
CONVEX-ORDERING AMONG FUNCTIONS, WITH
APPLICATIONS TO RELIABILITY AND MATHEMATICAL

STATISTICS

BY WAI CHAN,1 FRANK PROSCHAN,2 AND JAYARAM SETHURAMAN3

Florida State University

Hardy, Littlewood, and Pόlya (1952) introduced the no-
tion of one function being convex with respect to a second
function and developed some inequalities concerning the
means of the functions. We use this notion to establish
a partial order called convex-ordering among functions.
In particular, the distribution functions encountered in
many parametric families in reliability theory are convex-
ordered. We have formulated some inequalities which can
be used for testing whether a sample comes from F or
G, when F and G are within the same convex-ordered
family. Performance characteristics of different coherent
structures can also be compared with respect to this par-
tial ordering. For example, we will show that the relia-
bility of a k + 1-oui-of-n system is convex with respect to
the reliability of a k-out-of~n system.

When F is convex with respect to G, the tail of the distri-
bution F is heavier than that of G; therefore, our convex-
ordering implies stochastic ordering. Convex-ordering is
also related to total positivity and monotone likelihood
ratio families. This provides us a tool to obtain some
useful results in reliability and mathematical statistics.

1. Introduction. Notions of partial ordering among survival distributions
have played a useful role in providing numerous inequalities in reliability. The
notion of a random variable X with distribution F being stochastically larger than
another random variable Y with distribution G is well known in the literature. Van
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Zwet (1964) defined F to be convex-ordered with respect to G (written F Z G) if
G"1F(x) is a convex function in x on the support of F. When this ordering occurs,
one can show that Y is a convex function of X. Barlow and Proschan (1966) have
obtained tolerance limits for distributions satisfying this ordering.

Lee (1981) defined and analyzed another notion of convex-ordering: F is
<

convex-hazard ordered with respect to G, written F CH G if RFRQ is convex,
where F = 1 — F and Rp = — log F is the hazard function of F. Lee used this
ordering to generalize certain inequalities and preservation theorems in reliability.
We give still another notion of convex-ordering in Definition 2.1, which is different
from those proposed by Van Zwet (1964) and Lee (1981).

2. Convex-Ordering Among Distributions. Throughout this paper, we
define the inverse function Λ"1 of a nondecreasing function h by h"1^) = inf {x :
h(x) > t}. When h is nonincreasing, we define h"1^) — inf{x : h(x) > t}. We use
" < " to symbolize "absolutely continuous."

DEFINITION 2.1. Let G be any continuous distribution and F be absolutely

continuous with respect to G. We say that F is more convex than (?, written

F > G, if FG"τ(t) is a convex function in the interval (0,1).

Throughout this paper, we refer to the above as convex-ordering. Other no-
tions of convex-ordering will be referred to with their authors' names like Van
Zwet, etc. This definition of convex-ordering checks directly whether one distribu-
tion function can be expressed as a convex transformation of another distribution
function, in contrast to that of Van Zwet which checks if the random variables can
be so transformed. Thus, the distribution function x3 is more convex than the
distribution function x2 on the interval (0,1). This concept coincides with that of
Hardy, Littlewood, and Pόlya (1952, p. 65). Although the above definition applies
to the class of all monotonic functions, we shall generally restrict our attention to
life distributions. (For an exception, see Theorem 2.8.)

The following lemma gives useful properties of FG"1.

LEMMA 2.2. Let G be any continuous distribution and F be absolutely contin-

uous with respect to G. Then

(i) FF-χ(t) = ί ,0< ί < 1; F-τF(x) < xyx > 0.

(it) FG^G(x) = F(x),x> 0.

(Hi) (FG-1y1 = GF"1.

(iv) FG"1 is nondecreasing and continuous. If G is also absolutely continuous
with respect to F, then

(v) FG~* is strictly increasing,

(vi) F > G implies that GF"1 is concave.
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PROOF.

(i) The facts that F^F^x) < x and FF'x(t) > t are easily seen from the
definition of F " 1 and do not require the continuity of F. Suppose now that
FF^{i) > t. Then by the continuity of F, there is an x < F"1^) such that
F(x) > t, which contradicts the definition of F " 1 . Hence FF~x(t) = /.

