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Consider a continuous distribution on [0, oo) with cdf F,
survival function F = 1 — F and cumulative hazard func-
tion H = —LnF. For F NBUE it is shown that the corre-
lation coefficient between X ~ F and H(X) is bounded
below by σ/μ, the coefficient of variation of F, while
for F NWUE the correlation coefficient is bounded be-
low by μ/σ. Several applications of this inequality and
its generalizations are discussed, including Monte Carlo
simulation of the renewal function, exponential approxi-
mation of DMRL distributions, moment inequalities for
record values, and a variance inequality for random event
epochs in a homogeneous Poisson process.

1. Introduction and Summary. Consider a continuous distribution on
[0,oo), with cdf Fj survival function F = 1 - F and cumulative hazard function
H = —LnF. If X ~ F then Π(X) is exponentially distributed with mean 1. The
random variable H(X) measures lifetime by total hazard overcome until death,
while X measures lifetime in ordinary time units. Since H is an increasing func-
tion we know that H(X) and X are positively correlated. The question of how
positively correlated arose naturally in Brown, Solomon, and Stephens (1981) and
Brown (1987) in different contexts. In the former paper the asymptotic relative
savings in risk between two Monte Carlo estimators of the renewal function was
given by the square of the correlation coefficient between X and Π(X). In Brown
(1987), a quantity closely related to the correlation coefficient was needed to bound
the distance between a DMRL (decreasing mean residual life) distribution and its
stationary renewal distribution.

In this paper we show that for X NBUE (new better than used in expectation):

(1) p ( , ( ) )

while for X NWUE (new worse than used in expectation):
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(2)

The lower bound for the correlation coefficient is also applicable to record
value processes. Record value processes are of interest in reliability theory due to
their connection with minimal repair (Crow, 1974). Consider an i.i.d. sequence
{Xi,i > 1} with Xi ~ F. Define 5X = Xu N2 = min{i : X{ > Xχ>, S2 = XN2,
Nk = min{i : X{ > Xtfk_χ}, Sk = XNk> k = 3,4,...; Sk is referred to as the k™
record value. Using (1) and (2) we show that for F NBUE:

2

(3) — < E(S2 - 5i) < σ

and for F NWUE:

(4) μ < E(S2 - Si) < σ.

Using similar methodology, inequalities are derived for the moments of higher
record values. For example, it is shown (Section 3.4) that for F IFRA:

(5)

where μj = / x^dF(x).
In Section 3.5 we show that if {Tt ,i > 1} are the arrival epochs for a ho-

mogeneous Poisson process with parameter λ, and N is a stopping time, then
Var Γ/v > λ""2. We further demonstrate among distributions with failure rate
uniformly bounded above by λ, the exponential distribution with parameter λ has
minimum variance for the kr1 record value, for k > 1. Equivalently, among non-
homogeneous Poisson processes with intensity function uniformly bounded above
by λ, the homogeneous Poisson process with parameter λ has minimum variance
for Skj the time of the fcth event, for k > 1.

2. A Correlation Inequality. Consider a non-negative random variable
X with continuous cdf F. Denote by X* a random variable with cdf G(x) =
μ"1 JQ F(t)dt, the stationary renewal distribution corresponding to F. Let T de-
note a random variable with distribution dFτ{t) = tμ"1dF(t). T is distributed as
the length of the interval covering an arbitrary fixed point in a stationary renewal
process with interarrival time distribution F (Feller, 1971, p. 371). For fixed x > 0
define g(t) = F(x V t)/F(t), where xVt = max(x,*). Note that:

Pr(Γ > x) = ί°° tμ-λdF(t) = xμ-χF(x) + G(x)



A Correlation Inequality 113

Thus:

(6) Pr(Γ > x) = Eg(X*).

