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Abstract

In the supercritical branching process with independent and identically dis-

tributed environments, it is shown that under certain regularity conditions there

exists a parameter ΘQ > 0 such that the probability of extinction starting with k

individuals, q^ is asymptotically of order not less than k ° and of smaller order

than k~* for any θ < ΘQ. An application to the optimal choice of strategy for min-

imizing the probability of extinction is mentioned.

1. Introduction and Statement of Results. We consider a branching pro-

cess [Zn;n = 0,1,2...}, where Zn denotes the population size at time n.

Reproduction is affected by a sequence of environment variables

ζ = {ζo,ζ1,ζ2,...} in the following way: for each n, conditional on ζ and

Zo, zv ...Zrt, the family sizes of the Zn individuals at time n are independent ran-

dom variables each with a distribution which is determined by ζ n , and whose

probability generating function (p.g.f.) we shall denote by φ ζ . ThenZΛ + 1 is just

the sum of these family sizes.

Particular models for the environment variables are a sequence of indepen-

dent identically distributed (i.i.d.) random variables (Smith and Wilkinson [4])

and, more generally, a stationary ergodic sequence (Athreya and Karlin [1]). In

this paper, we consider only the Smith-Wilkinson model, although subsequent

work has generalized the results to certain types of Athreya-Karlin model.

Let <?(ξ) be the probability, conditional on ξ, that the population becomes

extinct starting with a single ancestor:

as n->~|ξ, Z0 = 1) .

Then, because, conditional on the environment sequence, lines of descent are in-

dependent, the unconditional probability of extinction starting with k ancestors

is
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where the expectation is taken over the environment.

We shall only be interested in the supercritical case where P {q (ζ) < l) > 0,

or equivalently qk < 1 for all k > 1; well-known sufficient conditions for super-

criticality are

(i) 0<E[logφ ζ(l)]<oo

and(ii) E[-log(i-φζ(0))] <~

and we shall adopt these conditions. Note that since the ζr t are i.i.d. we may

drop the suffix n in the above expressions.

Write ξ = logΦV(i), the log mean family size for environment ζ, and let

F (θ) = E (e***), the Laplace transform of the distribution of ξ. By condition (i)

above we have F (0) < 0, and since F is convex there may exist ΘQ > 0 such that

F(θ0) = l and F (θ0) <oo; if ΘQ exists, it is unique. Under this condition, we

have the following result.

Theorem. Let θ 0 > 0 exist such that F (θ0) = l and F (θ0) < <*> where F is as

defined above. Then

(ά) lim inf^J

φ) if in addition E [ ( l - φ ζ (0)) "̂ βj < <*>, then

qk- o (k~*) as k -» ~ for all θ < ΘQ.

This gives a fairly precise idea of the asymptotic behaviour of q^ as k -> <».

Note that in the Galton-Watson (constant environment) case, {q^} is a geomet-

ric sequence, which is possible since ΘQ does not exist, as F (θ) = f*^ for some

constant ξ. However, if the environment may be either favourable (ξ > 0) or un-

favourable (ξ < 0) then the existence of ΘQ is not unreasonable as a regularity

condition.

In Section 2 we shall prove the above theorem and in Section 3 we shall de-

scribe an application to an optimal strategy for survival.

2 Proof of the Theorem Intuitively, if the population size is large then, by

the law of large numbers, its fluctuations are almost entirely determined by the

environment variables, and, more specifically, {log Zn} behaves rather like a
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random walk with increments logφ'ζ (l) = ξn. Therefore, the probability of ex-

tinction should behave like the probability that a random walk with positive drift

ever reaches a low level, and this is the key to our proof.

However, rather than woik with {log Zn) it is easier to consider the dual

process {Xn} defined by Smith and Wilkinson [4]:

with XQ = 0. This is a Maikov process with state space [0,l[ and with a proper

limiting/equilibrium distribution in the supercritical case. Moreover, if X is a

random variable with this distribution then we may write

since in fact X has the same distribution as q (ζ). Thus, the behaviour of q^ as

k -» oo may be investigated via the behaviour of the distribution of X close to 1.

We make the transformations

and Y = -

Clearly [Yn] is also a Maikov process and Y possesses its limiting/equilibrium

distribution. We are interested in the tail behaviour of this distribution at + <*>.