(ii) From (i), we have FG'~1G{x) < F(x). Suppose FG-χG(x) < F(z), then
FUG^Gix)^)} > 0 which implies that G{G~ιG(x)) < G(z), since F «
G. This leads to a contradiction because G(G"1G{x)) = G(x).

(iii) FG^iGF^it)) = FF^(t) = t implies that GF'1^) >

Conversely, if FG'^x) > t, then G-χ(x) > F^FG^ix) > F^(t), which in
turn implies that x = GG~ι(x) > GF^it). Thus (FG'1)-1^) >

(iv) Let tn -^ t. Then tn = GG-ι(tn) -• GG-χ{t) = t. Since F « G, this

implies that FG'λ{tn) - 1

(v) For h <t2, GG'1^) = *! < <2 = GG~ι{t2). Since G « F, this implies
ih) < FG-\t2).

(vi) Let φ = FG~1, then φ is convex and strictly increasing. We need to show
that φ~* is concave. Let 0 < λ < 1, then for any x and Y, we have

φφ-χ[\x + (1 - X)y] =

Since φ is strictly increasing, this implies φ~ι(\x + (1 — X)y) > λφ~Ύ(x) + (1 —
iv)- Therefore φ"1 = GF""1 is concave.

Convex-ordering represents a partial ordering in the class of continuous distri-
butions as indicated below:

(a) Reflexivity: F > F. (Since F is continuous, FF~ 1 (t) = t and this is a convex

function.)

(b) Transitivity: F > G and G > H imply that F > H. (Since FH~ι =
FG^1(GH"1) and FG"1^ GH"1 are convex nondecreasing functions on
(0,1), it follows that Ftf" 1 is convex.)

(c) Antisymmetry: F > G and G > F imply that F = G . (Since FG""1 =

( G F - ^ - ^ F G - 1 and G F " 1 are both convex and concave. Thus FG'1^) =

t = GF-χ(t), and F(x) = F ί r 1 ^ * ) ] = G(z) )
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A very useful way to characterize convex-ordering is by using the Radon-
Nikodym derivative ^J and is given in the following theorem.

THEOREM 2.3. F > G if and only if f = ^ is nondecreasing almost every-
where with respect to G.

PROOF. Let λ denote the Lebesgue measure on (0,1). Since G is continuous,
GG~λ(t) = t. For each measureable set JS, we have λ(E) =

This shows that the condition / is nondecreasing almost everywhere with re-
spect to G is equivalent to / G " 1 being nondecreasing almost everywhere with
respect to λ. Now

( t ) f(x)dG(x)= ίfG-\y)dy
JO

since G is continuous.
Consequently, FG~X is convex if and only if / is nondecreasing almost everywhere
with respect to G. ||

REMARK. If G is absolutely continuous with respect to λ, then / = ^§ =

^ " / ^ a e* ^ Thus F > G is equivalent to the property of monotone increasing

likelihood ratio of F with respect to G; i.e., ^fχ/jχ is nondecreasing on the support

of G. This is the likelihood ratio ordering of Ross (1983).

REMARK. If / = ^§ is continuous and G is a continuous distribution, then

F > G if and only if / is monotone nondecreasing.

We now define the notion of a convex-ordered family.

DEFINITION 2.4. A family of distributions {Fα} is said to be a convex-ordered

family, or simply a convex family if #2 > ct\ implies that Fa2 > Fai.

The following families of distributions are convex-ordered with respect to a for
a > 0.

EXAMPLES.

(1) Exponential: Fa(t) = 1 - e"*/*, t > 0.

(2) Gamma: Fa(t) = ^ /J x"'1e~xdx, t > 0.

(3) Truncated Normal: Fa(t) = a J^ f* e~(χ-°ΫI2*2dx for t > 0, where σ > 0

is fixed and aa = /0° ^

(4) WeibuU: Fa(t) = 1 - e^l01^ for t > 0, where λ > 0 is fixed.

(5) Proportional hazards: Fa(t) = 1 - c"βΛW, * > 0, where R(t) = - log F(t)
is the hazard function of some life distribution F.
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DEFINITION 2.5. A nonnegative function fQ(x) on R x R is totally positive of
order 2 (TP2) in (α,z) if

> 0

for all OL\ < OL<I and x\ < x2 (also called the monotone likelihood ratio property.)

