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Pairwise differences and segregating sites are two measures of sequence di-
vergence often used to estimate the rate of evolution. There are other measures
of sequence divergence. Which method is most appropriate? Motivated by a
study of the evolution of transposable elements, we develop a new and more

precise method for estimating the rate of evolution. We apply our method to
LINE-1 data from Casavant et al. (1996).

1. Introduction. The motivation for this paper grew out of a very curious
discovery made while analyzing some DNA sequence data. See Fox (1997). Un-
der certain model assumptions for the evolution of transposable elements (mo-
bile repetitive DNA found dispersed throughout the genome), we considered
two simple measures of sequence divergence to estimate the rate of evolution.
One estimate was based on the number of pairwise differences and the other
was based on the number of segregating sites. We showed that the estimator
based on the number of pairwise differences was inconsistent (variance of the
estimator does not go to zero), while the segregating sites method was consis-
tent. This is not at all surprising. The same story is true for the well studied
neutral coalescent model, see Watterson (1975) and Tajima (1983). However,
not only was it demonstrated that the segregating sites estimator is consistent
under our model assumptions, but the variance of the estimator goes to zero
like 1/n, where n is the sample size. For evolutionary models involving DNA
data it is unusual for estimators to have such good asymptotic properties.

The most curious discovery came when we applied each method to data. We
found that in most cases of biological relevance, the pairwise difference estimator
actually outperformed the segregating sites estimator. In this paper we resolve
this apparent paradox.

We begin with a brief description of the relevant biology followed by the
assumptions of the single master model used to analyze the data. We then
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discuss pairwise difference and segregating sites estimators in the context of our
model. The properties of both estimators are best understood when considered
as members of a class of estimators called linear unbiased. We thus develop the
theory of linear unbiased estimation in this context. Finally, we apply our new
method to data. Fu (1994) also considered unbiased estimation in the context
of the neutral coalescent model.

2. Mobile repetitive DNA. Mobile repetitive DNA sequences are found
dispersed throughout the genome. LINEs (Long interspersed nuclear elements)
have the capability of copying and inserting the copy into the genome at some
other site by a process called retrotransposition. In this process DNA encodes
RNA, RNA uses reverse transcription to code complementary DNA, and the
DNA is integrated back into the chromosome at a different site in the genome.
Figure 1 demonstrates one possible method of retrotransposition for LINEs.
The functional LINE-1 with two open reading frames (ORF-1 and ORF-2) is
transcribed by mRNA. The short direct repeats along the chromosomal DNA
are shown by the filled in boxes and the open reading frames of the LINE-
1 element by the open boxes. After transcription, RNA, which is shown as a
single line, encodes a complementary DNA by reverse transcription. The reverse
transcriptase protein in the ORF-2 region catalyzes the reverse transcription of
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the RNA to form cDNA. The DNA/RNA hybrid integrates with the target site.
The first open reading frame codes for a binding protein. This binding protein
binds the DNA to the integration site. Retrotransposition usually produces
a 5 truncated LINE-1. At integration, the RNA is detached. When the RNA
detaches, the DNA often folds back on itself and primes second strand synthesis.
The loop formed by this synthesis is broken to allow cDNA to synthesize to the
chromosomal DNA. The result is a 5 truncation. Once integrated, the cDNA
is ligated to the chromosomal DNA at the 3’ end. Repair synthesis builds the
second strand of DNA on the homologous chromosome.

2.1. Master copy model. The Master Copy Model assumes that one or a few
elements in the genome have the capacity to replicate and all other elements
are pseudogenes. A version of this model dates back to Kaplan and Hudson
(1989). They developed an equilibrium master copy model where the number of
copies reaches equilibrium due to the balance between duplication and deletion.
They showed their model was consistent with the Alu divergence data. Recent
studies of Alu and other SINE (short interspersed nuclear elements) families
is consistent with a transient master copy model (Tachida 1993, 1996) that
considers successive waves of expansion. We are interested in master copy models
that are consistent with data from LINE-1 families in mammalian genomes, in
particular the deer mouse, Peromyscus (Casavant et al. 1996). Unlike the Alu
SINE data, there is evidence of fairly young LINE-1. This indicates that the
LINE-1 elements under study may be in the midst of an expansion period. The
purpose is to develop statistical methodology that can be applied to master
copy data.

