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A CONDITIONAL APPROACH TO THE DETECTION OF
CORRELATED MUTATIONS

BY MAHA C. KARNOUB, FRANCOISE SEILLIER-MOISEIWITSCH1 AND

PRANAB K. SEN

Glaxo Wellcome Inc., Research Triangle Park, NC and University of North
Carolina at Chapel Hill

Some genomes mutate quickly. Studying their mutation process may allow
us to understand the selection pressures these genomes are undergoing. Consid-
ering simultaneous mutations at several sites may provide insights into protein
structure. We consider the situation where the frequency table for the amino-
acid pairs can be summarized by a 2 x 2 table. We develop a test for mutational
linkage between two positions conditionally on the consensus pair. We illustrate
the use of this test with sequences from the V3 loop of the envelope gene from
the human immunodeficiency virus.

1. Introduction. The genome of a retrovirus like the human immunod-
eficiency virus (HIV) evolves at a fast pace: the high mutation rate (due to
the error-prone reverse transcriptase and recombination between the two RNA
strands) is compounded to the high rate of replication (~ 300 cycles of repli-
cation per year). Some of these substitutions confer a survival advantage by
enabling some mutants to escape the immune system. Some may cause a phe-
notypic change (such as cell tropism and virulence). These random mutations
thus persist in the viral population. Some subsist only when a substitution at
another position occurs. These linked mutations may simply maintain structure
(and thus viability) or may again be beneficial to the virus.

When the structure of a viral protein is unknown, detecting such double
mutations may help in inferring pairs of amino acids that interact and are
therefore more likely to be in close spatial proximity. Further, for sequence data,
more often than not the probabilistic model underlying analytical methods relies
on the assumption that positions undergo independent mutation processes. The
methodology introduced in this paper can serve to check this assumption. Its
violation leads to the overestimation of genetic distances and thus to erroneous
phylogenetic reconstructions [Seillier-Moiseiwitsch et al. (1998)].

In Section 2, we consider specific pairs of sites and test the number of dou-
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TABLE 1

Contingency table for sequence data.
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ble mutations away from the consensus (i.e., the most frequent configuration)
conditioning on the total number of sequences and on the consensus pair; a con-
ventional test for independence is appraised in this context. The methodological
developments are presented in Sections 3, 4, and 5, with some details relegated
to the Appendix. We present some simulation results in Section 5 and analyze
a set of HIV-1 sequences (Section 6).

2. The set-up. Consider a specific pair of sites along the sequences, say
Position 1 and Position 2. Assume that at Position 1, across all sequences,
amino acids D and E are present while Position 2 exhibits V and W. In the
contingency table summarizing the data (Table 1), the (l,l)-cell contains the
number of sequences with the consensus configuration. Let n^ be the number of
sequences in row i (Position 1) and column j (Position 2), and pij the probability
of having this configuration. Any sequence in the first row or the first column
but not in the (1, l)-cell sustained a single mutation away from the consensus.
The others had two mutations.

In the context of viral sequences, it is reasonable to treat these sequences
as independent, at least as a first assumption. Indeed, replication cycles are
short, and each cycle generates a number of substitutions. Hence, when all
sequences are sampled from different individuals, many rounds of replication
separate any two viruses. Each position had many opportunities to mutate.
Also, functionality of the resulting protein drives viral survival. Thus, whether
a specific position is allowed or required to change depends on the amino-acid
composition at other locations. In a sense, the consensus is "rediscovered" after
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each alteration through structural linkage. This selection pressure and the high
viral turn-over overwhelm ancestral relationships.

We are interested in testing excess or paucity of double mutations under
the assumption of independence of mutations at the two positions. The random
variable of interest is iV22, the number of sequences with double mutations. In
Fisher's exact (conditional) test [Bishop et al. (1975), p.364], the marginal totals
ni.-> ™.i, ^2o a n d ft.2 are conditioned upon and the conditional probability of
the observed counts is given by the hypergeometric law

n (AT 1 o I \

Pr(Nij = Πij, ι,j = 1,2 | n,unlm,n) =

n i ! n 2 ' n l ! n 2 '

n \nn !

The exact one- and two-sided tests using the collection of all possible tables
with these marginal totals and this probability distribution can be constructed.
Alternatively, a large-sample (normal) approximation can be applied as follows.