The following theorems relate total positivity to convex-ordering. The theory
of total positivity has been fruitful in obtaining many new results in reliability and
life testing. We can also make use of this powerful tool in studying convex-ordered
families. Karlin (1968) is an excellent source for results on total positivity.

THEOREM 2.6. Fa is a convex family if and only if the corresponding density
fa(t) with respect to some dominating measure λ is TP2 in (a,t).

PROOF. By Theorem 2.3, we have that Fa2 > Fai for α 2 > a\ if and only if

is increasing. Thus for α 2 > OL\ , t2 > h,

which is the defining condition that fa(t) is TP 2 in (α,/). ||

THEOREM 2.7. If{Fa] is a convex family} then Fa(t) is TP2 in (α,ί).

PROOF. For α 2 > αi, Fa2(F~*) is convex on (0,1). This implies that
FQ2(F~*(t))/t is nondecreasing in t. Since fai is continuous, FaiF~*(t) = t.
We have Fa2(F^(ί))/Fai (F~*(t)) is nondecreasing in t. By noting that F~* is
increasing, we conclude that Fa(t) is TP 2 in (α,t). ||

Another characterization of convex-ordering is given by:

THEOREM 2.8. F > G if and only ifG>F.

PROOF. Since F-\l-t) = F-\t) on (0,1), we have GF^t) = l-GF-^l-
t). Thus FG~τ is convex if and only if GF"1 is convex. ||

c

REMARK. An immediate consequence of Theorems 2.7 and 2.8 is that F > G
implies both § and ̂  are nondecreasing.

We end this section with comparisons of our convex-ordering and other partial
orderings. We note that the Weibull family is not convex-ordered with respect to
the shape parameter λ, but it is convex-ordered in the sense of Van Zwet. For
an example showing that convex-ordering of distribution does not imply convex-
ordering in the sense of Van Zwet, consider Fι(t) = t2 and JF2OO = 1 " λ/l - t2
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for t in [0,1]. Then F2 is more convex than JF\, i.e., F2> F\. Since F^1F2(t) =

(1 — y/\ — t2)* is not convex, F2 is not convex-ordered with respect to Fι in Van

Zwet's sense.

When F is absolutely continuous with respect to the Lebesgue measure λ, the
failure rate function of F is defined to be τp = -£, where f = j£. F has a larger
failure rate function than G if τp(t) > τG(t) f°Γ all i > 0. The next theorem
compares convex-ordering with failure rate ordering.

THEOREM 2.9. If F αndG are absolutely continuous distributions with respec-

tive densities f and g, then F > G implies τp(t) < τo(t) for all t.

PROOF. By Theorem 2.3, f(tχ)g(t) < f(t)g(h) for all tι < t. Integrating this

over [<i, oo), we have /(ίi)6?(<i) < JF(*i)ίr(<i) for all <i. ||

Comparing this result with the convex-hazard order of Lee (1981), which re-
quires that ̂  be a nondecreasing function of/, we see that convex-ordering neither
implies nor is implied by the convex hazard function ordering of Lee.

3. Preservation of Convex-Ordering Under Operations. In this section,
we show that our notion of convex-ordering is preserved under various standard
statistical operations.

First, we show that convex-ordering is preserved under mixture of distributions.

THEOREM 3.1. If FQ > Gβ for each pair (α,/J), then f Fadμ(a) > fGβdv(β)
for any mixing distribution μ and v.

PROOF. The proof can be split into two parts. Suppose that Fa > G for

each α. We will show that / Fadμ(a) > G for any mixing distribution μ. Let

fa = ^ £ , then by Theorem 2.3, fa is nondecreasing for each α. Thus f fadμ(a)

is nondecreasing, and this implies that / Fadμ{ά) > G.

A similar proof shows that if F > Gβ for each /?, then F > f Gβdu(β) for any
mixing distribution v.

These two results establish Theorem 3.1. ||

It should be noted that the condition in Theorem 3.1 cannot be weakened to

> Ga for each α, as

EXAMPLE 3.2. Let

I

Fa > Ga for each α, as shown in the following example.

F1(t) = e-*/1'1, F2(t) = e-«5'\ Gi(ί) = e~\ G2(t) = e ^ 5 .

