methods with those generated by the maxi-
mum entropy and minimum norm methods, and (v) consider the nature of the positivity
constraint by studying a transparent example.

In this paper the basic issue is the non-uniqueness of the solution. We mention
but do not specifically address the important issues of noise, ill-conditionedness, and
efficiency of the numerical algorithms used to implement the various methods under
consideration.

1.1. The basic setup

Consider the system of linear equations

n

jXj = b i , i = l , . . . , m . ( 1 )

Here, we take the field of scalars to be real. Using standard matrix notation (1) may
be expressed as a collection of scalar products

(α, ,x) = 6, , i = l, . . . ,m, (2)

where α, = (α,i, •• ,α»n)T> x = (a?i,... ,#n)T adn (α, ,z) = ajx; or even more compactly
as

Ax = b (3)

where A = (ctij) is an m by n matrix and 6 = (6χ,..., bm)τ.

In what follows the matrix A and the data 6 are assumed to be known. We are
interested in the set of solutions to (3), namely the set

SA,b = {z : Ax = &}.

To avoid complications which are not germane to the questions under consideration
here, we always assume that m < n and that A is of full rank. Thus SAJ is not empty;
indeed, it is an n — m dimensional affine manifold in the real Euclidean space Rn.

1.2. Motivation

In the applications we have in mind, namely image restoration, computed tomog-
raphy, and related inverse problems, A represents the mathematical model or a discrete
analogue of the data acquisition scheme and 6 is the measured data.
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In studying such models many considerations must often be taken into account.
For example, in certain models of seismic borehole tomography A is rectangular but not
of full rank, see [5]; in this case system (3) is both over and underdetermined. Another
complication arises in problems of practical interest by virtue of the fact that there
is always some degree of uncertainty in taking physical measurements. Thus in many
instances (3) is often replaced with

Ax + ε = b (4)

where ε is a random vector which represents noise and has certain statistical properties,
see [1], [8], [9], [11]. In view of the fact that there are standard techniques to handle
the above complications we feel that taking into account such considerations here will
unnecessarily complicate the discussion and cloud the main issue which is the lack of
uniqueness.

Returning to the problem modeled by (3), it is clear that the desired quantity is
a solution which, unfortunately, is not uniquely determined by the measured data. In
fact, the set of feasible solutions 5 ,̂6 is very large indeed.

Ideally, if one could constrain the feasible set of solutions appropriately, (3) should
contain enough information to uniquely determine the x which gave rise to the data.
Of course, the best that one can usually expect is to obtain a reasonable estimator.

We outline some general methods for constraining the feasible set of solutions in
section two. In the third section we consider some familiar examples, specifically the
minimum norm and maximum entropy methods, and introduce some new methods.
Finally, in section 4 we consider the consequences of certain constraints, particularly
the constraint of componentwise positivity; here we also indicate the results of several
numerical experiments.

2. Restricting the feasible set

There are many procedures for restricting the solutions of (3). In this paper we con-
sider two general and often related methodologies. These are described below together
with a familiar example. Details of how they are related are contained in subsection
2.3.

2.1. Parametrization

One method is to assume that the solution of (3) is of a certain form. Namely

x = F(ξ) (5)

where ζ = (£i, •-,£*) is contained in a subset of Rk, call it V, and F is a mapping
of V into a subset M of Rn. Typically the set V is an open subset of Rk and the
mapping F is one to one and continuously differentiable; in this case M may be viewed
as a k dimensional submanifold of Rn. We will always assume that this is the case
and, for readily transparent reasons, see (6) below, take k — m. Essentially F is a
parametrization of the manifold ΛΊ.

The problem now reduces to finding values of the acceptable parameter ξ such that

AF(ξ) = b. (6)
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If ζ is any solution of (6) then clearly x = F(ξ) is in the intersection of M and SA,b-
The main difficulty with this approach in the general case is assuring that the form (5)
is such that (6) has a unique solution for every b which may arise in a given application.
Furthermore, except for certain examples, it is difficult to determine Λ4, let alone the
intersection of SAJ with M.

One classical example where (6) has a unique solution for every b is the case when
*P is Rm

x = F{t) = tiai + ...+ ξmam = Aτξ, (7)

and Λi is the linear subspace generated by α i , . . . , α m . In this case the unique solution
of (6) is given by

τ ι (8)

and the corresponding solution x of (3) is given by

x = AT{AAT)-H. (9)

(We remind the reader that A is assumed to have rank m which implies that AAT is
invertible.) We will return to this important example later.