The estimate of the expected value of iV22 is

E(N22) = np22.

Under the null hypothesis of independence among positions,

n2.n,2 - n2. n.2
P22 = 5— a n d E (^22) =

The exact variance conditional on the marginal totals is

The test statistic is thus

r.=K-g(^))/jnn'Tn-'iT-
Undergo, Tn ~ ( , ) ,
and the critical level of this test statistic is close to the normal percentile point
corresponding to the significance level.

In the present context, the marginal totals are not fixed as we do not have
any knowledge about the total number of mutations with a specific nucleotide
or amino acid at any one of the positions. Since in our set-up, we condition on
the consensus cell frequency Nn (= Πn) (see Section 3 for further motivation);
hence, Fisher's exact (conditional) test is not appropriate here. However, we
may add that as the conditional distribution of Γn, given the marginal totals, is
asymptotically λί (0,1), in probability (under HQ), and thus free of the marginal
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totals, the asymptotic unconditional null distribution of Tn is also
Consequently, a test based on Tn will have a specified level of significance if
the Ni/s are all large. Nevertheless, in terms of power properties it might not
compare favourably with alternative tests based on the conditional distribution
given Nιι and N. In passing, we may remark that the traditional optimality
(viz., UMP) property that may be attributed to Fisher's exact test (against
some specific parametric alternative) may not be tenable in our set-up where
the alternative hypotheses are not only of more complex nature but also not
entirely of a parametric flavour. In fact, in our case, a UMP test may not exist.
For this reason, we have recourse to a direct approach based on the conditional
distribution, given Nn and N along with the additional information that Nu
is the maximum cell-count among the four cells. This is the main theme of the
current study.

3. Distribution of the cell counts. The standard distributions associated
with cell counts in contingency tables are [Bishop et al. (1975)]: the Poisson
model, obtained with a sampling plan that has no restrictions on the total sam-
ple size, the multinomial model with a fixed total sample size, and independent
multinomial distributions for the rows (with fixed row totals) or independent
multinomial distributions for the columns (with fixed column totals). For these
sampling models, the marginal totals are sufficient statistics for testing the inde-
pendence of two factors. Further, under the assumption of independence of the
factors, the maximum-likelihood estimates under the above sampling processes
exist, are unique and, if none of the marginal totals is 0, they are equal. In fact,
when the total sample size is fixed, the multinomial and the Poisson schemes are
equivalent [Bishop et al. (1975)]. The Poisson model is usually prefered when
some of the events are rare, i.e. some of the cell counts are small. In view of
the nature of our data, we adopt this model here. Indeed, the measured average
error rate per site for HIV-1 reverse transcriptase is between 10~4 and 10" .

We let N = (iVn, Nχ2, N21, N22)', and make the following assumptions:

1. the cell counts N{j are independent and have Poisson distributions with
parameters λjj, i.e.,

2 2 λij \ nij

2. An 3> \ij for all (i,j) Φ (1,1) and the λ, j ' s are large (e.g., greater than 5).

These two assumptions basically ensure that (i) Nn is a maximum with prob-
ability close to 1, and (ii) the multinormality approximations hold for the dis-
tribution of the ΛΓjj's.
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Let A = y , λ{j. We consider the null hypothesis (of independence of muta-

tions)

Ho : Xij = A at β3 for all (i, j ) , aλ + α 2 = 1, βλ + β2 = 1,
against the alternative hypothesis

./ϊα : λjj's are not factorizable this way,
i.e., the mutations at the two positions are not stochastically independent.

We test the above hypothesis conditionally on the consensus pair. Condi-
tioning on the consensus pair allows us to identify the polymorphisms (i.e., the
pairs made up of the consensus amino acid at one position and a mutation at
the other position) and the double mutations. The goal of the test is to iden-
tify pairs of positions that show a propensity to change together. The reason is
two-fold. First, the consensus pair codes for a part of the protein that plays its
function well. Departures at one or the other of the two amino acids (but not at
both simultaneously) indicate changes that do not disturb the structure so much
that the product is no longer a functioning protein. These single departures can
be viewed as "noise". Double mutations, on the other hand, come about either
as a rescue mechanism for a slightly deleterious single mutation or as a change
in phenotype (acquisiton of a different cell tropism, for example). Hence, identi-
fying correlated substitutions serves as an exploratory investigation of structure
modifications and thus of alterations in phenotypes. Second, usually, positions
that interact are in the same three-dimensional vicinity. Hence, from these cor-
related pairs, one can infer some information about the structure of the protein.
For these two purposes determining the consensus pair is crucial to identify-
ing changes. Further, due to genetic drift and independent selection pressures
at each position, αi and βι are not constant over time. Thus, conditioning on
N and Nn enable us to separate these effects from selection that act on both
positions simultaneously.

