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Abstract

Several techniques are presented for the analysis of measure-valued stochas-
tic processes. These methods are then applied to a number of examples so as to
determine the behavior of the processes at fixed times, in the long term, and in
the renormalization limit.

I. Introduction. Interest in the theory of measure-valued stochastic pro-
cesses, which were first introduced by Dawson (1975) in the study of branching
diffusion systems, has recently increased as a result of the work of Dynkin
(1988,1989) and Perkins (1988,1989,1990) on superprocesses. In the interim,
measure-valued processes have been used to describe the dynamics of popula-
tions whose underlying distributions are continuously changing, and which are
therefore described via a distribution or random measure at each fixed time.
They also arise as the diffusion approximation to certain real-valued processes
describing spatially-distributed systems. Applications that lead to measure-val-
ued processes in the diffusion limit include models that describe the behavior of
systems of branching and diffusing particles (Dawson (1977), Dawson-Hoch-
berg (1979), Hochbeig (1980,1983), Iscoe (1986,1988), Dawson-Iscoe-Peikins
(1989)); models describing frequency distributions of alleles in neutral, non-
neutral and interactive populations (Fleming-Viot (1979), Dawson-Hochberg
(1982, 1983), Hochberg (1986), Ethier-Kurtz (1987), Ethier-Griffiths (1987,
1990), Vaillancourt (1990a,b)); and the continuous limit of hierarchically-struc-
tured branching and branching diffusion systems (Dawson-Hochberg-Wu
(1990), Dawson-Hochbeig (1991)).

In what follows, we review several techniques for analyzing measure-valued
stochastic processes, present examples in which such processes arise, and show
how these techniques are used to study the behavior of such processes at fixed
times, in the long term, and in the renormalization limit.

1. Research partially supported by U.S. National Security Agency grant
MDA 904-88-H-2044 and U. S. National Science Foundation grant
DMS - 8800289.
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Π Techniques. As is the case for any general Markov process, a measure-
valued process can be described via an infinitesimal generator G, defined so as
to incorporate the evolutionary forces that lead to changes in state, and a domain
D(G) on which the generator is defined. In the diffusion approximation, one
considers an appropriately rescaled limiting version G of a generator GN, de-
fined for fixed values of N. One shows the existence and uniqueness of the re-
sulting process as a Markov process with values in an appropriate space of
measures via semigroup techniques or by solving an initial-value martingale
problem.

For a locally compact complete separable metric space 5, let M(S) denote

the space of bounded Radon measures on 5, furnished with an appropriate metric

so as to be a complete, separable metric space with a topology equivalent to that

of weak convergence of measures. For a closed subset E of M(5), let B(E) de-

note the σ-algebra of Borel subsets of E, C^iE) denote the space of continuous

bounded functions on E, and L^E) denote the space of bounded measurable

functions on E. Let Ω? = C( [O,*** )9E) be the space of continuous functions

mapping [0, ~) into E, and let Ω^ = D ([0, <*>), E ) be the space of functions

mapping [0, <») into E that are right continuous with limits from the left. A

measure-valued (or E-valued) stochastic process {X(t): ί > 0} is then given by a

mapping X: [0,oo]χΩ^(orΩ^) ->£ defined by the canonical process

X(ί, ω) s ω(0 for t > 0, ω e Ω£ (or Ω£) . The distribution of a measure-valued

stochastic process {X(t): t > 0} is determined by a measurable mapping μ -> Pμ

from E into P (Ω£) or P (Ω£) , the space of probability measures on Ω£ and Ω£ ,

respectively, furnished with the topology of weak convergence.

An £-valued stochastic process {X(t): t>0) with time-homogeneous transi-
tion probabilities is uniquely determined by the characteristic functional of the
initial distribution X(0) = v e E, defined for fe cb (S) by

Φ (/) • Jexp (ψ(χ) v (dx) V (dv), (2.1)
E \S J

and the characteristic functional of the probability transition function, given by

* t v W =E{exp(iίf(x)X(t,dx)λ\x(O) = v } . (2.2)



214 HOCHBERG

Equivalently, one can use Laplace functionals of the form

L , v ( / ) = E{exp(-jf{x)X{t,dx)λ\x(O) = v } . (2.3)

Under these circumstances, the cumulant generating function w(γ) will satisfy

^ iV(Λ = exp ί-ju (t, x)v(dx)\ (2.4)

where u(tpc) can be obtained as the solution to a (generally nonlinear) initial-val-
ue problem of the form

^L (2.5)

«(0,x) = /(*).

