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Maintenance policies are compared under various types
of aging. Formerly, a standard assumption was that when
a component or system failed, it was replaced by a new
one. Preventive maintenance usually took the form of
replacement according to an age or block policy. Under
the assumption that a component can be minimally re-
paired, new results involving block replacement policies
can be obtained. An analog of age replacement, called
repair replacement, is also discussed and compared with
other policies.

1. Introduction. The study of operating characteristics of maintenance
policies in reliability has a long history. For a survey of the very early developments
see Barlow and Proschan (1965). In this article we shall review one aspect of this
area, the comparison of maintenance policies.

A maintenance policy involves repairing or replacing a system or component
when it fails. This cycle is continued indefinitely. We shall not consider the time
taken to repair the component in this paper. An assumption equivalent to not con-
sidering these repair times, which we shall make, is that repairs or replacements are
instantaneous. Rather than waiting for components to fail, intervention is possible
in the sense that replacements may be planned. That is, working components can
be replaced (or overhauled, but we shall consider only replacements for planned
intervention in this paper) before failure. Two standard forms of intervention are
block and age policies. A block policy is said to be in effect if components are
replaced on a fixed schedule determined a priori and not depending on unplanned
failures which may occur. Unplanned failures are handled as if there were no block
policy. An age policy mandates replacement on a fixed schedule starting at time
zero and continuing until an unplanned failure occurs at which time a new schedule
starts.

If components are used which wear out it would seem that intervention of the
age or block type would result in fewer unplanned failures. It has been shown
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that under certain types of wearout that this is in fact the case. Also comparisons
between age and block policies have been made in order to determine which of
these two policies is preferable under various types of wearout. Most of these
results have been obtained under the assumption that unplanned replacements are
complete (i.e., replacement is with new components). Equivalent to saying that
replacements are complete is that components are repaired to a good as new state.
This type of assumption is unrealistic in the situation where components can be
repaired so they are only as good as they were immediately prior to failure. This is
called the “bad as old” or “minimal repair” assumption and although the concept
is not a new one, recent research has shown that many resu'ts holding in the good
as new case also hold in the bad as old situation. We shall discuss some of these
results for the comparison of maintenance policies.

In Section 3 we give a review of the comparison of policies where failed compo-
nents are completely repaired. The comparison of policies where components are
minimally repaired and block replacements are undertaken is discussed in Section
4. Section 5 is similar to Section 4 where instead of block replacement, a general-
ization of age replacement which we call repair replacement is considered. Section
6 considers comparisons for the totality of all planned replacements and unplanned
repairs. An appendix gives mathematical details for the type of stochastic com-
parisons considered.

2. Preliminaries. We use a counting process {N(t), t > 0} to model the
number of failures of a system or a component, where the times between failure
are given by {X,, n > 1}. If the failed system or component is repaired and if
there is no block or age policy, N will count only these unplanned repairs. If the
repairs are complete then {X,,, n > 1} will consist of independent failure times. If,
in addition, the components used for replacement are alike, the process N can be
assumed to be a renewal process. The assumption that the repairs are minimal is
modeled by assuming that the process is nonhomogeneous Foisson and in this case
we use the notation {N(t), t > 0}. For background concerning minimal repair
see Asher and Feingold (1984).

For a block replacement policy where replacements are planned at times T, 2T,
3T, ...we use the notation NB(T,1) to indicate the number of unplanned complete
repairs up to time t. We designate the process by NB(T). The process of all
unplanned repairs and planned replacements is given by RB(T). If the underlying
repair process is minimal we write N2(T) and RE(T') for the corresponding block
replacement processes. Formerly R processes were called removal processes (see
Barlow and Proschan (1981), p. 181). We shall call these renovation processes.

For an age replacement policy where the replacements occur every T units after
a complete repair we let N A(T, t) be the number of unplanned repairs up to time ¢
and R4(T,t) be the total number of unplanned repairs and planned replacements
up to time ¢ where N4(T) and R4(T) designate whole processes. If we want to
emphasize the distribution of the underlying process, N or N,, we will write Ng
or N, r where F' is the distribution time until the first event of the process.
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The basic results we will discuss will involve counting processes N; and N,
related to two different maintenance policies. Some of the earliest results (see
Barlow and Proschan, 1965) were of the type

(1) E[Ny(t)] 2 E[No(t)] forall t.