A simple mathematical description of the master copy model is the follow-
ing. Consider a population of elements that is generated by a single master
element giving birth at a constant rate. After a fixed time ¢ has evolved, sample
n individuals at random. The rooted tree (rooted at the time of the first off-
spring) describing the relationship between individuals in the sample, will have
one main branch with all of the offspring branches emanating from the main
branch (see Figure 2) The expected age of a randomly chosen element is ¢/2.
Conditional on the tree, place marks along the branches according to a Poisson
process of rate 8,,,. The marks represent observed mutations that have occurred
over evolutionary time. The Poisson process is independent along each branch.
Count the number of marks on each of the branches. Assume the tree topology
together with the number of marks on each branch is observable. Based on this
observation, the problem is to estimate the parameter § = 6,,¢, the mean num-
ber of marks accumulated by a randomly chosen element. We rescale time so
that the (rescaled) age of the master element is 1.
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Fi1G. 2. Element replication.
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Let V; be the age of the ith oldest replicate in a sample of size n. The
difference between the age of element 7, V;, and the next youngest element, V;_;,
is denoted by T;. The age of the youngest element in the sample is V,,_; and
Va—1 = Th-1. Let P; be the number of private mutations accumulated by the ¢th
element over the time period V;. Let S; be the number of shared variants between
the ith and 7 — 1th element accumualted over the time period T;. Under the
assumption of constant rate of element replication, the age of a randomly chosen
element is uniformly distributed. So the ages of the elements are distributed
according to the order statistics of the uniform. However, the master element
will not appear in the sample. For this reason, we cannot determine which
among the two youngest elements in the sample is indeed the youngest. This
means that the coalescent time T,,_; is on average 2/(n + 1), where as all other
coalescent times are E(T;) =1/(n+1) for i <n — 1.

It will be convenient to use vector notation. Vectors will be column vectors
unless superscripted by ’ for transpose: thus we write

T = (11, Ty, ... ,To1)

and similarly

B’ = (‘/1"/27 aI/n—laTlaT%' o 7Tn—1)~
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It is convenient to record the private and shared mutations in the following
order

SI:(PI,PZa"' aPn—I,SI’S’.’,"' ,Sn_g,Pn).

Let p = E(T). We denote the variance of the (n — 1) x 1 vector T by the
(n —1) x (n — 1) matrix, ¥ = VarT, where (VarT),; = Cov(T;, T}).

The branch lengths of a tree are related to the coalescent times, in that each
branch is a sum of coalescent times. We may view the vector of branch lengths
as a linear transformation of the coalescent times. If there are n — 1 coalescent
times, there will be 2(n — 1) branches to the tree. As one traces the ancestry of
the individuals, each coalescence introduces two new branches.

The linear transformation between coalescent times and branch lengths is
given by an (2n — 2) X (n — 1) matrix c, where the entries of ¢ are ¢;; =1 or 0,

cT = B.

For the master locus model, relationship between branch lengths and coa-
lescent times is given by

/11-1)

_foo0---1
°1l10---0
\00...1}
where cT = B,
H = (G mn s w e

and
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( n -1 N -2 \
(n+1)%(n+2) (n+1)*(n+2) (n+1)*(n+2)

-1 n -2

..
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-2 -2 N 2(n—1)
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3. Pairwise differences versus segregating sites. Using the tree in Fig-
ure 2 one can formulate an unbiased estimate of the mean number of mutations
on a randomly selected element using the segregating sites method. Private mu-
tations P; occur along the elements over the age of the element according to
a Poisson process, and shared mutations S; occur along the master between
replication events. The total number of segregating sites S is

n-—2 n
S = Z S; + Z P.
=1

=1
If 6,, is the mutation rate, then an unbiased estimator for the parameter
0 = 6,,t can be calculated to be

® 24 3n -2
We omit the details. The variance of the unbiased estimate using the segre-
gating sites estimator is given as
n*+4n®+5n?+26n—-24 , 2(n+1)
3(n?2+3n —2)(n+2) n?+3n—-2
When time is distributed uniformly, the times between replication events
are not independent, which complicates the variance. For a detailed derivation

of this formula see Fox (1997). An asymptotic formula with only the leading
terms is easier to absorb

Var(b,,) =

. 1, 2
Var(f.,) ~ 6" + =6,
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For large values of n (relative to mean number of mutations accumulated
by a randomly chosen element) the segregating sites method produces a small
variance and is consistent.

The pairwise difference estimator sums the mutations for all pairs of ele-
ments. The sum of the pairwise differences, D, can be written as

-1

D:(n—1)za+zz’(n—i)s,»

i=1

The pairwise difference estimator counts some mutations more often than
others. An example illustrates the higher weights given to some mutations. If
ten elements are sampled from the population and sorted by their times of
replication, shared mutations that occur between the time of the replication of
the 5th element and the replication of the 6th element are counted 25 times.
Moreover, shared mutations between the replication of the ninth and tenth
elements are counted nine times. Thus, the shared mutations between the 5th
and 6th elements are counted more often and given a higher weight.

An unbiased estimator of § based on the mean number of pairwise differences
is given by

6, =3

pd = 4
The variance for the pairwise differences unbiased estimator is given by the
following equation

D.