In the semigroup approach to proving existence, the goal is now to show that
the solution u(tpc) can be expressed as

u(t,x) =U,/(x) , (2.6)

where {Ut: t > 0} is a semigroup of nonlinear operators on C&(S); it is then relat-

ed to the generator G of the Markov process via the relationship

G/= lim t 0 (U r /-/)Λ

Another approach to proving existence, due to Stroock and Varadhan, is to
solve an appropriate martingale problem. Specifically, for a subset A of
Cb(E)xLoo(E), a family of probability distributions {Pμ: μeE] is a

P(Ω£) - (or P(Ωξ) - ) solution to the initial-value martingale problem for A if

for every pair (/; g) e A, the following hold:

(i) Pμ € P (Ω£) (or P (Ω£)) for each μ e E\

(ii) Pμ{ω:X(0,ω) = μ } = l for each μ e E ;

(iii) for each Pμ, the canonical process {X(t): t > 0} is a solution to the mar-

tingale problem for A in the sense that for every (f, g) e A,

t

Z(t)=f{X(i))-\g(X(s))ds
o

is a Pμ-martingale.
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Dawson and Kurtz (1982) proved that the uniqueness, measurability, and

strong Markov property of a P{ΩcM^}-valued solution {/>μ: μ e Λ/(S*) } of

the initial-value martingale problem associated with the pair (FpGFβ for

feD = u D OS* N ) , where 5* denotes the one-point compactification s\u {«>}
JV = O

of S, Fj(μ) is the monomial

Ff(μ) = j...jf(x1, .xN(f))μ(dxι)...μ(dxNω) (2.7)
s s

on M(S*)9 N(f) = N if /e D (S* "), and S*^ denotes the N-fold Cartesian product

of 5, follows from the existence of a solution to the martingale problem associat-

ed with the function-valued dual process [Y(i)\ t > 0} with generator Gd defined

via the relationship

GFf(μ) = GdFμ(f) +V(N(f))Fμ(f) (2.8)

for a function V defined on the set {0,1,2,...}, where Ff(u) =Fμ(f). X(t) and Y(t)

are said to form a pair of dual processes if the martingale problem associated

with {(Ff ,G Fβ : /e D (G)} has an M(5*)-valued solution {X(t): t > 0} and the

martingale problem associated with {(Fμ,GdFμ): μe E] has a Π^^-valued so-

lution {Y(t): t>0}9 where UD{E) denotes the smallest algebra of functions on£

which contains Π^(£), the set of monomials with coefficients /e D restricted to

E.

The function-valued process Y(f) has a state space nD(E) that is sufficiently

rich so as to generate L^iE) under bounded pointwise convergence, so one can

apply the theorem of Stroock and Varadhan (1979) that asserts that there will be

at most one solution to the initial-value martingale problem for A if for each t >

0 and Fe nD(E), there is a function HF te L^iE) suu* uiat for μe E,

= E{Fμ(Y(t)) exp Cjv(Y(u))du) 7(0) = / } . (2.9)

for any solution [Pμ: μe E) of the martingale problem for A. From the duality

relationship (2.8) above, it follows that the function HFt(μ) will be given by
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£μ{Ff(X(t))} = E{Fμ(Y (t)) exp [jv(Y («)) *.) Y(0) = / } . (2.10)

ΠL Examples. A. Measure-valued branching diffusion process. Branching

diffusion processes consist of individuals or particles that move in space accord-

ing to some deterministic diffusion, and independently, at random times, each

particle either splits into k (k = 2,3,...) particles with probability p^ > 0 or disap-

pears with probability po= l-^pk>0. The process is called critical if the ex-

pected number of particles remains constant, as occurs, for example, in a binary

branching situation withpo =/?2 = 1/2-

Now consider a critical branching diffusion process where the particles

move in Rd according to a symmetric stable diffusion of index α, where 0 < α <

2 (e.g., α = 2 corresponds to Brownian motion diffusion), and, independently,

after exponentially distributed holding times, either branch or die. The "high

density" measure-valued limit of this process has been called the stochastic

measure diffusion process and is obtained by considering a succession of such

branching diffusions with progressively increasing numbers of particles of suc-

cessively smaller individual mass in such a way that the expected total mass re-

mains constant.

The basic construction of this process, together with some of its fundamen-

tal properties, appears in Dawson (1975,1977); the local structure of the result-

ing random measures is presented in Dawson and Hochbeig (1979). Here the

semigroup approach is used, and it is shown via the Trotter product formula that

the semigroup {Ut: t>0} of nonlinear operators defined in (2.6) can be well ap-

proximated by the alternation of the Markov semigroup [St: t>0] of contraction

operators on C01) associated with the symmetric stable process onRd of index

α with the semigroup [Tt\ t > 0} of operators that determines the branching

mechanism, defined for/e ck{Rd) by

TtAx)=Ax)/[UytKx)], (3.1)

successively over small intervals of time. Thus, the value of the process at time

t is approximated by the result of successively creating particles according to the

branching mechanism defined by (3.1) and then smearing them out via the sym-

metric stable diffusion, each over small time intervals of length t/m.

The cumulant generating function (2.6) here satisfies the nonlinear equation
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^ M = G α « ( u ) - γ « 2 α , ) , (3.2)

where Gα is the infinitesimal generator of the Markov semigroup [St: t > 0}.

From the scaling property

SΓ,/α,r(0) (3.3)

for symmetric stable diffusions, where f^r(u) =f(r~ι/au) and r > 0, it follows

that over a time interval of length f, particles will tend to diffuse only within a re-

gion whose diameter is of the order tι/a.