Other results involve limiting relationships which can be obtained from the above
by letting ¢ — 0o. Another standard result is of the form

(2) P{Ny(t) > n} > P{N2(t) > n} for n=1,2,..., all ¢,

which is equivalent to assuming that E[f(N1(t))] > E[f(N2(t))] holds for all in-
creasing functions f and all ¢. In this case we write

t
Ni(t) 2 Na(t) forall t.

We call this type of result a marginal stochastic comparison since it only involves
the one dimensional marginals of the processes N; and N2. A more general type
of result would be

(3) (Nl(tl),Nl(tg)) SZt (Ng(tl),Ng(tz)) fOI‘ a.ll t1 < tg,

which means

E[f(N1(t1), N1(22))] 2 E[f(N2(t1), N2(22))] forall t; < 2

and all f increasing in both variables.
The stochastic comparisons mentioned above are subsumed under a more gen-
eral stochastic comparison denoted by

st
(4) N; > N,.

This stochastic comparison is defined in the Appendix following (A.3). The defi-
nition in essence gives that the measure induced by Ny on the space of counting
processes stochastically dominates the measure induced by N,. It is shown that
this latter comparison is equivalent to the stochastic ordering of all finite dimen-
sional distributions. Consequently this implies the two dimensional version given

by (3).

3. Comparison of Policies with Complete Repair. Various results have
been given which compare N(t), N4(T,t), NB(T,t), RA4(T,t) and RB(T,t). One
elementary result is that without any assumptions on the lifetime

t
(5) RA(T,t) > RB(T,1) forall t.
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This is Theorem 4.1 (in different notation) of Barlow and Proschan (1965, p. 67).
A second more interesting, but still intuitive, result is that if the lifetimes are IFR,
then

st A st B
(6) N(t) > N4(T,t) > NB(T,t) forall t.

This is also proven in Barlow and Proschan (1965, Theorem 4.4, p. 69). As an
immediate consequence, using the second stochastic inequality and asymptotic
results, these authors conclude (Corollary 4.5, p. 71) that if F is an IFR lifetime,
then

tF(2)
(7 E[N()] < m-

In Marshall and Proschan (1972) various improvements of these results were
obtained where the weaker property of NBU is assumed rather than IFR. These
results appear in Barlow and Proschan (1981) and we mention the most important
of these:

st
(8) N(t) > N4(T,t) forall t,T ifandonlyif F is NBU;
t
(9) N(t) S NB(T,t) forall #,T ifandonlyif Fis NBU;
st
(10) NB(T,t)SNB(kT,t) forall ¢,T,k if and onlyif F is NBU;

st
(11)  NA(T,t) < NA(kT,t) forall t,T,k ifandonlyif Fis NBU;

st
(12) NA(Ty,t) < N4(Ty,t) forall Ty < T, forall t if and only if Fis IFR

where kT =< kT,2kT,3kT,---> and k is a positive integer. These are all proven
in Chapter 6, Section 4 of Barlow and Proschan (1981).

One other result which is of the above type, but is given in a disguised form
as Theorem 3.2 of Chapter 6 of Barlow and Proschan (1981) is that if F' is the
distribution function of X; from the nonhomogeneous Poisson process N,, and
also the distribution function associated with the renewal process N then

st
(13) Fis NBU implies Np(t) > N(t) forall t.
This was also proven by Blumenthal, Greenwood, and Herbach (1976).