Next, consider the record value process corresponding to F, described in Sec-
tion 1. The sequence of record values {Si,i > 1} generates a nonhomogeneous
Poisson process with EN(t) = -LnF(t) = H(t) (Shorrock, 1972). Now:

Pr(S2 > x) = Pr(N(x) < 1) = F(x)[l + H(x)] =

LEMMA 2.1. If F is NBUE (NWUE) then S2 is stochastically larger (smaller)
than T.

st
PROOF. F NBUE is equivalent to X > X*. Since g is increasing in ί, it follows

from (6) and (7) that:

Pr(Γ > x) = Eg(X*) < Eg(X) = Pr(S2 > x).

The NWUE case similarly follows.

LEMMA 2.2. If F is NBUE then p(X,H(X)) > σ/μ. If F is NWUE then
p(XyH(X))>μ/σ.

PROOF. Note that dFS2(t) = H(t)dF{t) while dFτ(t) = tμ^dF^). By Lemma
2.1, if F is NBUE then:

(8) ES2 = E(XH(X)) >ET = μ2/μ.

Now subtract μ and divide by σ on both sides of (8) and the NBUE result follows.
Next, assume that X is NWUE. It follows from Lemma 2.1 that for any in-

creasing function ί (with the expectations existing):

(9) Eί(S2) = ίί(x)H(x)dF(x) < μ-1 I xί{x)dF{x) = Eί{T)

choose l(x) = H(x)i then:

(10) EH2(X) = 2 < μ-λE{XH{X)).

From (10) the NWUE result easily follows.

3. Applications.

3.1. Monte Carlo Estimation of the Renewal Function. Suppose we wish to
estimate M(/), the expected number of renewals in [0,£] for a renewal process with
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interarrival distribution F, by Monte Carlo simulation. An obvious approach is to
simulate N(t), the number of renewals in [0, J], K times {Nχ(t),.. .,iNΓ^(/)), and
to estimate M(t) by the sample mean. In Brown, Solomon, and Stephens (1981)
an unbiased estimator M*(t) was proposed and it was shown that as t —> oo the
asymptotic relative savings in risk between M*(£) and the estimator based on N(t)
was given by p2(X, H(X)). Lemma (2.2) gives a lower bound on p and thus a lower
bound on the asymptotic relative savings in risk.

3.2. Exponential Approximation of DMRL Distributions. Consider a continu-
ous DMRL (decreasing mean residual life) distribution F on [0, oo) with stationary
renewal distribution G. In Brown (1987) it is shown that:

(11) £>*(F, G) = sup I F(B) - G(B) |< 1 - EH{X*)

where H = —LnF, the cumulative hazard function, X* ~ G, and the sup is taken
over all Borel sets. Now:

(12) ES2 = J(H(t) + l)F(t)dt = μ[l + EH(X*)].

But F DMRL implies F NBUE, thus (12) and Lemma 2.1 give:

(13) ES2 = μ[l + EH{X*)] > ET = μ2/μ

thus:

(14) EH(X*) > σ2/μ2.

From (11) and (14) we obtain:

(15) 2> ( f , G ) < l - ( σ 2 / / i 2 ) .

The inequality (15) thus extends the result of Brown (1987) from F IFR to
F DMRL. Moreover it follows from (15), employing the methodology of Brown
(1987), that for F DMRL:

(16)

Thus if F is DMRL with coefficient of variation close to 1, then F is approxi-

mately exponential.

3.3. The Second Record Value. Consider £2 — S\ the interarrival time between
the first and second record values in a record value process corresponding to F
(equivalently the interarrival time between the first and second events in a non-
homogeneous Poisson process with EN(t) = H{t) = —LnF{t)). It follows from
Lemma 2.1 that F NBUE implies:

2

(17) E(S2 - Si) > ET - μ = ^ - μ = j
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while F NWUE leads to E(S2 - Sλ) < (σ2/μ).
The quantity E(S2 - SΊ) is the expected residual life for an item which is

minimally repaired at its first failure. It is of interest in the evaluation and planning
of maintenance policies.

