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Multivariate distributions for the lifelengths of the com-
ponents of a system operating under a common environ-
ment, when the environment has a different effect on each
component, and when the environment is dynamic, are
derived. Modelling of the dynamic environment is by a
gamma process.

1. Introduction. Multivariate distributions for the lifelengths of biological
and engineering systems have been proposed by Freund (1961), Downton (1970),
Marshall and Olkin (1967), Lindley and Singpurwalla (1986), and Lee and Gross
(1990). In this paper we build upon the theme proposed by Lindley and Singpur-
walla, and generate classes of multivariate distributions which may lead to im-
proved assessments of system reliability.

As a motivating scenario, suppose that we have an ra-component, parallel re-
dundant system, and suppose that the lifelengths of these components are judged
exponential with known scale parameters λio, λ2o, > λmo when they are tested
in a laboratory individually. The λ lo's [or more generally, the λιo(/)'s, if the life-
lengths are judged to be other than exponential] will be referred to as the baseline
failure rates of the m components. Suppose that the effect of the common operating
environment—when assumed to be static over time—is to modulate each \ o by a
common factor 77, where η is unknown and has distribution G, so that the reliabili-
ties become exp{— /J η\io(u)du}. Uncertainty about η induces dependence among
the component lifelengths Γi, . . . , Γm. The Tt 's, i = 1,..., m, have a multivariate
distribution whose nature is prescribed by the form of G. When the operating
environment is dynamic, η becomes a function of time /, say η(t); we will refer to
77, or more generally η(t), t > 0, as the environmental factor function—henceforth
EFF. It is important to bear in mind that the EFF is merely a parameter that has
little, if any, physical meaning. It is introduced for convenience with the aim of
capturing our opinion about the effects of the environment on the failure rate of
each component.
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When m = 2, η(t) = η and G is a gamma distribution with scale β and shape
α, Ti and T2 will have a bivariate Pareto distribution (Johnson and Kotz [1972] p.
285) with a joint survival function

( i )

The above distribution, which can be transformed to a bivariate logistic distribu-
tion, was motivated by Lindley and Singpurwalla; it can be shown to be a special
case of the Dirichlet distribution. Currit and Singpurwalla (1988) compared the
behavior of F(t\,t2) with exp(-(λχo£i +λ2Otf2)), the survival function obtained un-
der the assumption that T\ and T2 are independent and exponentially distributed
with parameters λχo and λ2o, respectively, and showed that the two could lead to
drastically different results. The aim of this paper is to consider extensions of (1)
along the several lines described below.

2. Multiple Environmental Factor Functions with Dependence. A
natural way to expand upon the previous theme is to assume that each λ ϊ0 is
modulated by 77;, i = l, . . .,ra, and that the uncertainty about the r/t 's is de-
scribed by a meaningful multivariate distribution. Dependencies between the 77;'s
can be motivated when some factors which constitute the environment—such as
temperature—may have an identical effect on all the components, whereas the
other factors—such as humidity—may have different effects on the different com-
ponents. A plausible model for describing dependencies among the ^'s is due to
Cherian (1941) and David and Fix (1961)—henceforth C-D-F.

Let m = 2 and assume that ηi = XQ + Xt , i = 1,2, where the random quantity
Xo captures the contribution of the common factors on both the components, and
Xi captures the contribution of the other factors on component i. In the C-D-F
model, XQ, X\ and X2 are assumed to be independent, each having a gamma
distribution with scale (shape) parameter /?t (αt ), i = 0,1,2, respectively. Clearly,
771 and 7)2 are dependent and have a joint density which may be easily derived (see
Johnson and Kotz (1972), pp. 216-220).