Let n* = n — nn and A* = A — An- Under Assumptions 1 and 2 above, we
show that if the λ /s are large

(3.2) P{iVn>max(iV12,ΛΓ21,iV22)} -> 1

(see Appendix). Next, consider the joint distribution of the cell counts, given
Nn = nn and the fixed total sample size n:

P{Nn = n n , Nϊ2 = n i 2 , N21 = n2U N22 = n22 | Nn

= n i 2 , N2\ = n 2 i , N22 = n 2 2 }

i "12 \ "21 \ " 2
V12 Λ 2 1 Λ 2 2

_ n i 2 ! n 2 i ! n 2 2 !
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which follows readily from (3.1). As a result, the distribution of iV* = N2Ϊ +
N12 + N22, given Nn = nlu is

Further, note that given Nn = nn, iV* = n*, we have N = n = n* + rin. Hence,
from the above two equations, we obtain that
P{Nn = n u , Nu = n i 2 , iV2i = n2U N22 = n22 \ Nn = nn k N = n}

n * •

This is a trinomial distribution for N* = (Nu, N2\, N22)', with parameters n*

and γ i , - p , and - p . Let 1/̂  = - ^ for (i,j) ψ (1,1), 1/ = (1/12,1^1,̂ 22)' and

£) = Diag( 1/12,^21,^22). Then

E (JV* I iVn = nn , ^* = n*) = n* 1/

(3.4) Vαr (ΛΓ, | iVn = n n , JV* = n*) = n* [D - vv'\ .

At this stage, we invoke (3.2) and (3.3), and claim that as n increases,

P{Nι2 = n i 2 , ΛΓ2i = π 2 i, Λ̂22 = ^22^11 = ^ii, ^ n = max and N = n}

(3.5) « P{(ΛΓ12 = n 1 2 , Λ 2̂i = n 2 i , iV22 = n 2 2 | Nn = n n , iV* = n*}.

Therefore, the moment results in (3.4) can also be shown to be good approxi-
mations for the conditional case where in addition Nn is the maximum.

4. Parameter estimation. By virtue of (3.5), under Assumptions 1 and 2,
we shall work with the approximate likelihood function (given Nn — ̂ n , N* =
n* and that Nn is the maximum cell count among the four cells):

P{N12 = m 2 , N21 = 7i2i, N22 = n 2 21 Nn = nn = max, N = n}

n12\n21 ! n 2 2 !

Recall that, under i ί 0 , Kj — λ α ^ j for i = 1, 2, and j = 1, 2. Without any
loss of generality, we set aι + a2 = 1 = βι + β2. With this simplification, we can
express V{j = λ^/λ* in terms of the two unknowns, a\ and β\. The trinomial law
in (4.1) has effectively two degrees of freedom (DF) for a goodness-of-fit (GOF)
test statistic. The conventional Pearsonian GOF test for the conditional law in
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(4.1) would result in 0 DF, and hence, would not be usable. To eliminate this
impasse, we recall that Nn is held fixed (along with other statistical information
contained in its marginal distribution), and further that

n-nn

which under the null hypothesis Ho reduces to

(4.2) P{Nn =

Therefore, letting θ = a\βι, from (4.2), we obtain a MLE or BAN estimator of
θ :

" 1 1

n

As such, we work with the conditional model in (4.1) incorporating the addi-
tional restraint that

(4.3) i/h n

Now we have effectively only one unknown parameter, OL\ say, and hence, the
classical inference theory for categorical models can be called upon.