4. Block Replacement Policies. Block, Langberg, and Savits (1990) have
generalized the previous results in several ways. First, they considered more
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general policies Z. By a policy Z we mean that replacements occur at times
21 < z3 < z3--- and we use the notation Z =< 2,29, -+ >. In the special case
that the z’s occur every T units (i.e., z; = iT) we write Z = T. Consequently, we
use the notation NB(Z)(N2B(Z)) to designate the process giving the number of un-
planned replacements in a complete (minimal) repair block process. We continue
to use the term block here in the sense that the replacement schedule is made a pri-
ori (in a block) even though the 2z; need not be equal. Similarly RB(Z) and RE(Z)
will designate the renovation process. These authors obtained comparisons of the
whole processes of type (4) given in Section 2. Also, these authors considered the
comparison of minimal repair policies involving block replacement. A basic result
used to obtain some of these generalizations involves comparison of minimal repair
processes with stochastically ordered lifetimes. That is, let F' and G be the dis-
tribution functions of the lifetimes associated with the nonhomogeneous Poisson
processes { N, p(t), t > 0} and {Np, g(t), t > 0}. The result is

t st
Npp 2 Nmg fandonlyif F<G (e, F(t) > G(t) forall t).

See, for example, Theorem 3.1.1(a) of the paper cited above. The following com-
parisons are also obtained:

B St B . .
(14) N, (Z) > N®(Z) forall Z if F is NBU;
st
(15) Nm > NB(Z) forall Z ifand only if F is NBU;
st
(16) Np > NB(Z) forall Z if and only if F is NBU.

Notice that (14) above generalizes the result (13) and gives that for any block
replacement policy Z, a minimal repair policy for unplanned failures produces
stochastically more failures than a complete repair process. The result (15) gives
a result which generalizes (9) and the result (16) is a hybrid of (14) and (15).

In Theorem 4.1 of Block, Langberg, and Savits (1990), several other results
which generalize (5) are also given.

5. Repair Replacement Policies. Block, Langberg, and Savits (1989)
consider repair replacement policies. In these policies items are either minimally
or completely repaired at unplanned failures or they are replaced if they survive
a certain fixed time from the last repair without suffering an unplanned failure.
If at failure only complete repairs are allowed, then the repair replacement pol-
icy reduces to an age replacement policy. Consequently, the concept of a repair
replacement policy is a more general type of replacement policy than an age re-
placement policy. We consider repair replacement policies for two reasons. First,
upon repair it may be that a replacement is scheduled within a short period of
time; however, when the repair was made it may be clear that the component
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was in good shape and did not require an immediate replacement. Consequently,
the replacement should be deferred. One way of deferring it is to start a new
replacement schedule from the time of the repair. Secondly, as we will see in
(18), a repair replacement policy has fewer unscheduled repairs than a minimal
repair policy under IFR lifetimes. This is often a desirable outcome if cost is not
a consideration.

As before we let N and N,,, denote the processes with only complete and only
minimal repair respectively with no intervention. We now define the repair replace-
ment processes with scheduled planned replacement determined by Z =< z; >.
Planned replacements occur at times z;,2; + 2z2,... until an unplanned repair
occurs. Assume this occurs between times X772 and £, 7. The planned re-
placement schedule is then restarted from the time of the unplanned repair and
the schedule of planned replacements is given by zp 41, 2n;41 + 2n;+2, - . - units of
time after the unplanned repair. This process continues. Notice that Z here is dif-
ferent than in the previous section in that the z; here give times between planned
replacements. See Block, Langberg, and Savits (1989) for more details.

If only complete repairs are allowed, i.e., the N process is used, and 2z = T
for all £ we have that at each unplanned complete repair, the schedule of planned
replacement times from that repair is T,2T,3T, .... This yields the usual age
replacement policy.

If the repairs are minimal, i.e., the process N,, is used, the general repair
replacement policy results.

If only complete repairs are permitted we let N4(Z) be the process counting
the number of unplanned (complete) repairs of the repair replacement policy (i.e.,
the age replacement policy). For Z = T, N4(Z) reduces to the process N4(T)
discussed in (6).

For minimal repairs, we use NE(Z) for the process counting the number of
unplanned (minimal) repairs of the repair replacement.

We are now able to state some results of Block, Langberg, and Savits (1989).
If we let F be the underlying distribution of the renewal process N we have

t
17) NSZNA(Z) forall Z if and only if F is NBU.