Then Ή > Gi and F 2 > G 2 . However, G2 > Fx. Let F = \{FΎ + F2), G =

\{G\ + G2). To check whether F > G, consider the ratio of the derivatives of F
and G,

»r i p-</i.i i i r-*/5.i
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We note that h is continuous, but h is not increasing because Λ(4.6) = 1.04 >

1.026 = Λ(6). Thus the ordering F > G is shown to be false in view of Theorem
2.3.

Next, we show that convex-ordering is preserved under formation of certain
coherent structures. We begin with some basic definitions and notations from
reliability.

Consider n independent components, each of which is either functioning or not.
We use the binary variable X{ to indicate the state of the i-th component:

{ I if component i is functioning
0 otherwise.

The state of a system composed of these components is determined by the states
of the components. The function φ(xχy.. . ,£ n ) is called the structure function of
the system and is defined by

., Λ ί 1 if system is functioning
Φ\ Xλ . . . . . X n ) = \T V * Ί > • • * > W 7 l / 1 f\ Λ fV o 1 .,iπen

EXAMPLE. A A -out-of-n system functions if and only if at least k out of the n
components function. The structure function is given by

The i-th component is irrelevant to the structure φ if φ is constant in X{. We
consider monotone systems, that is, systems for which φ(xi,..., xn) > Φ(yι, , Un)
whenever X{ > yt for all i = 1,..., n. If a monotone system has no irrelevant com-
ponents, it is said to be a coherent system.

Let P(Xi = 1) = Pi denote the reliability of the i-th component; the system
reliability is given by

hφ(pu -iPti) = P(Φ(XU . . ,a?n) = I)-

Denote the life distribution of the i-th component by F t ; then the life distribu-
tion Fφ of the system is given by

As a special case, we will consider a parallel structure of n components, i.e.,
a 1-out-of-n system. The life distribution of the system is given by the product
Π?=iΉ(*) The following theorem shows that convex-ordering is preserved under
formation of parallel systems.

THEOREM 3.3. Suppose F< > Gj for each pair (ij). Then Π?=1Ή > ΠJ*=1Gt .
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PROOF. It suffices to prove the theorem for n = 2. We first establish that Fι F2
is absolutely continuous (<<) with respect to G\ - G2. From our assumption it
follows that Fi « Gj, i = 1,2, j = 1,2. Note that (Ft F2)(x) = F1(x)F2(x) is a
distribution function. The distribution function G\ G2 is similarly defined. It is
easy to establish that

G1(E)G2(E) < (GΊ G2)(E) < Gi(E) + G2(E)

and

F1(E)F2(E) < (f\ F2)(E) < Fλ{E) + F2(E),

for intervals E and unions of intervals E and extending it for Borel sets E. Now, if
(Gi G2)(E) = 0, then either Gχ(E) or G2(E) = 0. Either case implies that both

= 0 and F2(E) = 0 and thus (Ή F2)(E) = 0. Thus Fx F2 « Gx • G2.

Let λ be a measure dominating all the (J, 'S. Let fi = ^ and gi = ^-. Then

d(F1-F2) f1-F2 + f2 F1 \g1-G

[
2

d(G1-G2) g1 G2 + g2 G1 [fi F2

 +fι F2\
 + [f2- F1

 + /2 F

is anondecreasing function, since ^ , ^ are nondecreasing. Hence Fι-F2 > G\-G2

by Theorem 2.3. ||

It is natural to ask whether we can relax the assumption of Theorem 3.3 to

F{ > Gt , all i? A counterexample paralleling Example 3.2 is given below.

EXAMPLE 3.4. Let JFi, F2, Gi, G2 be defined as in Example 3.2. Then

<) + 52 (*) G1(t)

is continuous and fc(4.5) = 1.01944 > 1.01935 = Jb(4.7). Theorem 2.3 shows that

the ordering F\ F2 > G\ G2 does not hold.

Another important coherent structure is the A -out-of-n system. We now show
that convex-ordering is preserved under formation of such systems with indepen-
dent components.