It is easy to verify that under the above scenario,

2.1. Inequalities for Survival Functions with Increasing Degrees of Dependence.
The nature of the dependence between T\ and T2 depends on the dependence
between 771 and 772. In the case of (1), 771 = 7?2 = 77 and so the dependence between
771 and 772 is the strongest possible. The C-D-F case and the independent case are
increasingly less dependent. To facilitate the construction of three pairs of random
quantities (771,7?2), (771,772) and (771,772) with decreasing degrees of dependence, four
mutually independent random quantities XQ, X'OJ XI and X[ are introduced with
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Xo (Xi) = Xi(X'ι), where the notation "X = Y" indicates that X has the same
distribution as Y. Let 7/1 = η2 = Xo + Xi, η2 = Xo + X[ and % = xo + X Ί
and suppose that Xt and Xt have a gamma distribution with shape ct{ and scale

βi, i = 0,1. Clearly, η2 = η2 = η2

 b u t t i ι e P a i r s (%»%), (*?i,%)> (Vi^v'Ί) a r e

increasingly less dependent.
It is now easy to verify that the pair (7/1,7/2) [where 7/1 and η2 are identical]

will result in the bivariate survival function of the form given by (1); specifically

, < 1 ) ί 2 > o .

When αi = a2, the pair (771,7/2) will lead to the bivariate survival function
(2), which because of its derivation via the C-D-F distribution will be denoted
^ C D F ^ 1 ' * 2 ) ' Finally, since 7/1 and η2 are independent, the resulting survival
function is

Let "(Xi, YΊ) > (X2,Y2)" denote the fact that the pair (Xi,YΊ) is more depen-

dent than the pair (X2,Y2). Then, by construction, (7/1,7/2) > (7/1,7/2) > (7/1,7/2),

and now it is easy to verify

THEOREM 2.1.

Fi(tuh) < FCΌF(tut2) < F L S (* i , ί 2 ) , for ί i , t 2 > 0.

Thus, for any fixed ί1? t2 > 0, the bivariate survival function of 2 component
parallel redundant systems increases as the degree of dependence between their
EFF's increases. The inequality generalizes for the case of m components. When
we set £1 = t2 = . . . = tm, we obtain inequalities for the system reliability function
of series systems.

3. Dependencies Induced By Dynamic Environments. The material
in the previous two sections assumed that the EFF is constant over time, so that
ηt(t) = 7/t , % = 1,..., m. This assumption is not meaningful when the environment
is dynamic as is often the case. As a starting scenario, suppose that ηi(t) = η(t),
t > 0 and i = 1,.. .,τn, and suppose that our uncertainty about η(t) is described
by a continuous time stochastic process, called the gamma process. The gamma
process for the EFF produces useful results, and can be motivated as the limit of
a piece wise constant EFF with independent gamma distributed innovations.

3.1. Motivating the Gamma Process. Suppose that η{t) is a piecewise constant
right continuous function over specified time intervals [tfj, *j+i), j = 0,1,..., where
t0 = 0. Specifically, let η(t) = 7/j, t e [ tp^ +i), with the 7/j's unknown. Suppose
that the environment is composed of a known number of at most 5 + 1 distinct
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stresses, each having the same effect on all the m components, with the fc-th stress
contributing an innovation Ck to ηj. The parameter ηj changes to ίjj+i when one
or more of the innovations Ck appears or disappears. Suppose further that the
effects of the innovations Ck are additive, so that ηj = Σ£=o Ik{tj)Ck, j' = 0,1,...,
where Ik(tj) = 1, if the fc-th stress is present in fo,*j+i), and is 0 otherwise. The
innovations Ck and the variables lk(tj) are assumed to be mutually independent
for all j = 0,1, . . . and all fc = 0,1,.. .,s. If Nj, the number of stresses during
[tj,tj+ι) is known, but their identities are unknown, and if each Ck is assumed to
have a gamma distribution with parameters α and β, then the 77/s are independent
gamma distributed variables with parameter NjCt and β. It can now be shown [cf.