This is given in Theorem 3.2(b) of the aforementioned paper. This result extends

the first inequality of (6) in two directions. First, instead of T, a general time

schedule Z is used and, second, the above result is a comparison of the type (4).
A second result, given in Theorem 3.2(d) of Block, Langberg, and Savits (1989),

is that
st
(18) N > NE(Z) forall Z if F is IFR.

This is a companion result to (15) and gives a generalization of (17) from complete
to minimal repairs. Various other comparisons can be obtained among the pro-
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cesses Ny, N4(Z), and NE(Z). An example which is an analog to (14) for block
policies is that

t
(19) NE(2)% NA(Z) forall Z if F is NBU.

This is given in Theorem 3.2(c) of Block, Langberg, and Savits (1989).
Finally, the second inequality of (6) holds for processes as well as marginally
and is given by Theorem 5.2 of Block, Langberg, and Savits (1989).

6. Comparisons for Renovations. We now consider the total number of
renovations, i.e., the total number of planned replacements and unplanned repairs
for both the block and repair replacement policies. We recall that RB(Z) and
REB(Z) are the total renovations for the renewal process and minimal repair process
with block policy Z. Similarly for the renewal process we use R4(Z) and RE(Z).

The following results have been shown in Block, Langberg, and Savits (1990):

t
(20) N < RB(2) forall Z;
t
(21) RB(2)< RB(Z) forall Z if F is NBU;
t
(22) N,. < RB(Z) forall Z if F is NWU.

Result (22) says that if a lifetime undergoes beneficial aging, there are more ren-
ovations (i.e., removals) for a renewal process with block replacement, then there
are repairs for a minimal repair process.

For repair replacement policies Block, Langberg, and Savits (1989) have shown,
among other results, that

t
(23) N < RA(Z) forall 2,
t
(24) RA(Z)< RR(Z) forall Z if F is NBU
and
t
(25) N, < RA(Z) forall Z if F is NWU.

Appendix. In order to define the stochastic ordering of two processes N;
and N, in (4), it would be enough to restrict ourselves to the class of all counting
processes by which we mean the class of stochastic processes whose sample paths
are nonnegative right-continuous step functions, starting at 0, only increasing by
jumps of size one, and endowed with the Skorohod topology. We denote the set
of all such sample paths by S([0,00)). However, it is convenient to enlarge our
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viewpoint somewhat. The framework which we shall follow is that delineated in
Kamae, Krengel, and O’Brien (1977).

Let E be a Polish space (i.e., a complete separable metric space) equipped with
a closed partial ordering <. A partial ordering < is said to be closed if its graph
{(z,y) : ¢ < y} is a closed subset of E X E in the product topology. The Borel
o-algebra on FE is denoted by £.

The principal examples considered in this paper are listed below. First, how-
ever, we state two useful facts.

(A.1) A countable product of partially ordered Polish spaces is also a partially

ordered Polish space under the product topology and the coordinatewise
partial ordering.

(A.2) A closed subset of a partially ordered Polish space is itself a partially ordered
Polish space with the induced topology and partial ordering.

Ezamples:

(1) If E; = [0,00) with the usual topology and ordering, then we denote the
partially ordered Polish space [[2, E; by RS.

(2) Let I be the interval [a,b] and D(I) the set of all functions z : I — R
which are right-continuous with left-hand limits. Then it is well-known that
D(I) equipped with the Skorohod metric and pointwise partial ordering (i.e.,
z < y if and only if z(t) < y(t) for all ¢t € I) is a partially ordered Polish
space. Sometimes we also want to consider the case I = [a,b) with b possibly
infinite. In this case, the metric can be modified so that D(I) is again a
partially ordered Polish space (see Stone (1963)).

(3) For D(I) as above, let S(I) denote the subset of all nondecreasing step-
functions s : I — {0,1,2,...} having only jumps of size one and satisfying
s(a) = 0. It is not hard to show that S(I)is closed and hence itself a partially
ordered Polish space.