THEOREM 3.5. Let Fn^ be the life distribution of α k-out-of-n system with

independent components with life distributions Fι,...,Fn. Similarly let GUyk be

the life distribution of a k-out-of-n system with independent components with life

distributions G i , . . . , G n . Suppose that Fi > Gj for each pair (i, j). Then Fn^ >

Gn,k-

PROOF. Suppose Gnik(E) = 0. Then Gj(E) = 0 for some j. Hence F{(E) = 0

for all i. Thus FUik(E) = 0, so that Fn,k « Gn,h-



Convex-Ordering Among Functions 129

Let λ be a measure which dominates all the GVs. Let / t = ^ and gi =
i = l , . . . , n . Then for a fc-out-of-n system, the densities of FUik and Gn^ with
respect to λ are

n\
f u — -- Σf F F F F

yfC — J-)\n ~ ΛJ!

where the summation is taken over all permutations ( α i , . . . , α n ) of the integers
1,2,.. .n. The ratio of derivatives of Fn^ with respect to GUik is

To complete the proof that this is a nondecreasing function, we show that the ratio
of every term in the numerator to any term in the denominator is non-decreasing.
A typical term is of the form

f1.F2'...Fk.Fk+1-...Fn

9ax ' Ga2 * Gak G Λ f c + 1 . . . Gan '

which is nondecreasing since *V, ^ , Q are nondecreasing. By Theorem 2.3, we

conclude that Fn^ > GHik- ||

When all components are identical, the following theorem shows among other
results, that the reliability of a A -out-of-n system is more convex than the reliability
of a (k — l)-out-of-n system.

THEOREM 3.6. Let hn^{p) be the reliability Junction of a k-out-of-n system

with identical components. Then hn^+\ > /in+i,AH-i > n̂,fc > hn+\,k

P R O O F .

Γ(n ί"P

JoΓ(*)Γ(n - ifc + 1)

the incomplete Beta function. Taking the derivative of Λn>jt, we have

Thus,
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n ~ k

is increasing in py establishing that hn^ > Λπ+i,fc The remaining inequalities can
be proved similarly. ||

Since the distribution of the (n — k + l)-th. order statistic corresponds to the life
distribution of a fc-out-of-n system of identical components, the following corollary
is essentially a restatement of Theorem 3.6.

COROLLARY 3.7. Let FUyk be the distribution of the (n — k + l)-th order statistic

in a sample of size n from F. Then Fn>k+i > JFn+i,*+i > K,k > Fn+i,k>

In view of Theorem 3.5, one might ask whether convex-ordering is preserved
under formation of coherent systems. The example below shows that this is not
true in general.

EXAMPLE. Consider the coherent structure of identical components presented
in the following diagram.

2-

3-

The system reliability is hφ(p) = p2(2 - p). For F(t) = e~* and G(t) = e~2t,

we have F > G; but

fφ(t) 4 - 3 e - '
gφ(t) 2e-2<(4 - 3e^2ί)

which is continuous and not monotone nondecreasing in t.
In order to show that convex-ordering is preserved under convolution, we need

to consider the class of Pόlya frequence densities of order 2 (PF2).

DEFINITION 3.8. / is a Pόlya frequency function of order 2 (PF2) if for all
Δ > 0, f(x + Δ)//(x) is decreasing in x, — a < x < a.

An equivalent definition is that log f(x) is concave. Note that each PF2 func-
tion f(x) defines a TP2 function, h(x,y) = f(x — y).

The following theorem, due to Ghurye and Wallace (1959), gives a sufficient
condition on convex families for preservation of convexity under convolution.

THEOREM 3.9. Let {FQ} and {Ga} be convex families with PF2 densities.
Then (Fa * Ga) is a convex family.
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Denote the n-fold convolution of F by F^. Then for life distribution F with
log concave density, l^71*1) is more convex than F^n\ This is a special case of
Theorem 1 in Karlin and Proschan (1960).

THEOREM 3.10. Let F be a life distribution with PF2 density, then {F^} is
a convex family with respect to n.

4. Application of Convex-Ordering. Very often in life testing we do not
know the exact form of the distribution, but based on physical evidence, we know
something about the properties of the distribution. For example, in situations
where a normal distribution is assumed, we might suspect that the tail of the
underlying distribution is, in fact, heavier than that of the normal distribution.
Therefore, we want to test the normal assumption against convex-ordered alterna-
tives. In this section, we will present an inequality for convex families and apply
this inequality to develop tests of such a hypothesis.

THEOREM 4.1. (Hardy, Littlewood, and Pόlya (1952), p. 75.) F > G if and
only if

for all Xi and λt > 0, i = 1,..., n, such that ΣJL^λ; = 1.