The log-likelihood of αi, based on (4.1) and the constraint (4.3), is

ί θn\
L0(aι) = C + nu logαi + n12 log I 1 -) + n 2 i log(l -

+π2ι log — + n22 log (1 - αi) + n 2 2 log 1 ,
Oil \ Oil J

where C comprises the terms that do not depend on a\. Then

no n 2 iτ,2 n 2
= '-+ '-ZΓ-z -

-θn 1 - <*i αi - βn

<92Z-o(θ!i) «2. n .2 n 2 .
(4.4)

In the region where — = a2 + 0p (l/y/n) and — = β2 + Op (l/y/ή), it follows

by routine computations that

°\ < 0, in probability as n —> 00.
d
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We obtain the solution to the estimating equation in (4.4) as (in probability)

(4.5) aλ =

Further,

We incorporate these estimators in our proposed test statistic in Section 5.

5. The new binomial test. Our proposed test statistic, based on the re-
straint that

n

is

Zθ2 = —7=

Note that the original 2x2 table has 3 DF, and hence, having the estimators
θn and 5χ (ft = 0n/Si), we have effectively one DF. For this reason, it suffices
to use only either Z22 or Zχ2 or Z21, defined analogously. However, since we are
interested in double mutations, Z22 is intuitively more appealing.

We may provide a natural interpretation of Z22 in terms of the K coefficient
for agreement (no mutation or double mutation, in our set-up) for categorical
data. Following Cohen (1960) [see also Landis & Koch (1977)], we define

K =
- 7ΓO

where π o is the probability of no or double mutation and π e is the hypothetical
probability of the same under the baseline constraints that pn = aχβι and
P22 = (1 - αχ)(l - ft) (= α 2 f t ) . Thus, here

TΓo = P11 + P22 and π e = pn + (1 - αi)(l - ft) ,

so that 1 - π e = αi + ft - 2c*ift = αiα 2 + ftft + («i - ft)2 Note that
by virtue of the consensus pairing, pn = αift, Z22 is the sample counterpart
of the numerator of K. AS we shall see later, though we have not included the
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denominator, the factor (c*i + βι — 2aχβι) shows up in the sampling variance
of Z22. The main reason for not including the denominator in Z22 is that (a\ +
βι — 2aιβι) can be very small when both a\ and β\ are close to 1 (as is the case
here), which might make the K coefficient look much inflated.

In order to find the critical level for the test statistic, we need to obtain an
expression for its sampling variance under Ho. Let

Note that under Ho

Hence, appealing to the multinomial law in (3.1) , we have under Ho,

Zi3 ~ N{^atβ3{l-aτβ3)), t = l, 2, j = 1, 2.

Let Un = —^-. Noting that by (4.5), Unβ2 = 5 2 , we rewrite

Also, we show in Appendix 2 that

t5-1) TΓ = f + -7^r> ^2 ̂  ~ z 2 a^ + ^ ί " " 1 )
-ίV.2 P2 V Π P2

with μ = 0L2Iβ2 Therefore, we obtain from the above equation that

U-1 = -
μ

We also rewrite a.\ as

| l - Un + y/(l - Un)
2 + 4θnUn | = g{Un,θn), say,

where by direct substitution, it follows that
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From the last four equations, we obtain

Z22 = —μ=.* ([μ μ

= d12Z12 + dnZ2i + d22Z22 + O p (n- 1 / 2 ) ,

where

(βi - at) (I - ai) = (β, - ai) (1 - β,)
1 2 a1+β1-2aιβ1 ' 2 1 a1 + β1-2aίβ1

= aλ (l-a1)+βι (1-βi)
2 2 aι+β1-2aιβ1 "

Let Eo denote the expected value and Var0 the variance under Ho. Then

Eo (Z22) = 0 + O(n-χ/2) = o(l) ,

Var0 (Z22) = Σ (di3)
2 at β3 - - (a2 β2f = 722 (say).

We may note that when OL\ — /?i,

d12 = d2ι=0 and Varo (z2j

In summary, based on the consensus count and the resulting 2x2 table, we
propose the following test statistic

(5.2) Nn
Vn722

where 722 is obtained from 722 by substituting the estimates of the α t 's and β/s
as obtained earlier into the d^s.

