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Abstract: Unimodality, in its weaker and stronger forms, enters the ro-
bustness investigations somehow less often than symmetry. We point out
how unimodality affects the asymptotics of M-estimators under heteroge-
neous ("non-i.i.d.") errors. Sufficient conditions are given for consistency,
with rates, of M-estimators in unimodal heterogeneous location models.
For heteroscedastic models, a particular case of heterogeneous ones, a
necessary and sufficient consistency condition, with rates, is provided for
the L\ estimator - the sample median.
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1 Introduction
In robustness theory, the assumption of symmetry is adopted quite regu-
larly, although with a bit of strange taste: as pointed out by Huber (1981,
page 95), "a restriction to exactly symmetric distributions . . . violates the
very spirit of robustness"—since it is not stable under small perturbations
of the underlying probabilities. On the other hand, the symmetry assump-
tion resolves a dilemma of estimands—the problem of finding the target of
location estimation. For symmetric population distributions, the center of
symmetry is widely accepted as the "natural" location parameter—see, for
instance, Hoaglin, Mosteller and Tukey (1983, chapter 9). And, needless to
say, symmetry considerably simplifies a number technical considerations.
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Unimodality, in its weaker and stronger forms, enters the robustness in-
vestigations somehow less often. It shares the instability of the symmetry—
small perturbation (in weak topology sense) of a unimodal probability can
result in a non-unimodal one. However, in terms of "realism", unimodality
performs better; recall only that almost all parent distributions involved
in parametric models are unimodal (compared to a considerable number of
asymmetric ones). And, even in the symmetric case, the center of symmetry
frequently also is the mode. The impact of unimodality on the philosophy of
estimation is perhaps not that unambiguous: it could be a matter of a dis-
cussion whether the mode, instead of the center of symmetry, can fulfill the
need for the "natural" location in models with asymmetric (but unimodal)
parent distribution. At least, the consequences of substituting unimodality
assumptions for the symmetry ones deserve being closely investigated.

Skipping this problem, we shall concentrate on the technical virtues of
unimodality. These are really rewarding. For instance, as shown in Miz-
era (1994), unimodality is most helpful in establishing the consistency of
redescending M-estimators. The paper of Freedman and Diaconis (1982)
pointed out that M-estimators can be inconsistent, due to non-identifiabi-
lity—the lack of well-defined population value—unless the score function
is monotone or the underlying distribution is symmetric and unimodal.
Mizera (1994) showed that unimodality ensures the uniqueness of the pop-
ulation value also in asymmetric cases, for the majority of M-estimators
with the non-monotone ("redescending") score functions used in practice.

In this note, we point out how unimodality affects the asymptotic of M-
estimators under heterogeneous errors. The violation of the i.i.d assump-
tion, the assumption which is central to most existing statistical models (re-
call i.i.d. error terms in regression or i.i.d. innovation process in time series)
can arise from contamination, population heterogeneity, uncontrollable and
hidden confounding factors, and variations in the measurement techniques
or environmental conditions, the characteristics of which may vary through
time and space. Different aspects of the asymptotics of M-estimators un-
der heterogeneity were studied in Mizera and Wellner (1996) and Hallin
and Mizera (1996). We concentrate here on the more specific consequences
of unimodality. Sufficient conditions for consistency, with rates, are given
for unimodal heterogeneous location models. For heteroscedastic models,
a necessary and sufficient consistency condition, with rates, is established
for the LI estimator—the sample median. This condition is considerably
more general than an earlier one by Sen (1968).
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2 Consistency of M-estimators in heterogeneous
location models

Associated with a nondecreasing score function φ we define

ni=i

An M-estimate is defined to be a "solution" of the equation \n{φ,t) = 0;
since \n(φ, t) is monotone, the values of t at which λn(φ, t) crosses the zero
level constitute an interval. To avoid ambiguity, we define the M-estimate
to be the infimum of this interval:

A heterogeneous location model consists of

(HI) a set of data Xn\,Xn2,..., Xnm which can be viewed as realizations of
independent random variables

(H2) with distribution functions Fnχ, F n 2,.. ., Fnn: respectively,

(H3) such that E [φ(Xni - θ)] = 0, for all i = 1,2,..., n and for all n =
1,2,....