B. Multilevel branching process. Measure-valued processes arising in the

study of dynamic multilevel information structures have been introduced by

Dawson and Hochbeig (1990,1991). At each level, individual information units

undergo a Galton-Watson-type branching process in which they can be copied or

removed. In addition, collections of information units at a given level comprise

information units at the next higher level which also, independently, undergo

Galton-Watson branching. Such multilevel systems arise in the description of

replication of digitized data banks and in the evolution of animal and plant pop-

ulations, in which individuals evolve both at the local level and at the colony

level, in the sense that genetic structures of individuals may be altered through

births and deaths within a given colony, while the colony itself may disappear at

random times due to natural calamities, or it may replicate, say to establish a

copy of itself at a new habitat. These mutlilevel processes also arise in the de-

scription of new mutations in mitochondrial DNA, because sampling processes

are taking place at both the oiganelle and the individual levels.

In the two-level critical binary branching case, we start with a finite system

of branching particles on Rd, which can be represented as a point in M(Rd).

These particles then replicate to create superparticles or die, and each particle

then continues to evolve independently and undergo further branching, thus

yielding a random number of copies. The two-level branching process {Xt: t >

0} can then be viewed as an Λ^Z^-valued pure jump Markov process, where

N(Z?) denotes the set of integer-valued measures on Z*. A measure in N(Z*) can

be represented by a vector {(nfr. i e z + }, where Λt denotes the number of su-

perparticles consisting of exactly i particles. The four possible transitions of

state in the process involve the birth or death in a superparticle of size i or the

copy or disappearance of a superparticle of size i. The generator G of this
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Markov processes and its domain £>(G) are given by

D(G) = {F: F(μ) s fP%nj) =AJ φ φ ) = Λ<φ,μ>)> where μ = ΣΛ. .

GF(μ) = γ2(l + C2/2)J [/(<φ,μ> + φ(x)) -Λ«P,μ>)] μ(<fc) (3.4)

+ γ2 (1 - C2/2)J [/T<φ,μ> - <p(x)) -Λ«p,μ>)]μ(<fc)

(1 + C\I2)\ x[/r«p,μ> - φ(x) + φ (x + 1)) -/(<Φ,μ>)]μ(<fc)

(1 - Cl/2)J x\f(«ρ,μ> - φ) + φ (x -1)) -Λ<Φ,μ>)]μ(ίic)

where y^ and γ 2 are constants denoting the particle and superparticle branching

rates, and the constants c\ and c 2 are determined by the mean offspring sizes of

the level-1 and level-2 branching processes, so that q = 0 (> 0, < 0) corresponds

to critical (supercritical, subcritical) behavior at level i. An analysis of the set of

moment measures {/nn: n = 1,2,...} given by

n

mn(t9μ:Aι AJ ^E{\[X(ttA^\X(0) =μ } (3.5)
i = l

yields the characterization of the process {Xt} as the unique solution of the

NCZ^-valued martingale problem associated with G.

The continuous diffusion limit of this multilevel system is given by the

M(/^)-valued process [Yt: t > 0} obtained as the weak limit of the process

tt(A) =εX?(A/ε), (3.6)

where {Xf: t>0} is the two-level process with 7̂  = γ/ε, f2 = γ/ε, c\ = ε c p

c 2

ε = εc2 The process {Y,} is characterized as the unique solution to the martin-

gale problem associated with the generator Gc given by

> (3.7)

where

£Φ = ̂ vΦ' +γ^^φ' . (3.8)
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Here, the cumulant generating function u(. , .) in the Laplace functional (2.4)

that determines the transition probabilities on M(R*) satisfies

du i a2w Bu i 2

A non-explosion criterion to ensure existence and uniqueness for a general

class of multilevel birth-and-death processes is given in Dawson, Hochbeig and

Wu (1990).

C. Multilevel branching diffusion process. We now consider a finite system

of branching random walks on Rd and again assume that the entire system per-

forms critical binary branching after exponentially-distributed holding times.

Each replica then develops independently according to the branching random

walk. This addition of a spatial structure to the lowest level yields a multilevel

branching random walk, which can be represented as a random atomic measure

Ya(t) on M(Rd). This process and its continuous diffusion limit Y(t) are M2{Rd) =

M(M(/?^))-valued processes. Y(t) is characterized via the martingale problem for

the limiting generator G given by

GF(V) = «LF(V, ), V » + ij/F" (v ;μi,μ2) δ^ (dμ2) v (dμχ) (3.10)

where

«H,V» = \H (μ) v (dμ) (3.11)

for H e C (M (Rd)), and the test functions F(v) on M2(Rd) have the form

F(v) = Λ « λ i ( < V >), v » ) (3.12)