2.2. Optimization

The other general approach is to find the minimum (or maximum) of a scalar valued
function f(x) defined on a subset K of Rn subject to the constraints imposed by (2).
In other words, find x which satisfies

f(x) = mm{f(y):yelCnSA)b}. (10)

Of course / should be chosen so that the set ICΠSAJ is not empty and / has a unique
minimum on this set. Fortunately by choosing / with certain readily verifiable proper-
ties, for instance, convexity, it is not difficult to guarantee that the desired conditions
are satisfied.

For example if / is a positive definite quadratic form on K = Rn then it is a classical
fact that (10) has a unique solution, see [10]. In the special case

the solution is known as the minimum norm solution of (3) and is given by (9).

2.3. A connection

As mentioned earlier, often the methods of parametrization and optimization are
related. To see this, assume that f(x) is continuously differentiate and formally
apply the method of Lagrange multipliers to solve problem (10). In particular, set
£ = (ίi, ,fm)T where the f, are the "lagrange multipliers" and write

Taking the gradient of h and setting the result to 0 gives
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and
df(χ)

The first set of equations is just (2). The last set of equations can be written more
compactly and transparently as

V/(x) = Aτξ (12)

where V/ denotes the gradient of / . If V/ is invertible the optimal solution may be
expressed as

x = G(Aτξ) (13)

where G is the inverse of V/. Finally, equations (2) and (13) imply that under appro-
priate conditions the solution to problem (10) is given by x of the form (13) where ξ is
a solution of

AG(Aτζ) = 6. (14)

The relationship mentioned above should now be clear. Roughly speaking, if F(ζ) =
G(Aτξ), where G is the inverse of V/ then the two methods should give rise to the
same solution. This observation is useful when trying to determine whether (5) has a
unique solution and other questions related to F.

In the case where / is of the form

equation (13) is particularly simple. Namely, it can be expressed as

xj=gj«Aτξ)j),j=l,...,n, (16)

where (Aτξ)j denotes the j-th component of Aτξ and gj is the inverse of the (univariate)
derivative of fj. Essentially all the examples below are of this form.

3. Examples

3.1. Minimum norm and generalizations

As indicated earlier the minimum norm solution of (3) is the solution to problem

(10) in the case
f(x) = (x,x) (17)

perhaps a more accurate description would be the minimum quadratic norm solution.

Standard variants of (17) are more general quadratics which include /'s of the form

f(x) = q(C(x-y))

where q(x) = (x,x), C is an n x n matrix, and y is a constant vector. The parameters
in C and y are usually chosen to influence the behavior of the solution. Properties of
such solutions are well known and well documented, for example see [2], [3], [10], and
the references cited there.



232 W. R. Madych - XVII

Perhaps the most important feature of this method is the fact that the relationship
between the data and the resulting estimator is linear. Besides being a convenient
theoretical tool, this property allows for efficient computational algorithms in many
applications.

3.2. Maximum entropy

The maximum entropy solution of (1) is an estimator whose components are of the
form

( n \
(18)

where p = (pi, . . . ,pn)
T is a constant and the £, 's are parameters chosen so that x =

( # ! , . . . , x n ) τ satisfies (1). Using the notation and terminology of subsection 2.1 this
form can be expressed more compactly as

x = F(ξ) = Pexp(AτO, (19)

where P si the constant diagonal matrix with diagonal p and the exponential is inter-
preted componentwise, namely, if y = {yu . . . , yn)

τ then exp (y) = (exp (t/i),..., exp (y n))T

Observe that in this case the manifold M is contained in the positive cone

Thus it should be clear that any estimator of this form will have non-negative compo-
nents.

The parameter p is chosen to influence the behavior of the solution. In the dis-
cussion below, unless indicated otherwise, we always assume the components of p to be
one.

Observe that the manifold M can be described so that in low dimensional examples
it is relatively easy to visualize. For example, in the case m = 2, n = 3, if the last
column of A is a linear combination of the first and second with coefficients a\ and c*2
respectively, then M may be described by

A Λ — f . *^ Γί -^. Γ\ — ^ 1 ^ 2 1

In the general case, if A is such that the first m columns are linearly independent, and
the components of x can always be permuted so that the resulting system of equations
has this property, then M is the intersection of the manifolds ,Mt ,i = 1,... ,n — m,
where

Mi = {x :xχ > 0, . . . ,z m > 0,zm+, = x"n x^ m } .

and the α tj's are appropriate constants.