We now consider the notion of stochastic order on a partially ordered Polish
space . A Borel set U € £ is said to be an upper set if z € U and z < y
implies y € U. If A\; and A, are two probability measures on (E, ), we say that

A1 is stochastically smaller than Ay, written as Ay S_<t Az, if A1(U) < A2(U) for all
upper sets U. This is equivalent to the condition that [ fd\; < [ fd); for all
nonnegative nondecreasing Borel measurable functions f. (A function f: E - R
is said to be nondecreasing if z < y implies that f(z) < f(y)).

Another preservation property which is useful is the following;:

(A.3) If ¢ : E — F is a nondecreasing measurable mapping between two partially
ordered Polish spaces and A1, A2 are two probability measures on (E, £) with

st st
A1 < A2, then the induced measures p; = A; 0 ¢~ on (F, F) satisfy py < po.
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Let F be a partially ordered Polish space. By an F-valued stochastic process
X we mean a measurable mapping from a probability space (2, F, P) into (E, £).
We denote the induced probability measure Po X! on (E,€£) by Ax. If X and
Y are two E-valued stochastic processes, we say that X is stochastically smaller

st st
than Y, denoted by X <Y, if Ax < Ay. We say that X and Y are stochastically

equivalent if Ax §<f Ay and Ay S_<t Ax;ie, Ax = Ay.

Several of the results in Block, Langberg, and Savits (1990) are a consequence
of the following theorem. Let E;, i = 1,2,... be a sequence of partially ordered
Polish spaces and set E = []2; E;. We define the projection map =; : E — E; as
usual. If X is an E-valued stochastic process, denote the ith coordinate of X by
X, i.e., X; = m;X. For n = 1, define the probability measure p; on E; by p;(A4) =
P(X, € A). For n > 2, let p,(A|z1,...,Zn-1) be a regular conditional probability
of P(X, € A|X1 = z1,...,Xn-1 = Tn-1). Such exists because F; X -+- X E,_1 is
Polish. (See, e.g., Breiman (1968)). We shall call the collection < p, > a system
of transition probabilities (for X). Note that such a system completely determines
the induced probability measure Ax on E = [[2, E;.

Now suppose X and Y are two E = [[{2, E;-valued stochastic processes with
corresponding systems < p, > and < ¢, > of transition probabilities. We then

t

s
write < p, ><< gqn > if
. st
(i) » < q and

st
(ii) Pn('lml, ceey mn—l) < qn(‘lyl, ceey ?/n—l)

whenever z; < y;,t=1,...,n—1land n=2,3,...
We are now ready to state the following result. It is essentially a reformulation
of Theorem 2 in Kamae, Krengel, and O’Brien (1977).

THEOREM A.4. Let E = [[2; E; be the product of partially ordered Polish
spaces and X, Y two E-valued stochastic processes with corresponding systems

st st
< pn > and < ¢ > of transition probabilities. If < p, ><< q, >, then X <Y.

COROLLARY 1. Let {K(t); t > 0} and {L(t); t > 0} be two counting processes
with corresponding interarrival times < X, > and <Y, >. Assume that

st
(i) X1<1
and

st
(”) (XnIXI =T1,.. -,Xn—l = xn—l) < (Ynln =Y,-- -,Yn—l = yn—l)

st
for n > 2 and whenever 1 < ¥1,...,2n-1 < Yn—1. Then K > L.
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PROOF. Let E; = [0,00). Then X =< X3, X5,...> is an E = [[2, E;-valued
stochastic process with a system < p, > of transition probability given by

pu(Alzr, ... Zn1) = P{Xn € A|X1 =21,...,Xn-1 = Zn1}.

Similarly Y =< Y7, Y2,...> is an E-valued stochastic process with system < ¢, >
where

Qn(Alyl,- . -7yn—1) = P{Yn € A|Y1 = yI,---,Yn—l = yn—l}-

st st
By assumptions (i) and (ii), we have < p, ><< g, >. Hence X < Y. Since K =
®(< X; >) and L = &(< Y, >) with ® a nonincreasing function on E, we deduce

st
that K > L by (A.3). Here ® is defined as the mapping ® : R — §([0, 0)) given
by

@(< z; >)(t) = f:I[O,t](xl + o4 .'E,').