Where hχ/e C\(/?) ,Λ2e C2(Rd) ,v E M2(/?rf), < A, μ> = jhdμ,

F'(v,μ) =

and L denotes the generator of the Λf (Λrf)-valued branching process, so

LF'(v,μ) = / f(«Λ x (<Λ2,.>),v»)/ιf

1(<Λ2,μ>)<ΔΛ2,μ> (3.14)
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The Laplace functional of the M2-valued process Y(.,.) is given by

LtfV(H) = E[exp(- J Y(tt 4 0 ) I Yφ) = v] = expir] U(t,μ)v(dμ)) (3.15)
M(Rd)

for H € C+ (M(Ra)), where

|ίί = LU-U2. (3.16)

D. Fleming-Viot process and other genetical models. Fleming and Viot

(1979) introduced a model to describe the distribution of multi-dimensional ge-

netic characteristics in large natural populations. Here, each coordinate repre-

sents a different observable genotypic or phenotypic characteristic of the

individuals in the population. This model is analyzed in Dawson and Hochberg

(1982,1983), where it is shown that it arises as the weak limit of the continuous-

time Ohta-Kimura ladder or stepwise-mutation model for selectively neutral al-

lelic populations evolving under random genetic drift, via multinomial sampling

from the empirical distribution of allelic frequencies in the host population, and

a symmetric mutation structure, where the large population limit is taken so that

the mutation rate remains constant while the incremental effect of each mutation

is assumed to decrease.

A general characterization of the Fleming-Mot process that includes the

possibility of selective advantage of some allelic types over others is provided in

Ethier and Kurtz (1987). Let the compact metric space 5 denote the set of types,

let the mutation rates be described by the generator A of a Feller semigroup on

the space C(S) of continuous functions on S, and let selection intensities be spec-

ified by a symmetric, bounded, Borel function σ on S x S. The single-locus mea-

sure-valued diffusion {Xt: t > 0} is the Markov process in P(S), the space of

Borel probability measures on S, associated with the generator G with domain

D(G) given by

D(G)= {φ:φ(μ) = Π </J,μ>,/1,.../ne D(Λ),n>l
i = l

Gφ(μ) = £ [ <//;,μ>- </;,μ> <fJtμ> Π

+Σ < Λ ^ > Π <fj^> +Σ [ < σ ^ 2 >

i j*i i j*i

where </,μ> = J /dμ. Specifically, A can be taken to be the infinitesimal gener-
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ator Gα of a symmetric stable diffusion of index α, or, for the case α = 2, the

Laplace operator Δ.

Vaillancourt (1990) has extended our study of this process to include a class

of weakly-interacting Fleming-Viot processes. Specifically, he considers the

case where offspring choose their genotype or phenotype from the empirical fre-

quency distribution of types in some neighboring population, rather than from

the parent or host population.

Ethier and Kurtz (1987) have analyzed the infinitely-many-alleles model of

Kimura and Crow using a similar measure-valued approach necessitated by the

introduction of selection into the model. Ethier and Griffiths (1987) provide the

corresponding measure-valued analysis for the infinitely-many-sites model of

Kimura. These last two models take into consideration the possibility that muta-

tions do not always lead to previously existing states. Such dynamic models

arising from molecular population genetics theory have gained more credence

among geneticists as a result of the recent recognition of the gene as a sequence

of nucleotides and the resulting advances in nucleotide sequencing.

E. Multilocus Fleming-Viot process with recombination. The multilocus

measure-valued Fleming-Viot model incorporates the possibility of recombina-

tion between genes at different loci. In the two-locus diffusion, the state space is

taken to be Rdι xR*2 and (3.17) is replaced by

n

GYί <
ι = l

= Σ
n

+ (1/2) D1 £ <Δrf/;. x S,
« = 1

n

+ (1/2)Z)2]Γ

n
+ (l/2)p]Γ

i = l

where Δ^ denotes the d-dimensional Laplace operator, Dγ and D2 are mutation

rates, and p, 0 < p < «», is a recombination rate such that p = 0 corresponds to

complete linkage and p = ~ corresponds to zero linkage.
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Ethier and Griffiths (1990) have discussed the general two-locus theory in

the case where the two mutation semigroups (one for each locus) are eigodic.

Uniqueness of the measure-valued two-locus problem follows using the func-

tion-valued dual approach, since the recombination term introduces a linear birth

rate while the random genetic drift (final) term introduces a quadratic death rate.

The special case of complete linkage can also be considered as a particular ex-

ample of (3.17).

IV. Results. Analysis of the measure-valued processes introduced in the

last section has produced results of three distinct types: fixed-time behavior of

the process, including analysis of the topological support set of the associated

random measures, clustering phenomena for individuals or mass, coherent trans-

lation or dispersive behavior of mass over the state space, and distribution of the

numbers and mass of surviving particles; long-term behavior of the process, in-

cluding ergodic limits, stationarity of the limiting distribution, rates of growth or

decay, and the wandering or coherent nature of the processes as time increases;

and renormalization theorems, in which an appropriate scaling factor is incorpo-

rated into both the time and space variables, and the resulting rescaled process is

shown to converge to a limit as the scaling factor increases.