It is not difficult to see that the resulting estimator may also be viewed as the
solution of the minimization problem (10) with



XVII - Solutions of Underdetermined Systems of Linear Equations 233

where log is the natural logarithm with base e and the constants pj are those in (18).
As suggested in subsection 2.3, an immediate consequence of this formulation is the fact
that if the solution hyperplane SAJ intersects the positive cone R+ then 5 ,̂6 intersects
the manifold parametrized by (19) at exactly one point. In other words, if BJ+ ΠSAJ is
not empty then (3) has a unique solution of the form (19).

Note that the particular normalization of / in (20) results in x = p as the optimal
solution in the case of no constraints.

It should be mentioned that the maximum entropy solution is often viewed as that
estimator which maximizes the negative of an expression similar to (20). Thus the term
maximum. The rationale behind the term entropy is discussed in [4] and [6].

In view of the fact that much work has centered around this method surprisingly
little is known concerning the theoretical properties of the resulting estimators beyond
the immediate consequences of the definitions.

One interesting fact concerning such solutions to a very special class of linear sys-
tems has been given in [4] and [7]. These systems can be described as follows: Suppose
n = Ik and write the variable x = (x\,..., xn) in a rectangular array as shown.

Xl . . . Xk

: : (21)

The system of equations then is simply the collection of row sums and column sums of
(21), namely

(22)

t = l

where each row and column sum is positive and

ri + ... + r, = 1

C1 + ... + C* = 1.

For this system the maximum entropy solution is given by

X(i-i)k+j = riCj. (23)

In other words, the value of each component is the product of the row and column sums
which contain it.

The setup involving (21), (22), and (23) has the following probabilistic interpreta-
tion. If the Xj 's represent the probabilities of certain basic events uλ, , j = 1,..., n, then
the sums in (22) represent the probabilities of the unions,

Pi = U*=1α;(t _ 1 ) f c + i , i = 1,..., / and jj = U{= 1ω ( i_1 ) i b + i, j = 1,..., k.

Formula (23) expresses the fact that p, and jj are mutually independent events in the
probabilistic sense. This interpretation is valid only for systems of the type described
by (22); presently there are no analogous results for more general systems.
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3.3. Methods for generating bounded solutions

In this subsection we introduce two alternate methods for generating solutions
which are bounded componentwise based on the generalities in the second section.

Observe that it suffices to restrict our attention to those methods which generate
estimators which are in the positive cone Λ+ since the change of variables x —• x — y will
easily transform such a method to one which generates estimators which are bounded
componentwise from below by y. A similar remark holds concerning boundedness from
above.

If ξ = (fi,. . . ,£m)T>"~°° < ζi < °°)* = 1,... ,πι, consider the parametrization
given by

\ T J ) ] + 4 } , j = l,...,n, (24)

where (Aτξ)j denotes the j-th component of Aτξ. This parametrization can be ex-
pressed more compactly by the formula

x = Φ(Aτξ)1 (25)

where if y = (t/i,..., yn)
τ then the j-th component of Φ is given by

φj(v) = \ivi + \JyjT*}J = i, ,».

Observe that if Mφ denotes the manifold parametrized by (24) then Mφ is con-
tained in the positive cone Λ" . Thus any solution of (3) which enjoys the representation
(24) must have non-negative components.

Proposition 1. If the intersection of SAJ and -R+ is not empty then

AΦ(Aτξ) = 6 (26)

has a unique solution ξ. In other words, MΦ Π SAJ contains exactly one element

x = Φ(Aτξ).

Proof. Consider the scalar function / defined on i£+ by the formula

in iζj.. Using the chain of reasoning outlined in subsection 2.3 it is apparent that such
an x satisfies

= Aτξ

for a unique ξ. Since Φ is the inverse of V/ we may write

x = Φ(Aτζ)

and the desired result follows.
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For another example consider the relation

s = t-± (28)

for positive numbers t. Since the right hand side of (28) is an increasing function of t
it is evident that (28) defines a function ψ(s) mapping 0 < s < oo onto —oo < t < oo.
Note that φ(s) is a root of the polynomial t4 — st3 — 1. Now, using roughly the same
notation as in (25), we define another parametrization by the formula

x = *(Aτξ), (29)

where the j-th component of Φ is given by

and φ is the function defined earlier in this paragraph.

It is not difficult to see that everything that was said concerning Φ also holds for
\P. Indeed, we may state the following.