Var(f,q)

B ((2n —1)(2n3 + 15n% — 41n + 6) N In® ) p
B 20n(n —1)(n +2)(n +1)?2 4n%(n —1)2(n+1)*(n +2)

An asymptotic formula including only leading terms may be easier to absorb

A

1 3
Var(6pq) ~ %92 + :160'

Note that the variance of the pairwise difference estimator can never be smaller
than 36/40, regardless of the sample size. '

We introduced two familiar methods for estimating the parameter §. One
was based on the number of pairwise differences and the other on the number
of segregating sites. It is not surprising to learn that the estimator based on
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Fi1G. 3. Pairwise differences vs. segregating sites.
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pairwise differences is inconsistent (that is, the error of the estimate does not
go to zero as the sample size increases). One familiar with these types of prob-
lems may also expect that the estimate of § based on the segregating sites is
consistent. However, unlike the results of standard coalescent models,

1. the asymptotic properties of the segregating sites estimator are quite good

N

Var(6,s) — 0

as n — oo like 1/n

2. for sample sizes and parameter values of practical interest, the inconsistent es-
timator based on pairwise differences actually outperforms the estimator based
on segregating sites. All points above the line in the graphs below (Figures 3, 4)
represent (n,6) where the pairwise difference method outperforms segregating
sites.

Resolving the apparent contradiction between statements (1) and (2) leads
to the theory of linear unbiased estimators, and a new and better estimation
procedure.

3.1. Analyzing the sources of error. If § is any estimate of the parameter 8,
then we use the following conditioning argument to calculate the variance of 6
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Fi1G. 4. Pairwise differences vs. segregating sites (small sample size).
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given by

Var(6) = Var(E(8|B)) + E(Var(|B)).
The above variance formula is central to understanding linear unbiased estima-
tion. There are two sources of error in any estimate of 8. The first source is due
to the stochastic nature of the coalescent process. That is, coalescent times are
random. The second is due to the stochastic nature of the mutation process,
that is, mutations accumulate over time on each branch according to a Poisson
process.
The first source of error is measured by the quantity

Var[E(6|B)).

We refer to this as the coalescent error, because it is due to the stochastic
nature of coalescent. The second source is measured by the quantity

E'[Var(é[B)].

We refer to this as the Poisson error.
We will see that there is always a trade off between the two sources of error.
If one chooses an estimate that has small coalescent error, it is likely to have

larger Poisson error.
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TABLE 1

Comparing the variance for segregating sites, pairwise differences, and CBLUE. The entries are the
coalescent errors (CE), Poisson errors (PE) and the variances of the estimate (V).

Segregating Sites Pairwise Differences CBLUE
9  Sample Size CE PE \Y% CE PE A% CE PE A"
9 9 220 170 390 | 203 18 393 [082 262 3.43
17 6 11.00 4.57 15.58 | 10.29 4.76 15.05 | 6.02 6.04 12.06
18 14 6.14 228 843 | 526 291 817 | 1.45 4.23 5.68
15 7 7.52 3.53 11.04 { 7.06 3.75 10.81 | 3.57 4.93 8.50

It can be shown that the segregating sites estimator has the smallest Poisson
error of all linear unbiased estimators. However, it has larger coalescent error
than the estimator based on pairwise differences. Table 1 below shows that the
coalescent error is often the dominant term for the variance of the estimate. Our
new estimation procedure minimizes the coalescent error and thus outperforms
pairwise differences and segregating sites in most cases. Qur preliminary results
show that this new method compares favorably to maximum likelihood.

4. Coalescent best linear unbiased estimator (CBLUE). The pur-
pose of this section is to consider unbiased estimators of 6 that can be described
as linear combinations of the observed changes on the branches. Let x be an
(2n — 2) x 1 vector of weights. We consider estimates of § of the form

2n-2
=3 wi =xs.
1=1

If we assume that 8 is an unbiased estimator, then we have a linear constraint
on the set of possible weight vectors x. Note that

E(f) = E(x'S) = 6E(x'B) = §E(x'cT) = #x'cp.

Therefore, if § is unbiased, then E(#) = 8 implies x'cpr = 1. We now calculate
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the variance of 6 as

Var(§) = E[Var(6|B)] + Var[E(§|B)]
= E[Var(x'S|B)] + Var[E(x'S|B)]
= E[x'Var(S|B)x] + Var[x'E(S|B)]
= 6[x'E(diag(B))x] + §2Var(x'B)
= 6[x'E(diag(cT))x] + 62Var(x'cT)
= 8[x' E(diag(cT))x] + 62[x'cVar(T)c'x]

where diag(B) is a diagonal matrix with (diag(B));; = B; and diag(B);; = 0

for 1 # j.
Let y = ¢’x and let M = E(diag(cT)) then we can write

(4.1) Var(f) = §[x'Mx] + 6*[y'Zy].