Lemma 3.3.1, below, presents an upper bound of σ for E(S2 — SΊ), derived
without aging assumptions of F. As is done throughout this paper we assume
that F is a continuous distribution on [0,oo).

LEMMA 3.3.1. Let X ~ F and g a function on [0, oo) with Eg2(X) < oo.
Then:

\E(g(S2)-g(S1))\<σg

where σg is the standard deviation of g(X). In particular the choice g(x) = x
gives:

E{S2 -Si)<σ

where σ is the standard deviation of X.

PROOF. Eg(S2) = E(g(X)Π(X)) = Eg(X)EH(X)+σgσH{x)p(g(X),H(X)) <
Eg(X) + σg. Thus E(g(S2) - g(Si)) < σg. Substituting -g for g yields E(g(Sι) -
d(S2)) < σg from which the result follows. ||

COROLLARY 3.3.1. For F NBUE, σ2/μ < E(S2 - SΊ) < σ. For F NWUE,
μ< E(S2-Sτ)<σ.

PROOF. The NBUE case follows from expression (17) and Lemma 3.3.1. The
NWUE case follows from Lemma 3.3.1 and the obvious NWUE inequality E(S2 —

Si) > μ- II

A function g(x) on [0, oo) is defined to be starshaped if ^p- is increasing (mean-
ing non-decreasing). If g is non-negative and starshaped then g is increasing.

Consider, now, a function g which is non-negative and starshaped on [0,oo),
with μg = Eg(X) < oo. Define:

dFg(t) = g(t)dF(t)/μg.

Then: dFg{t)/dFτ(t) = μ~1μ{g{t)/t) which is increasing. Thus Fg is larger than
FT under the partial ordering of monotone likelihood ratio (Lehmann [1959] p.73)
and is thus stochastically larger. It follows that:

(18) E[Xg(X))>μgμ2/μ.

Now assume that F is NBUE. By Lemma 2.1 and (18):

(19) Eg(S2) > Eg{T) = μ-χE(Xg(X)) > μgμ2/μ2.
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Thus for F NBUE and g non-negative and starshaped it follows from Lemma

3.3.1 and (19) that:

(20)

The choice g(x) = x leads to the NBUE inequality of Corollary 3.3.1.

3.4- Higher Record Values. Let Sk denote the k™ record value in a record

value process corresponding to F continuous. Since Sk is the k"1 event epoch in

a non-homogeneous Poisson process with EN(t) = H(t) it follows that:

(21) dFSk(t) = [(#(*))*-V(* - 1) W * )

and also that:

(22) dFSk(t) = [(H(t)/k - lydFs^it), k>2.

Consequently (from 22):

(23) Eg(Sk) = (k- l^EigiSk^HiSk-!)].

Now H(Sk-ι) is gamma distributed with parameters k — 1 and 1 (the sum of

k — 1 i.i.d. exponentials with parameter 1) thus ESk-ι = VarSfc_i = k — 1.

Using the mean and variance of ff(5fr_i), (23) and the upper bound for the

product moment, EUV < EUEV +σuσv with U = Sjk-i, V = H(Sk-ι) we obtain:

(24) Eg(Sk) < Eg(Sk^) + (σ(g(Sk-i))/Vk=ϊ).

From (24) we obtain the following generalizations of Lemma (3.3.1):

(25) I E[(g(Sk) - 5(5 fc.!)] |< ^ ( S ^ O y v T ^ T .