def
Youngren (1988), p. 54], that in the limit, as Atj = (tj+ι — tj) —• 0, the cumulative
failure rate of the i-th component at time /, 0 < tn < t < tn+χ, is a gamma process.
We denote the cumulative failure rate of the i-th component as

"n-l

Λ, (ί) = λio
_j=o

recall that \{0 is the baseline failure rate of the i-th component.
Instead of assuming that the 7/j's are independent as is done above, suppose

that the r/j's have a time dependent structure as follows. Let

1k\ι3 ) — U, U \ J <v AJ, J — U , ± , . . . , J ,

= 1, j > fc, k = 0,l,...,s; then

ηj = ΣJUoCfc* and if one's uncertainty about the Cfc's is described via a gamma
distribution with parameters otj and /?, then here again it can be shown [cf. Youn-
gren (1988), p. 60], that when Atj -* 0, η{t) is a gamma process for any t > 0.

3.2. Preliminaries on Gamma Processes. The gamma process is nonnegative,
nondecreasing in time and possesses independent increments. It has been studied
by Ferguson and Klass (1972), £inlar (1980), and Dykstra and Laud (1981); the
use of gamma processes in survival analysis is primarily due to Ferguson (1973),
Ferguson and Phadia (1979), and Kalbfleisch (1978).

DEFINITION 3.1. Let a(t) be a nondecreasing left-continuous real valued
function on [0,oo) with α(0) = 0, and let β € (0,oo). A stochastic process
(y(£), / > 0) is said to be a gamma process with parameters a(t) and /?, denoted
"Y(t)eGpr(a(t),βy\ if:

1. y(o) = 0

2. Y(t) has independent increments, and

3. Y(t) - Y(s) ~ 7(α(ί) - α(θ), -|) for any 0 < s < t.
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Dykstra and Laud (1981) extend the gamma process to include a time-varying
scale parameter β(t).

DEFINITION 3.2. Let β(t), t > 0 be a positive right-continuous real valued

function, and let Y(t) £ Gpr(a(t),l). The process Z(t) d=f f* β(s) dY(s) is an
extended gamma process denoted "Z(t) £ Gpr(a(t), /?(/))•"

Note that the gamma process is a special case of the extended gamma process,
where β(t) = β V/.

Dykstra and Laud (1981) give the following properties of the extended gamma
process. Let Z(t) G Gpr(a(t),β(t)). Then

E[Z(t)] = Cβ{u)da{u\ Var[Z(ί)]= f β2{u) da{u), and
Jo Jo

G*m(s) = ex

where G^Zu\ is the Laplace Stieltjes transform (LST) of the distribution of Z(t).

3.3. Modelling the EFF as a Gamma Process. Suppose that η(t) is described
by a gamma process with parameters (α(/),4). If the baseline failure rate is a
continuous, positive, real valued function of time, then the following theorem is
used to derive the bivariate and marginal survival functions.

THEOREM. Let η(t) £ Gpr(a(t),jj)> kt λo(t) be a known continuous positive
real valued function and let A(t) = /Q λo(u) η(u) du. Then the univariate survival
function is

F{t) = exp j - jί'log[l + i jf' λo(s) ds]da(u)} .

The proof of this theorem is based on Dykstra and Laud (1981), and is given by
Youngren (1988).

The bivariate survival function for 0 < t\ < t2 follows directly from the above
theorem. Specifically, F{t\,t2) =

exp j - log[l + ~ j \\χo{s) + λ20(θ)) ds]da(u)}

exp I - / log[l + - / λ2o(θ) ds}da(u)\ .

We can choose plausible functional forms for a(t) and λt 0(tf), suggested by the
physical model of the environment, that enable us to obtain closed form solutions
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for the survival functions. If we use our time-dependent model of Section 3.1,

wherein η(t) = Σ,J

k=0Ck, for t 6 [tj,<j+i)> then for s G [<*,ί*+i), η(t) - η(s) =

Σ)i=/+i Cfc is distributed as gamma with a shape parameter that depends on the

length of the interval (t — s). This leads, in the limit as Δ< —> 0, to a gamma

process with a linear shape function α(2), say a(t) = αitf, for some OL\ > 0, t > 0.