Table 2 shows the results of simulations performed to assess the empirical
validity of the above statistic. For each sample size and underlying probability
distribution, 1,000 contingency tables were generated under the hypothesis of
independence of rows and columns. r_ and c denote the row and column proba-
bility vector, respectively. From the data in each of the simulated contingency
tables, the above test statistic was computed. Then for each of these tables,
r_ and c were estimated, and these estimates were utilized to construct 1,000
bootstrap further tables, keeping the (l,l)-cell fixed. The empirical distribution
of the test statistics calculated from the bootstrap tables is used as the reference
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TABLE 2

Results of 1,000 simulations under the assumption of independence between rows and columns, x
* indicates that a percentage is two standard deviations away from its expected value and ** that it is
three standard deviations away.

Sample Size 1 10 90 95

100
500

1,000

100
200
300
400

r=(.60,.40) , c=(.60,.40)

r=(.70,.30) , c=(.60,.40)

r=(.80,.20) , c=(.70,.30)
100
200
300

0.2 *
0 . 3 *
0.6

3.5*
4.8
4.3

9.0
10.0
8.5

12.3 *
10.8
9.2

7.3
6.6
5.3

**
*

2.2
1.9
1.4

**
*

99

0.
0
0

1 **

**

0.3**
0.1 **
0**

1
0
0

.7

.4
**
**

**

0.1
0.1
0.1

**
**
**

0
0
0

**
**
**

0 * *
0 * *
0 * *

0.6
0.8
0.5

0.8

3.1 *
5.5
4.1

5.2

7 .3*
10.9
9.8
9.4

13.2
12.5
13.3
9.5

**
*
**

7.8
7.5
7.7

5.8

**
**
**

2.0**
2.0**
2.1 **
1.2

distribution of the observed statistic. The entries of Table 2 are the percentages
of the test statistics falling below the 1st, 5th and 10th percentiles and above the
90th, 95th and 99th percentiles of the boostrap reference distribution distribu-
tion. These simulations show that, though the (l,l)-cell is assigned the largest
frequency, the test is not appropriate for the scenario where r = c = (.60, .40).
For the other probabilistic set-ups, the observed numbers get closer to their
expected values as the sample size increases. Hence, the asymptotic result de-
rived in this paper is achieved with sample sizes of 300 to 400, depending on
the underlying distribution.

6. Data analysis. We consider 141 HIV-1 T-cell-adapted sequences. Each
sequence is 35 amino acids long and spans the V3 loop of the envelope protein
gene. This region varies highly in composition across individuals and within
individuals, and has been found to be functionally important [Korber et al.
(1993), Potts et al. (1993)]. This data set does not contain duplicate sequences
and a person contributes a single sequence. To avoid detecting linkages that,
while declared statistically significant, have little scientific importance, we only
considered pairs of positions for which the double-mutation count is at least 4.

For illustration purposes, we show in Table 3 the counts for positions 5 and
10. These data were aggregated into a 2 x 2 table (Table 4). The results appear
in Table 5. The bootstrap distribution for the test statistics is computed by the
BCa method [Efron & Tibshirani (1993)].
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TABLE 3
Contingency table for positions 5 and 10.

N

H
S

Position 5 G
K

D
Y

K

87

0
4

4

0
1

1

Position 10
R
27
3
4

0
1

1

0

N

1

0

0

0
0

0

0

s
2

0

0
0
0

0
1

Q
2

0

0

0
0

0
1

G
1

0

0

0
0

0

0

TABLE 4
Aggregated table for positions 5 and 10.

N

fc

K

87
10

k
33
11

The global variation of the virus is divided into groups and clades within a
group (groups 0, M and N; clades A-J within group M). Each clade/group ex-
hibits a different consensus sequence. Sequences from the same clade cluster in
the same geographic region. These clades may result from major natural selec-
tion pressures. The above test is helpful in detecting parallel evolution within a
clade (here, the sequences belong to clade B which covers North America, West-
ern Europe and Thailand). Were one to analyze sequences from different clades
together, the linkages would reflect correlations in the consensus sequences.
Then a binomial test like (5.2) is of little value as it merely consider the number
of double mutations, i.e. the number in each clade (and thus depends on the
sampling procedure and not on a biological mechanism). More relevant would
be χ2-square-type tests which consider specific amino-acid pairings.