A. Fixed-time behavior. At each fixed time u the value of a measure-valued

process is given by a random measure X^ω). This measure is said to be singular

if there exists a random support for the process that has Lebesgue measure zero.

In general, a set is said to be singular if it has zero Lebesgue measure.

The Hausdorff-Besicovitch dimension of support of a Borel set E is defined

by

//-dim E = sup{β>0: lim inf £ [d(EJ]β = ~ } (4.1)

where d(Eι) is the diameter of the set Ex and

E = {[Ei): E c U V (£,) < δ for each /},

the set of all coverings of the set E by sets of diameter less than δ.

A fundamental relationship between the Hausdorff-Besicovitch dimension

of support and singularity of a set lies in the following result:

THEOREM 4.1. If E is a subset ofRd and the Hausdorff-Besicovitch dimen-

sion ofE is less than d, then the set E is singular.
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A set B in Rd is called a generalized random Cantor set if B can be ex-
pressed as the intersection of an infinite decreasing sequence of sets {Bn: n =

0,1,2,...}, such that BQ is a unit cube in Rd

9 and each Bn is the union of some

number, say Λn, of disjoint subcubes of volume ( Γ ^ , where {Γn} is an increas-

ing sequence of non-negative integers. In other words, a generalized random

Cantor set is a limit of sets Bn which, as n increases, themselves are the unions

of progressively increasing numbers of subsets, each of which is successively

smaller in volume. A generalized random Cantor set differs from the Cantor ter-

nary set in that the sequence of numbers {Λn} and {Γn} are not necessarily de-

terministic but may be random, as are the locations of the surviving intervals or

subcubes in the successive Bn's.

The following relationship between generalized random Cantor sets and
Hausdorff dimensions is proven in Dawson and Hochbeig (1982, Lemma 3.1):

THEOREM 4.2. IfB is a generalized random Cantor set, then

H-dimB< Urn infn __> ̂  log hj log Γrt.

For the measure-valued branching diffusion, it is shown in Dawson and

Hochberg (1979) that the approximating sequence of smeared particle processes

described in section ΠIA above can be viewed as a hierarchy of smeared clusters

at different scales. The Λ-th scale is obtained by dividing the unit cube VcRd

into Γn

d equal subcubes of volume Tn'
d. For mn = [2γr Γ Λ

α ] , where [x] denotes

the greatest integer less than or equal to x, one then obtains a generalized ran-
dom Cantor set for which the random measure X{tlm^ consists of a Poisson

number of clusters, each with total mass that is exponentially distributed with

mean yt/mn. It then follows from Theorem 4.2 that the Hausdorff-Besicovitch

dimension of the topological support of the random measure Xt(ω) is bounded

above by the index α of the stable diffusion in dimension d > α. Theorem 4.1

then implies that the random measure Xt((0) is singular if d > α.

Singularity of X,(ω) for d = α (α = 1,2) follows from the self-similarity

property

X(tA) ί X(kat,Aύ/ka, (4.2)

where xe Ak if and only if x/keA. Taking A compact and k = Γ1/α, this says

that
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X(tA) i X(l,Λfl/β)/(l/0. (4.3)

This expression may be thought of as describing a telescopic effect; it relates the

relative density of the measure over a shrinking set at a fixed time to the measure

over a fixed compact set as t increases. Since X(fA) converges to zero in proba-

bility for large t in one and two dimensions (Dawson (1977)), X(\;) can have no

absolutely continuous component.

For the Fleming-Viot process on Rd, let 5 = Rdu {~}, the one-point com-

pactification of Rd. At fixed times t, the process is described by a random proba-

bility measure X = X^ω) on 5. The k-th moment measure Mk (dxι,...,dxύ is a

probability measure on Sk defined by

k r \
E{Y[ <Φ/X> } =j..Mγi<?i(xi)\Mk(dxv...tdxk) (4.4)

for φ. € c (S). It is proven in Dawson and Hochbeig (1982, section 6) that a ran-

dom probability measure X can be related via the system of moment measures

{Mk(dxι,...,dx0 : k = 1,2,...} to an infinite system of interacting particles via the

following technique, which we shall call the de Finetti representation of a ran-

dom probability measure.

The collection {M*} forms a consistent family of probability measures;

moreover, the measure M^ is an exchangeable probability law on Sk, i.e., for

Ah..., Ake B(S),

(4.5)

for every permutation π. It follows from the Kolmogorov extension theorem

that there exists a probability measure P* on (S~, f*), where F* denotes the P*-

completion of the product σ-algebra, such that

P*(Aλ χ...χ A$ = MltAι,...A& (4.6)

moreover, P* is the probability law of a sequence {Zk: k = 1,2,...} of exchange-

able 5-valued random variables, which can be viewed as the locations of a

countable collection of particles in 5. For ω in s°° and A in a countable algebra

that generates B(S), the de Finetti theorem for exchangeable random variables

implies the existence of
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i N

t(A, ω) = \tmjj £ I A (Zj (ω)), (4.7)
" * " y = l

where I^(x) equals one if x is an element of the set A and zero otherwise. Y* is a

regular conditional probability given the σ-algebra F*, so

oo

/>*{Z*€A i t,*=l,2...IF*}= Π r*((M*) />*-a.s. (4.8)