Proposition 2. Proposition 1 remains true ifΦ is replaced by Φ.

Proof. Recall the proof of Proposition 1. if we simply replace (27) by

(30)

the rest of the proof of this proposition is the same as that of Proposition 1. •

A direct consequence of the above propositions are two methods for generating
estimators for (3). For future reference we will refer to them as method one and method
two.

4. Numerical experiments and comments

Recall that the estimators generated by the method of minimum norm are linear
functions of the data. Furthermore there are a host of efficient algorithms for computing
them, see [2] and [10]. On the other hand, the estimators generated by the other
methods mentioned above depend non-linearly on the data and, as is readily evident,
are considerably more difficult to compute. Thus understanding the nature of these
estimators and their relative merits is of some practical significance.

4.1. Description of numerical experiments

To obtain a sense of the nature of the estimators generated by the methods outlined
in Section 3 we performed numerical experiments on relatively small linear systems. The
systems considered were of the form

~ 2_] Xi+j = 6, , i = 1,..., m, (31)



236 W. R. Madych - XVII

where k < n,m = n — fc +1, and n is the number of variables Xj. System (31) is a typical
example of a one dimensional blurring model. The sizes considered for our experiments
ranged from m = 15,n = 20tom = 8 0 , n = 100 with the ratio m/n varying between
0.5 and 0.9. The experiments were performed as follows:

A non-negative pseudo-random vector x = (#i , . . . ,xn)
T was generated via a

canned subroutine and the data 6 = Ax was computed. Then each of the methods
outlined in Section 3 was used to generate an estimator. We refer to those methods as
minimum norm, maximum entropy, method one, and method two or, more briefly, MN,
ME, Ml, and M2 respectively. Formula (9) was used to compute the MN estimator.
The other estimators were computed by using Newton's method to solve (6) for ζ and
then using (5) to evaluate the corresponding estimator x. In the case of maximum en-
tropy the values pj = \yj = 1,... ,n, were used. The resulting estimators were plotted
together with the true phantom x. In each case the error

was computed.

The results of these experiments can be loosely described as follows:

When the lower bound, zero in this case, was not a tight one for the phantom
then all the methods generated estimates which were roughly equivalent. Namely, they
differed from one another but the differences were judged not significant. The computed
error varied but was roughly the same order of magnitude for all the methods. For
example, see Figure 1; here m = 19, n = 24 and the components of the phantom x are
uniformly distributed between 0 and 1.

On the other hand, when the lower bound for the phantom was reasonably tight
then the methods which enforced the lower bound generated considerably better esti-
mators. Indeed, the computed errors for estimators generated by ME, Ml and M2 were
significantly smaller than the error for the estimator generated by MN. The estimators
generated by ME, Ml, and M2 differed but the difference was judged not significant;
the same was true of the corresponding computed error. For example, see Figure 2; here
again m = 19, An = 24 but the components of the phantom x are distributed according
to the 1/4-th power of the uniform distribution between 0 and 1.

Similar experiments were performed on systems of the form

Σ
2πij .

Xj cos ,z = 0 , . . . , Ar,

i = i

Σ . 2 π i j .
Z ; S i n - ^ - , z = l , . . . , f c ,

ii

where m = 2k + 1 and m significantly less than n. Here the results were roughly the
same as those reported above, although in the cases when the lower bound was tight on
the phantom the differences seemed less dramatic.
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4.2. Comments

To obtain some perspective on the observations recorded in the previous subsection
consider the system given by

xx + χ2 = ε and x2 + xz = 1 (32)

where ε is a small positive number. In this case SA b is simply the line in R3 parametrized
by

x = (e - t,t, 1 - *), —oo < t < oo.

Suppose that, in addition to (32) we know that the phantom which gave rise to the data
had non-negative components. Namely

xi > 0 , z 2 > 0 , x 3 > 0 . (33)

It is then clear that with this additional information the feasible set of solutions is that
part of SAJ contained in a ball of radius y/3ε/2 centered at (ε/2,ε/2,1 — (ε/2)). Thus
any non-negative solution of (32) will be within y/Άε of the desired phantom. Indeed, if
ε = 0, then (32) together with (33) imply a unique solution.

The principle illustrated by the above simple example is no doubt valid for much
larger and more complicated systems of equations. The extent to which this principle is
valid depends on the matrix A and the phantom x and should be possible to characterize
quantitatively in terms of these parameters.
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