Note that Σ£=1λ1\F(£t ) is a weighted average. We now apply this result to
hypothesis testing.

APPLICATION 4.2. Let Xi,.. ,,Xn be a random sample. Suppose we wish to
test:

H0:Xi,...,Xn~G (known)

against the alternative

Hi : X\,..., Xn ~ F, F > G but otherwise unknown.

Notice that when Hx holds, G" 1 (±Σ?=1G(X t)) < F"1 (~Σ?=1F(X t ))

The right hand side can be estimated by F " 1 ( iΣ? = 1 J^pΓ,-)) = F^x((n +

l)/2n) « median of the sample where Fn is the empirical distribution function.

Therefore, our test procedure is to reject Ho if G" 1 (^Σf=1G(Xi)j is sufficiently

smaller than F~x(\). Recall that G is known.

5. Convex-Ordering for Symmetric Distribution Functions. In this
section, we consider convex orderings between continuous symmetric distribution
functions: F{x) = F(—x) for all x.

DEFINITION 5.1. F > G if F and G are continuous symmetric distribution
functions and F > G on [0,oo); i.e., F « G and FG~X is concave on (-oo,0]
and convex on [0, oo).
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Examples of such ordered distributions are:

1) Normal.
Let Fa be the distribution function on JV(O, or), a > 0. Then 0.2 > «i
Fa

2) Double Exponential.
Let Fα be the density function given by

fα(x) = J_ e-
| a ? l / α, α > 0, -oo < x < oo.

Then α2> αx=^ Fα2 > Fαi.

A characterization of this ordering is given in the next theorem.

THEOREM 5.2. F > G if and only if f(t) = %{t) is nondecreasing in \t\ for
almost every t.

PROOF. By Theorem 2.3, / is increasing on [0, oo) and decreasing on (—oo, 0].

sc
Thus, if we wish to show F > G, we need only to consider / on the positive

axis. As an immediate consequence of this and Theorem 3.1, we have:

THEOREM 5.3. Let Fa > Gβ for each pair of (α,/?). Then f FOidμ(a) >
f Gβdv(β) for any mixing distributions μ and v.

When F is more convex than C?, then G is more peaked about the origin
than F, as shown in Theorem 5.5 below. We now compare this notion of relative
peakedness to the following definition given by Birnbaum (1948).

DEFINITION 5.4. Y is more peaked than X if

P(\Y\ > t) < P(\X\ > t) for all t > 0.

If X and Y have symmetric distribution functions F and G respectively, then
this is equivalent to G{i) > F(i) for all t> 0.

THEOREM 5.5. If F > G, then G is more peaked than F.

PROOF. Since F > G on [0,oo), it follows that FG"x(u) — \ is convex on
[0, |), and hence {FG"λ{u) - \)/{u — \) is increasing on (0,1). This implies that
(F(t) — \)l{G{t) - \) is increasing on (0,oo) and is less than or equal to 1. This
shows that F(t) < G(t) for / > 0. Since F and G are symmetric, it follows that G
is more peaked than F. \\

Since the product of symmetric distribution functions need not be symmetric,
we do not have a result analogous to Theorem 3.3. It can also be shown that this
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ordering is not necessarily preserved under convolution. If F > G, then we can
show that the even central moments of F are greater than those of G. To prove
this we need the following result.

LEMMA 5.6. (Barlow and Proschan, 1975, p. 120.)

Let W(x) be a Lebesgue-Stieltjes measure, not necessarily positive for which
ft°° dW(x) > 0 for all tf and leth>0 be increasing. Then f ^ h(x)dW(x) > 0.

THEOREM 5.7. F > G^ μ2n(F) > μ2n{G) for all n.

PROOF. F > G =» F(t) < G(t) V t > 0. Let

W(χ) = ί F(X)~G(X) i ΐ x > °
{ 0 otherwise,

and

^ ' "" 1 0 otherwise.

Then, by Lemma 5.6, μ2n(F) > μ2n(G). \\

COROLLARY 5.8. IfF>G, then Var F > VarG.

We conclude this section with the following theorem.

THEOREM 5.9. Let the distribution functions F andG be absolutely continuous
sc

with densities f and g. If F > G and F is unimodal, then G is unimodal.

PROOF. Both g/f and / are nonnegative and decreasing on [0,oo); thus g is
decreasing on [0,oo). ||
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