Moreover, there exists an extension of Y* to a random measure Y such that 7 is a

version of X\ i.e., for any set B e B (P (S)),

P" {YeB} =P{XeB}. (4.9)

For the Fleming-Viot process, the random motion of this related infinite par-

ticle system {Zn} is described by the motion of its it-particle subsystems, as fol-

lows: each particle performs an independent symmetric diffusion of index α on

Rd, and, at a constant rate, one particle disappears and another splits into two

particles, each of which continues to move independently according to the same

symmetric diffusion law. If we look at the infinite system at time fy and trace

back the genealogy of these particles to a time to-τ^ at which the infinitely-

many particles had exactly n common ancestors and now look only at these n

"surviving family trees," we find that they form n random clusters. Moreover,

within each cluster the radius is bounded, with the bound determined from the

scaling property (3.2). As n increases, we obtain increasing numbers of such

clusters, each with progressively smaller radii, so the clusters form a generalized

random Cantor set. We then proceed as detailed earlier and conclude that the

Fleming-Viot random measure has Hausdorff dimension bounded above by

min(d,a) and is singular in dimensions greater than α, indicating a highly clus-

tered distribution and, thus, a high correlation between the genetic traits.

The fact that d = α is in fact the exact lower bound for the Hausdorff dimen-

sion of support of these random measures Xt in dimensions d > a at fixed times

is a consequence of the following result of Zahle (1988):

THEOREM 4.3. Let X be a random measure with second moment measure

K(x,dy) and assume that for E(X)-a.e. x e Rd,

J \x-yΓDK(x,dy) <oo
()

where 5(jc,ε) is some sphere of radius ε > 0 centered atx. Then,
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P{X(B) > 0\ {dim(ΦnB) >D}}= 0,

where Φ denotes the closed support ofX.

Since the second moment measure K(x,dy) for both the measure-valued
branching diffusion and Fleming-Viot processes satisfies

K(x,y) ~ bc-yΓ^ (4.10)

for small bc- yl, we have

ί—l—n ^ 7 - ^ [ n

r " dr= \ —1—dr (4.11)

which converges if and only if D < α, so by Theorem 4.3, dim Φ > D for all D <

α, so dim Φ > α.

The same technique applied to the multilevel branching diffusion system in
four or more dimensions yields a lower bound of 2α for the Hausdorff dimen-
sion of the support of the random measure Yt.

In each of these processes, there are two forces acting in opposing ways on

the distribution: branching (and random genetic drift in the Fleming-Mot pro-

cess) leads on occasion to disappearance of individuals from the population,

whereas diffusion (and mutation in the Fleming-Viot case) leads to a spread of

the process to new members. The mean distance between survivors in a branch-

ing process is of the order tι/ά (and ί2^ in the case of two-level branching),

whereas a stable diffusion of index α spreads at the rate ί1/α, so we see changes

of behavior at the critical dimension d = α for the single-level cases and d = 2α

for the two-level situation.

The topological support properties for the two-locus Fleming-Viot model
with recombination given by (3.18) have not yet appeared in the literature.
What is known to date can be summarized in the following theorem, obtained
with S.N. Ethier:

THEOREM 4.4. The topological support of the random measure Xr

p(ω) asso-

ciated with the two-locus Fleming-Viotprocess with combination rate p charac-

terized by the generator (3.18) on RxR and R2χR2 has the properties

summarized in the following chart, where //-dim A is the Hausdorff-Besicovitch

dimension of the set A and "singular" and "absolutely continuous" denote a.e.-

properties of the random measure:
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complete linkage partial linkage zero linkage

space p = 0 0 < p < <*> p = <*>

R x R //-dim Xt°(ω) = 2 //-dim X,P(ω) = 2 //-dim X? (ω) = 2

singular absolutely continuous

R2 x /?2 //-dim X,°(ω) = 2 2 < //-dim X,P(ω) < 4 H-dim ^ (ω) = 4

singular singular singular

Proof: In the case of complete linkage there is no recombination, so we

have one Fleming-Viot process in 2d dimensions (d = 1,2). Applying the result

that //-dim Xt((θ) = min(d,2) for the Fleming-Viot process with Brownian diffu-

sion parameter α = 2, we get H-dim Xt°(ω) = min(2d,2) = 2 for d = 1,2. For d =

1 we have a two-dimensional Fleming-Viot random measure, which was shown

above to be singular. For d =2 the random measure X?((ύ) is singular by Theo-

rem 4.1, since we are in a 2 x 2 = 4-dimensional situation, and the Hausdorflf di-

mension of the support set of Xt°(ω) is only two, which is less than this

dimension.