>rΛ+ (-iogφ'ζ (i)) since Φζ is ap.g.f.

Also Yn+ι*0. Hence

Define Wo = 0 and

Wn+ι =max(0,Wn+(-ξ) |)) for n = 0,1,2,...

Then {W^ is a random walk with left reflecting barrier at 0 and jumps {- ξ n } . It
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is easy to show by induction on n that Yn > wn for all n, and thence that

P(Y7>y)

for all y > 0, where W is a random variable with the limiting/equilibrium distri-

bution of

The following duality argument is familiar:

Wn =

ξj,..., ξ o + . . . + ξ n - 1 ) in distribution

so that -W has the same distribution as the all-time minimum M of an unre-

stricted random walk with jumps {ξn}. But by the assumption of the existence

of θ 0 and the result of Feller [2], Ch. XII, we know

as t -> <*>, for some constant o 0. Hence

for all y > 0 for some constant c' > 0. In terms of X, this becomes

P(X>x) >C (1-JC)Θ°

for 0 < x< 1. Hence, denoting the distribution function of X by //,

^ = £X* = jl

QxkdH(x)

where B is the Beta functioa Finally, since

Γ(βo+i)

as k -• oo, we deduce that qkz c" AΓΘ° for all ky some c" > o, and part (a) of the the-

orem is proved.

To prove part (b) of the theorem, fix χ0 e [0, l [ and let yQ = -log (l - *0)
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Also let

and define u0 = y0 and

ί/n+1 = max()-0,ί/n+(-ξn))

so that {Un} is a random walk with left reflecting barrier a t j 0 and jumps {-ξ n }.

We show by induction on n that Yn < UΛ for all n. Obviously Yo = 0 < y0 = UQ. If

Yn < UH then either Yn <, y0 in which case

-log ( l - φ ζ (Λ 0 ) ) since XH a χ
H a χ0

or, alternatively, >0 ̂  YH < UΛ in which case

fl-φς (χo)\\
-log — — - since φr is a p.g.f.

h *{ l-xa )) % .

It follows using similar arguments to those used in the proof of part (a), but

with the inequalities reversed, that if θ > 0 can be found such that {Un} has an

equilibrium distribution whose tail is of order e^ as y -> <*>, then qk = 0(£~ θ ) as

*-» <*> for any such θ. We show that for all choices of XQ sufficiently close to 1,

such θ = Q(XQ) can indeed be found, and moreover that θ (χQ) t θ 0 as χQ 1 1 ,

which is sufficient to establish part (b) of the theorem.
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Let

where, for ease of notation, we replace XQ by x and suppress the suffix n. By the

properties of p.g.f.'s,

and so, using the extra condition of the statement of part (b) of the theorem, we

know that F^θ) is finite for 0 < θ < ΘQ. Also, using dominated convergence,

Fx (θ) E (φ (l)) -* = F (θ) as x 1 for each θ e [0, θ 0 ] . Hence, since F(θ) < 0

for 0 < θ < ΘQ, it follows that for all x sufficiently close to 1, F^θ) < 0 for some θ

and therefore, since Fx is convex, Fx(0) < 0; moreover, Fx(β0) > 1 and so there

exists θ =Θ(JC) > 0 such that Fx(θ) = 1 and obviously FX(Q) <~. The fact that

Θ(JC) t θ 0 as x 11 also follows easily from the fact that F^θ) Ψ F(θ) as x 11. This

completes the proof of the theorem.

3. Application to an optimal strategy for survival. In Grey [3] a model

was described in which laying birds may choose randomized strategies for

clutch size and thereby effectively choose between different family size distribu-

tions, in an attempt to minimize the probability of extinction of the species. It

was stated loosely that maximizing the parameter ΘQ which appears in this paper

should be optimal for large populations, and an intuitive justification was given.

A numerical example showed that this criterion may lead to a genuinely ran-

domized strategy, which may be interpreted as hedging one's bets against un-

known future environments.

The results of this paper provide a sound theoretical justification for the crite-

rion suggested above, insofar as they prove that between any two strategies with

different values of ΘQ, the one with the larger value will indeed yield a smaller

probability of extinction provided that the initial population size is sufficiently

large.
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