7. Discussion. Our interest lies in investigating whether departures from
the consensus amino acids at two positions are correlated. The assessment of
whether there has been, at a specific position, a substitution away from the
consensus clearly relies on the knowledge of this consensus. This is essentially the
reasoning behind our conditioning on the number of pairs in the consensus cell.
This conditioning affects the probability law for the test statistic by basically
reducing its variance. Further, there are two statistical arguments in favour of
conditioning on Nu. First, in a large r x c contingency table (potentially 20
x 20) with many empty and low-frequency cells, the exact test conditional on
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TABLE 5

Results for 141 HIV-1 sequences.

Positions

5 , 10

7 , 22

8 , 10

10, 23

10 , 24

1 0 , 3 4

12 , 19

12 , 22

12, 29

14 , 19

14 , 20

19 , 20

19 , 22

19 ,32

21 , 22

21 , 24

22 , 23

22 , 24

22 ,34

23 , 24

Test statistics

2.442

0.324

5.291

1.354

2.833

3.243

1.926

1.245

1.340

9.210

4.481

6.647

-0.898

2.513

2.781

4.306

3.296

5.548

0.536

5.721

p-values

.005 < p < .01

> . l

< .0005

.05 <p< .1

.001 < p < .005

.001 < p < .005

.0l<p< .05

> . l

> .1

< .0005

< .0005

< .0005

> . l

.005 < p < .01

.001 < p < .005

< .0005

< .0005

< .0005

> . l

< .0005

fixed marginals has little power. The table thus needs to be reduced. Here, to
do so, we use the consensus cell. Hence, since this consensus is data dependent,
it affects the resulting structure of the table and probability model. Second,
the size of Nn affects the power of the test. It is indeed of a different order of
magnitude to the other entries (in the example of Section 6, Nu is 87 and the
next largest entry is 33). By conditioning on Nn, we gain power.

Through a simple test for the equality of two binomial proportions, one can
verify that the consensus pair is indeed truly maximal. When An is not very
large compared to the other λ^'s, there is no obvious consensus pair and thus
this conditioning cannot be applied. One then needs to resort to the usual χ2-
test for independence in contingency tables. However, the absence of a clear
consensus often indicates, in our experience, that two or more populations of
sequences are represented in the sample. Then the analysis proceeds by consid-
ering each subpopulation separately.

The theory developed in this paper relies on the independence of the se-
quences. This assumption is violated in many instances. However, it would be
straightforward to alter the reference distribution so that it would take into
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account the evolutionary process undergone by the sequences under study. This
could be done by simulating the evolutionary process and generating a large
number of sets of sequences. The test statistic is computed on each set, to
construct a reference distribution. For the sequences utilized in Section 6, the
replication rate for HIV is very high (once every one to two days). Each repli-
cation introduces one to ten substitutions along the whole genome. As many
rounds of replication are likely to separate two sequences (i.e., the total time
to their most recent ancestor along the two branches), sharing the same amino
acid at a polymorphic site is due to structure restriction and not phylogenetic
relationships. Thus, these sequences can be regarded as independent, and the
test introduced here can be applied.
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Appendix 1: Proof of (3.2)

Note that

P{Nn is maximum}

= P{JVii<ΛΓ11 V(i, j)^ (1,1)}

= E{P{Nij<Nn V( i , j )^( l , l ) | t f n }}

= E {P{Nl2 < Nn I Nn] P{N2l < Nn I Nn} P{N22 < Nn \ Nu}}
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where for large λ^'s, we use the square-root transformation on the Poisson
variates. Thus, under Assumption 2 in Section 3, for each (i, j) φ (1,1),

P{NtJ< Nn\Nn}

= P{

= P{Wxj < Wn 2( Wn}

where the Wij are independent and asymptotically normally distributed with
zero mean and unit variance, and therefore are all bounded in probability. On
the other hand, under Assumption 2, y/Xΐϊ — y/λϊj is large and positive for
any (iyj) φ (1,1). Hence, the above probability converges to 1 as An increases,
which satisfies Assumption 2. Therefore, their product also converges to 1, and
hence, being a bounded random variable, their expectation has the same limit,
i.e. 1.

Appendix 2: Proof of (5.1)

N2.

N.2
2. + na2

OL2 1 Z2. β2 — Z 2 Oί2

7

where noting that Z.2 = 0p(l), we have

and hence
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