In the case of zero linkage there is complete recombination, so the Hausdor-

ff dimension of support is min(d,2) x min(d,2) = min(4,2d). For d = 1 we get

//-dim X~(ω) = 2, and the random measure is absolutely continuous with re-

spect to Lebesgue measure, as is each one-dimensional Fleming-Viot measure.

For d = 2, the Hausdorff dimension of support is four, and the measure is singu-

lar because it is formed from two singular two-dimensional Fleming-Viot mea-

sures. It is then clear that for 0 < p < «>, the random measure Xt

p(ω) will have

Hausdorff dimension of support equal to two in the case d =1 as it is for the ex-

tremal cases p = 0 and p = ~, and dimension bounded below by two and above

by four in the case d = 2. Similarly, the measure Xt

p(ω) will be singular in the

cased = 2. G

REMARK: It seems reasonable to conjecture that the exact Hausdorff di-

mension of Xfp(ω) in the case of partial linkage will be a function of the recom-

bination rate p.

The Fleming-Viot process satisfies an additional property as well, that of

long-term compact coherence. A probability-measure-valued process {X(t): t >

0} is said to be coherent if for every ε > 0 there exists ίo> 0 < t0 < <*>, with the
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property that for each t > f0 there is a random sphere Sε(f,ω) centered at

χ(t) = jχX(t,dx), (4.12)
s

with radius

Rε(t) = j\x\X(t,dx)<oo (4.13)
s

that is a stationary stochastic process, such that

P{X(t,ω£ε(t,ω)) > 1-ε} = 1. (4.14)

The wandering motion of a coherent distribution can be described by the process

[x(t): t>0}. The process {X(t)} is said to be compactly coherent if (4.14) also

holds for ε = 0 with some centering, not necessarily that prescribed by (4.12);

thus, the sphere So(t,ω) contains all the mass of the process X(t, ) with probabil-

ity one. A process that is not coherent is said to be dispersive.

The results of this section, excluding those already included in Theorem 4.4,

can be summarized as follows:

THEOREM 4.5. Let Xt

BD(ω) and x/^iω) denote the measure-valued branch-

ing diffusion and Fleming-Viot random measures, respectively , on /^ with spa-

tial diffusion governed by a symmetric stable process of index α, 0 < α < 2, and

let Xt

MLB (ω) and Xt

MBD(ω) denote the two-level branching and two-level

branching diffusion random measures, respectively, at a fixed time t. Assume

that each of these random measures has compact support at time t = 0 with prob-

ability one. Then the following hold:

(i) In any spatial dimension, each of these random measures has compact

support, with probability one, for each fixed t > 0.

(ii) The Hausdorff-Besicovitch dimension of the topological supports of

Xt

BD(ώ) andx/^iω) both equal min(d,a).

(iii) The random measures XBD(ω) and x/^ίω) are singular in Rdfoτ d >

α, with probability one.

(iv) The Fleming-Viot random measure x / ^ ω ) is compactly coherent.

(v) The Hausdorff Besicovitch dimension of the topological supports of

2α.

MLB(ω) and Xt

MBD(ω) are bounded below by 2α in dimensions d >
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B. Long-term behavior. We have already noted that the measure-valued

branching diffusion process X(fA) on a compact set A converges to zero in prob-

ability for laige t in the case of recurrent diffusion (e.g., in one and two dimen-

sions for α = 2). When the diffusion is transient, it is shown in Dawson (1977)

that there exists a limiting steady-state random measure.

In Dawson and Hochbeig (1982,1983), the single-locus Fleming-Viot pro-

cess {X(t): t > 0} on S = Rd u {<»} with A = Δd, the d-dimensional Laplace oper-

ator, is related to a function-valued dual process {Y(t): t>0] with infinitesimal

generator Gd corresponding to that of a Maifcov process o n C = u C(SN),

evolving according to the following mechanisms:

(i) Y(t) jumps from C(SN) to C(SNΛ) for N = 2,3...

(ii) at the time of a jump from C(SN) to C(SN~ι), a pair {j,k} is picked at ran-

dom from {l,2,...,Λ0, and/is replaced by a function Φj/of the N-l variables

xiJCi'—iXk-h Xk+i'—iXN' the ik - th variable ** having merged with the -th-vari-

able xf

(iii) between jumps, Y(t) evolves deterministically on C(SN) according to the

Brownian motion semigroup Ht

N on (RdY* given by

uNf/~\ /">***\-(M*)/2f —\x—y\ / ( 2 0 ^ / . . \ Λ . (λ κ\
titJ\X) = \2.Tίt) \€ J\y)dyi \*'*3)

(iv) once Y(t) is a continuous function of only one variable, no further jumps
occur.

The empirical centered moments of [X(t): t > 0} are defined by

&k k (0 = ί ΓT (χί-Xί(t))kiX(t>dχ) (4.16)

where the empirical mean process x(t) is given by

x(ή s (JC 1 (O,...^(O) (4.17)

where

* . ( 0 = jXiX(ttdχ)t i = 1,2, ...,<*. (4.18)

Rd
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If we apply the duality relationship (2.10) to Eμ{ R^tmmtJt(t)} and note that

the number N(J) of variables in the dual process Y(t) decreases according to a
pure death process and thus converges to one in finite time with probability one,
we obtain the following:

THEOREM 4 6. For the Fleming-Viotprocess {X(t): t>O},if

d

J u i % (dx) < oo for JV0 = ]Γ *,, then

(a) Eμί*^ * / 0 } <°° for t > 0 ,

and

exists and is finite.