Assume that η(t) G G p r (αi^, 4), which implies that the component failure rate

is Xi(t) = Xioη(t) G Gpr(αiί, ψ). For convenience let βlλ

 d = f ̂  and β21

 d = f ̂ f
then the bivariate survival function for 0 < t\ < t2 is

(βll

ri + jg2i(^-^i)iaitl r

Ll + (Λi + Ai)*i J ' Ll+ i92i(*2 - *i)

marginal failure rate functions r, (ί, ) = αi log[l + /3t'î t]? 2 — 1? 2.

It is interesting to note that the marginal distributions can also be obtained

using an extended gamma process for \{(t) with shape parameter ct(t) = a\t, and

scale parameter ^ηp- = βnt.

REFERENCES

CHERIAN, K.C. (1941). A bivariate correlated gamma type distribution function. J.
Ind. Math. Soc. 5 133-144.

QiNLAR, E. (1980). On a generalization of gamma processes. J. Appl. Prob. 17 467-480.
CURRIT, A. and SINGPURWALLA, N.D. (1988). On the reliability function of a system

of components sharing a common environment. J. Appl Prob. 25, No. 4, 763-771.
DAVID, F.N. and Fix, E. (1961). Rank correlation and regressions in a non-normal

surface. In Fourth Berkeley Symposium on Mathematical Statistics and Probability
(J. Neyman, ed.), University of California Press, 1 177-197.

DOWNTON, F. (1970). Bivariate exponential distributions in reliability theory. /. Roy.
Statist Soc. B 32 408-417.

DYKSTRA, R.L. and LAUD, P. (1981). A Bayesian nonparametric approach to reliability.
Ann. Statist. 9, No. 2, 356-367.

FERGUSON, T.S. (1973). A Bayesian analysis of some nonparametric problems. Ann.
Statist. 1, No. 2, 209-230.

FERGUSON, T.S. and KLASS, M.J. (1972). A representation of independent increment
processes without Gaussian components. Ann. Math. Statist. 43, No. 5, 1634-
1643.

FERGUSON, T.S. and PHADIA, E.G. (1979). Bayesian nonparametric estimation based
on censored data. Ann. Statist. 7, No. 1, 163-186.

FREUND, J.E. (1961). A bivariate extension of the exponential distribution. J. Amer.
Statist. Assoc. 56 971-977.

JOHNSON, N.L. and KOTZ, S. (1972). Distributions in Statistics: Continuous Multivari-
ate Distributions. John Wiley and Sons, Inc., New York.

KALBFLEISCH, J.D. (1978). Nonparametric Bayesian analysis of survival time data. J.
Roy. Statist. Soc. B 40, No. 2, 214-221.



Models for Dependent Lifelengths 441

LEE, M.-L.T. and GROSS, A.J. (1990). Lifetime distributions under unknown environ-
ment. J. Statist. Plan. Infer., to appear.

LINDLEY, D.V. and SINGPURWALLA, N.D. (1986). Multivariate distributions for the
lifelengths of components of a system sharing a common environment. </. Λppl.
Prob. 23, No. 2, 418-431.

MARSHALL, A.W. and OLKIN, I. (1967). A multivariate exponential distribution. /.
Amer. Statist. Assoc. 62 30-44.

YOUNGREN, M.A. (1988). Dependent lifelengths induced by dynamic environments.
D.Sc. dissertation, George Washington University.

DEPARTMENT OF OPERATIONS RESEARCH U.S. ARMY CONCEPTS ANALYSIS AGENCY

GEORGE WASHINGTON UNIVERSITY 8120 WOODMONT AVE.

WASHINGTON, DC 20052 BETHESDA, MD 20814-2797