Since the estimator must be unbiased we have the constraint g’y = 1. An es-
timator that minimizes the coalescent error is found by minimizing the quadratic
form y’Yy, subject to the linear constraint pu'y = 1. Thus there will be exactly
one y that makes the coalescent error minimum. Notice that y = ¢/x is a sys-
tem of n — 1 linear equations with 2n — 2 unknowns. Because there are typically
many solutions, there will be many choices of x that minimize the coalescent
error. We then pick among these choices the one that minimizes the Poisson
error. We call this the coalescent best estimators. 5
Definition. Let C = {§ = x'S | x'ep =1, Var(E(6|B)) < Var(E(6|B)) for all
unbiased linear estimators 6}. d, is the coalescent best linear unbiased estimator

(CBLUE) if

l.6.ec
2. E(Var(8.|B)) < E(Var(8|B)) for all § € C.

Lemma 1. The collection of unbiased estimators that minimize the coalescent
error C is a linear subspace of R?™~2 given by C = {6’ = x'S | x is a solution to
-1

the following linear system /2_7 = c'x }, where p and X are the mean and
© ©

variance of the coalescent times.



218 P. JOYCE, L. FOX, N. C. CASAVANT, H. A. WICHMAN

Proof. It follows from equation (4.1) that if y minimizes the quadratic form
y'Xy subject to the linear constraint, u'y = 1, then any solution to the linear

equations y = ¢'x will produce a 6 in C. We need only to show that the solution
-1

B We use the method of Lagrange

to the minimization problem is y = —
WE " p

multipliers. Define
9¥)=yZy - Ay'r-1)
Then the derivative of g is given by

dg
@(y) =23y — Ap.

Setting the derivative equal to zero and solving for the critical number gives

A -1

Since p'y = 1 implies %M’E'lp = 1. Therefore, A/2 = 1/(u'S"" ), implying

_Tn
Y= -5
WX p

This completes the proof since y = ¢’x by definition. =

Theorem 1. There ezxists a unique CBLUE, 8., for 0. If T is the vector of
coalescent times, with E(T) = p, Var(T) = ¥ and E(diag(cT)) = M then the
CBLUE estimate is given by 6. = S'x, where

>y
wWE
Proof. It follows from the Lemma 1 and equation (4.1) that the CBLUE will

be the x that minimizes the quadratic form x'Mx, subject to n — 1 linear
-1

(4.2) x=M"c(c¢M )™

_i" . Again
WE p

we use the method of Lagrange multipliers. This time the Lagrange multiplier
is a (n — 1) x 1 vector denoted by A. Define

constraints induced by the linear equation y = ¢’x, where y =

h(x) = x'Mx — (x'c — y')A.
then the derivative of h is given by

dh
a(x) = 2Mx — cA
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TABLE 2
Estimates and standard deviations of Peromyscus data.

Estimation Peromyscus Sample | Mean Number of | Estimated
Method Species Size Mutations Per Standard
Element Estimate | Deviation

Segregating sites P. californicus 9 8.68 1.92

P. maniculatus 6 16.42 3.83

Pairwise differences | P. californicus 9 8.63 1.92

P. maniculatus 6 17.35 3.95

CBLUE P. californicus 9 7.90 1.67

P. maniculatus 6 18.08 2.89

Setting the derivative equal to zero and solving for x gives

1
x=-M"cA.
2
Substituting the above x into the linear constraint y = ¢’x and solving for A/2
gives

%/\ = (M e) ly

which implies
x=M"'c(cMc)'y. m

We applied the CBLUE estimator given by f. = S'x to two lineages of LINE-
1 for two species of Peromyscus (deer mouse). The results are given in Table
2 below. Note that CBLUE method is a significant improvement over pairwise
differences and segregating sites. A more complete analysis of the data can be
found in Joyce et al., in preparation.

5. Conclusion. The master locus model can be used to estimate rates of
evolution and make comparisons for LINE-1 data. However, using traditional
measures of sequence divergence to estimate the evolutionary parameters leads
to the following puzzling conclusion. While the method of pairwise differences
leads to an inconsistent estimator, it is in many cases more precise than the
consistent estimator based on the number of segregating sites.

The puzzle is resolved when one realizes that the variance of a linear esti-

mator is of the form
a,0% + b,6.

If 8 is relatively large, then the a,,6? term will dominate the error in the estimate.
This term is smaller for pairwise differences than for segregating sites.
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By choosing an estimator that minimizes the dominant term of the error,
one can often improve on both methods. This estimator is called the coalescent
best linear unbiased estimator CBLUE.

While the CBLUE estimator was demonstrated for the master locus model,
it applies in a more general setting. However, it can be shown that there does
not exist a uniformly best linear unbiased estimator.
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