The random cluster

X* ft dx) = X(u {a-x(t) : α e ά } ) (4.19)

centered at the empirical mean x(t) is a stationary process, and the Birkhoff er-
godic theorem implies that

T

/(/) = limij lf(x)X*(t,dx)dt (4.20)

exists a.s. as a linear functional on C(S) and is independent of the initial measure
μ. We therefore have the following result:

THEOREM 4 7. The centered Fleming-Viot random cluster X*(t,dx) satisfies

flim£μ {J Ax)X* ft dx)} = I(f) (4.21)

for any μeP(S), where /(/) is given by (4.20).

For example, we have the non-Gaussian limit

T

lim ijA* (t)dt = £{X*(0)} = ye P(Rd) a.S.; (4.22)
~*°° o

i.e.,
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T

limif X*(t,A)dt = υ(A), (4.23)
0

where υ(A) is the expected value of the equilibrium random measure on the set

A. The collection [rk k} forms the joint moment system of the expected

steady-state distribution of the random cluster centered at the empirical mean.

For the continuous limit Y(t) of the multilevel branching process, the long-
term extinction problem is solved in Dawson and Hochbeig (1991) for various
combinations of the values of q and γj (i = 1,2) using the martingale-problem
formulation. In addition, the following generalizations of the growth rate and
conditional limit law (conditioned on non-extinction of the process) for ordinary
critical continuous-state branching are obtained for the continuous multilevel
process Y(t):

THEOREM 4.8. (a) Let Yt denote the multilevel branching continuous limit

process with Jι = Y2 = 2, q = c^ = 0. Then

lim p Pioc, Y>>0}=c,a constant. (4.24)
f-»oo

(b)For AeB((0,oo)) andt>OJet

YfζitΛ): = Y(Kφ: x/Ke A })/K.

Then conditioned on <x,Y(t)> > 0 and Y(Q) = δ x , Ytff) converges weakly to a

random measure with Laplace functional

L(φ) = l-xVUΦ) (4.25)

where

1 (4.26)

for a constant CQ and function v(tjc) satisfying the partial differential equation

£-4?--' (4-27)

with initial value v(0) = φ, φ e Cκ(0, ~ ) .

(c) For each keZ+ there exists ckeR, called the £-th limiting cumulant of the

total mass process, such that (formally) as t -> ~,
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<x,Y(t) > >θj-* X (-Θ*)cjk\. (4.28)

We note that a growth rate of ί2 in equations (4.24) and (4.28) for multilevel
critical branching replaces the usual rate of t for ordinary critical branching.

In the two-level branching diffusion model, analysis of the dual process in [6]
yields the following:

THEOREM 4 9. Let Y(t) denote the continuous limit of the two-level branch-

ing diffusion on Rr with spatial diffusion governed by a symmetric stable pro-

cess of index α, and let the total mass process {Ϋ(t): t > 0} be defined by

7(0 = J μlUφ). (4.29)

Then, £{<7(f),φ>} remains bounded if and only ifd > 2α.

C. Renormalization results. The single-locus Fleming-Viot process [X(t): t>

0} on Rd with A = Δ^ can be rescaled as follows. Let

Xε(tA) = X(f/ε2, [x:εχ e A}). (4.30)

Then, {Xε(t)} has generator Lε which is related via

LtFf(μ) =Ld

εFμ(f) (4.31)

to a function-valued dual process {Yε(t)} with generator Lε

d given by

Ld

εFμ(f) = V W > + 72 Σ Σ tVΦ;*fl - F μ ω i . (4.32)

where Φjk is the operator defined in section B. For feC (SN),

limEδ {FΛXε(t))} = lim^ίFδ (Yε(t))} (4.33)
ε-»0 * J ε-^0 J *

where Ht

Nf(x) is defined in (4.15), {W(t): t > 0} denotes the standard Wiener

process in Rd

9 and ψV(x) Ξ y(^^». ^) We have thus proven the following:

THEOREM 4.10. Let {X(t): t>O}be the Fleming-Viotprocess in Rd with dif-
fusion generator A = Δ^. Assume that Xφ) has compact support. Then, thefi-
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nite-dimensional distributions of the rescaled process {Xε(t): t > 0} defined by

(4.30) converge to those of the probability-measure-valued process which con-

sists of a single unit atom undergoing Brownian motion in Rd.

In [2], this scaling limit is obtained, with convergence in the sense of weak

convergence of probability measures on Ωc

p^s\ using martingale techniques.

Vaillancourt (1990a, b) has similarly derived scaling limit results for a class of

weakly-interacting Fleming-Viot processes.
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