The case k = 2 corresponds to Lemma 3.3.1. However the more general in-

equality appears to be computationally useful only when k = 2. For general k,

σ(g(Sk-ι)) is no easier to compute than E(g(Sk) — g(Sk-i))-
We have no analogue of Lemma 2.1 for F NBUE or NWUE. However if we

strengthen the restriction on F from NBUE (NWUE) to IFRA (DFRA) then we
obtain the following:

LEMMA 3.4.2. Let F be a continuous IFRA distribution, and Tr be a random

variable with distribution dFχr(t) = xr~ιdF(x)/μr-.ι, where μm is the m™ moment

of F. Then Sr is stochastically larger than Tr and:
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If F is α continuous DFRA distribution with finite (r — l)s^ moment then Sr is
stochastically smaller than Tr. If in addition F has finite (k + r - l)si moment
then the above inequality reverses.

For r = 2 the above inequalities hold under the weaker condition that F is

NBUE or NWUE.

PROOF. Note that dFSr(t)/dFTr{t) = fifry (Jψ1)^ which is increasing, as

F is IFRA. Thus Sr is larger than Tr under monotone likelihood ratio and is thus

stochastically larger. Thus:

(26) ESk

r > ET? = μ J b + r_1 /μr^.

Next:

Hk st x

k

(27) ^rdF > —dF.

Multiply both sides of (27) by ίί r "" 1 /(r - 1)! and integrate obtaining:

Thus ES* < μk^f1) and this inequality and (26) yield the IFRA result. The
st

DFRA case similarly follows. By Lemma 2.1, for F NBUE and r = 2, S2 > T2 = T

which is sufficient, by our above derivation, for (26) and (28) to follow (with r = 2).

II
Note that the various inequalities derived above for record value processes hold

for non-homogeneous Poisson processes.

3.5. A Variance Inequality. Consider an absolutely continuous distribution F
with failure rate function h(t) bounded above by \(h(t) < λ for all t > 0). Let SΊ
and 5*2 denote the first two record values in a record value process corresponding
to F. The failure rate function of 5*2 — S\ evaluated at t is a mixture of the values
{h(s),s > t} and is thus bounded above by λ for all t. Consequently:

(29) E(S2-S1)>λ'1.

By Lemma 3.3.1:

(30) E(S2 - SΊ) < σ

where σ is the standard deviation corresponding to F. From (29) and (30) we

obtain:

(31) σ2 > A"2.
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Thus among distributions on [0, oo) with failure rate bounded above by λ, the
exponential distribution with parameter λ has smallest variance.

Next, consider a homogeneous Poisson process on [0,oo) with intensity λ and
event epochs {Tt ,i > 1}. Let N be a stopping time and consider the random
variable Γ/v, letting Λ* denote its failure rate function. Since Tjq can only occur
at an event epoch for the Poisson process, and since the conditional intensity of
an event at t (given the past) for the Poisson process is always λ, it follows that:

(32) h*(t) = λ Pr(T/v = t I ΓΛΓ > t, ϊ i = ί for some i) < λ.

Thus (31) and (32) imply:

(33) Var(Tiv) > λ~2.

Note that λ~2 is the variance of T\ as well as the variance of T/vmj+i? the time
of the first event after time t. These event epochs have smallest variance among
all random event epochs for the Poisson process.

The inequality (33) holds for a large variety of random variables arising in
secondary processes generated by a Poisson process. These include counter models,
queues with Poisson input and uniformizable Markov chains.

Also note that if the failure rate of F is uniformly bounded above by λ, then
by (25) and the argument used to derive (29):

(34) λ-1 < E(Sk+ι - Sk) < k-^2σ(Sk).

Thus cr(Sk) > A:1/2λ~1, the lower bound being achieved in the exponential case.

Thus for k > 1, the exponential distribution with parameter λ minimizes the

variance of the kr*1 record value, among distributions with failure rate function

uniformly bounded above by λ. Equivalently, consider a non-homogeneous Poisson

process with intensity function λ(/) bounded above by λ. Then Var Sk > k\~~2

where Sk is the k"1 arrival epoch. Thus among all non-homogeneous Poisson

processes with intensity functions uniformly bounded above by λ, the homogeneous

Poisson process with intensity λ minimizes the variance of Sjt, for all k > 1.
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