=1

For the next result we need to introduce another mapping. Let E; = S([0, w;])
fori=1,2,...and set w = Y 2; w;(0 < w < 00). We define the mapping

[o o]
v:[[Ei— E=5(0,w))
=1
by
s1(t) if0<t<uwy,
U(< s; >)(t) = Z _ . -

(< >)0) { Al si(w) + skt — Th w) i il wi<t< T wi
COROLLARY 2. Let K; = {Ki(t); 0 <t < w;} and L; = {Li(t); 0 <t < w;}

st
be counting processes such that K; < L; for each i = 1,2,.... Suppose that each
sequence < K; > and < L; > is independent. Then if K = ¥(< K; >) and

st
L =9(< L; >) we have K < L.

Proor. Let E; = S([0,w;]) and set X; = K; and Y; = L;. Then X =
< X1,X3,...>and Y =< 11,Y;,... > are E = [[2, E;-valued stochastic pro-

cesses. By independence, the corresponding system of transition probabilities are
given by

p(A) = P{X, € A} = P{K; € A},

q1(A) = P{Y, € A} = P{L, € A},
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and, for n > 2,

pn(Alzla- . -,mn—l) = P{Xn € A|X1 =Ty Xpn-1 = zn—l} = P{Kn € A},

q'n.(Ath” -syn—l) = P{Yn € Al},l = yl"-'aYn—l = yn—l} = P{Ln € A}

Thus < p, >2< ¢n > since K, sst L, for all n by assumption. Consequently,
X Sgt Y. Since V¥ is a nondecreasing function on E, the result follows from (A.3).

Finally, in Section 2 following (4), we stated that the notion of stochastic
ordering for counting processes could be equivalently expressed in terms of their
finite dimensional distributions. We now give a proof of this obvious result.

Let X be a D(I)-valued stochastic process and T' = {t1,...,t,} C I. We
assume without loss of generality that ¢; < -+ < t,. The induced probability
measure P{(X(t1),...,X(t»)) € A} on (R™,B") is called a finite dimensional
distribution of X and is denoted by A% (A).

The next lemma will be used in the proof of Theorem A.6 and may be of some
independent interest.

st
LEMMA A.5. Let A < pu on a partially ordered Polish space E and suppose F
st
is a closed subset of E. Then if A(F) = u(F) = 1, it follows that A\|F < p|F.

ProoF. Let U be an upper set in F and € > 0. Then there exists a compact
set K C U such that A(K) > A(U)—e. TV ={y€ E:y > z for some z € K},
then V is a closed upper set in E which contains K (see, e.g., Nachbin (1965)).
Hence A(V) < u(V) and consequently A(VNF) = A(V) < u(V)=u(V N F). But
VNF CU and so

AU) — e < AEK) < AV) < (VN F) < p(U).

THEOREM A.6. Let X and Y be two S(I)-valued stochastic processes. Then
st st
X <Y if and only if ,\§ < A; for all finite sets T C I.

ProOOF. The necessity is clear since the mapping 77 : §(I) — R™ given by
7T(s) = (s(t1),...,8(t,)) is nondecreasing. Thus the result follows from (A.3).

st
Now we suppose that A} < AL for all finite sets T C I. Since S(I) C D(I) we
may consider X and Y as stochastic processes on D(I). According to the proof of

st
Theorem 4 in Kamae, Krengel, and O’Brien (1977) we can assert that X <Y as
D(I)-valued stochastic processes. The conclusion now follows from Lemma A.5.

REMARK A.7. Although Theorem 4 of Kamae, Krengel, and O’Brien (1977)
is stated in terms of stochastic ordering between conditional probabilities, it is
easy to reformulate it in terms of stochastic ordering between finite dimensional
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distributions. Note the equivalent version of Theorem A.6 for the space D(I) is
a consequence of their Theorem 4. In fact, if their Lemma 1 was adapted to the
space S(I), then Theorem A.6 would be a direct consequence of a suitably revised
version of their Theorem 4.
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