The framework of (H1)-(H3) reduces to the standard i.i.d. one whenever
Fn\ = Fn2 = ... = Fnn — F$, where FQ{X) = F(x — 0). In such a case, the
Fisher consistency condition (H3) reduces to a much simpler and traditional
one involving FQ only. However, in heterogeneous situation we need (H3)
as the only thread connecting all Xn^s and Fn^s together, ensuring that
our estimation of θ makes any sense at all, that our data are not "a bizarre
melange without much statistical relevance" (Le Cam 1986, page 529).

A heterogeneous location model is called symmetric if all Fn^'s are sym-
metric about θ, and unimodal if all Fn^s are unimodal with mode 0,
i = 1,2,..., n, n = 1,2,... . A distribution G is called unimodal (with
mode θ) if it possesses a density g which is nondecreasing on (—oo, 0] and
nonincreasing on [0, oo).

Various other unimodality concepts could have beeen considered. The
weakest one, merely requiring the existence of a unique global maximum for
the density, is too weak for most purposes. The slightly stronger definition
formulated in terms of convexity and concavity of the distribution function
G before and after the mode is closely related to ours—the only difference
is that, unlike ours, it allows for an atom located at the mode. As for
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the strong unim,odality concepts (log-concavity, for instance), they are not
needed here.

Note that, in symmetric models, (H3) automatically holds whenever φ
is odd (that is, ψ(—x) = —φ{x)). This, together with a natural interest
in estimating the center of symmetry in the symmetric models explains
the almost exclusive choice of odd score functions φ in the practice of M-
estimation. Thus, we shall assume about our score functions φ that

(PI) φ is a non-decreasing and odd function.

To ensure robustness, we adopt boundedness; since a multiple of φ yields
the same M-estimates, we set

(P2) ^(-oo) = - 1 , φ{po) = 1.

To avoid pathologies, we also suppose that

(P3) the set of discontinuity points of φ is finite

and, finally, that

(P4) φ is increasing at 0: for every ε > 0, there is a ί(ε) > 0 such that

We remark that both (P3) and (P4) are satisfied by all score functions
used in practice. For unimodal distributions, (P4) can ensure identifiability
(uniqueness of the "population value") of the M-estimator.

Consistency holds whenever the model is conservative: that is, whenever
the sequence of average distribution functions

Ui=l

is tight (weakly sequentially compact; recall that a sequence Gn is tight
if and only if for any ε > 0 there is a Kε > 0 such that Gn(—Kε) < ε/2
and Gn(Kε) > 1 — ε/2 for all n). An important special case of conservative
model is the mixture model: the sequence Fn converges weakly to a (proper)
distribution function F. The behavior of robust estimators in mixture
models was studied by Stigler (1976).

Theorem 1 Suppose that Xnι satisfy the assumptions (Hl)-(HS) of the

heterogeneous location m,odel; suppose further that this model is unimodal

and conservative. If (P1)-(P4) hold, then Tnψ — θ = op(l) as n —> oo.
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Proof: See Section 3.

Under a slightly stronger assumption about φ

(P4') there are non-negative integers qu q2 such that qλ + q2 = 1, and func-
tions φ\, φ2 satisfying (PI) and (P2) such that φ = qγφγ + qr2̂ 2,
where φ\{x) = sign(x) and φ2 is absolutely continuous on some in-
terval [-Δ, Δ], Δ > 0, with a derivative φ' satisfying φ'{x) > K for all
x e [-Δ, Δ] — for some K > 0

Theorem 1 can be strengthened to yield consistency rates.

Theorem 2 Suppose that Xn{ satisfy the assumptions (Hl)-(HS) of the
heterogeneous location model; suppose further that this m,odel is unimodal
and conservative. If (Pl)-(PS) and (P^) hold, then Tn^-Θ = OP{n-1/2)
as n —> 00.

Proof: This theorem directly follows from Theorem 6 of Hallin and Miz-
era (1996).

Theorems 1 and 2 show that robust M-estimators behave in unimodal and
conservative heterogeneous location models like in the i.i.d. case, where it
can be said that they are always consistent—as soon as the corresponding
population values are identifiable (see Huber 1981, page 54). The assump-
tions of Theorems 1 and 2 are easily checked in the particular case of
heteroscedαstic location models: heterogeneous location models with distri-
bution functions satisfying

F«{X) = F(^)

where cnχ, cn2,..., cnn are positive scaling constants and F is the distribu-
tion function of a fixed parent distribution. Note that every heteroscedastic
model with symmetric and/or unimodal F is itself symmetric and/or uni-
modal.

For heteroscedastic models, we are able to state necessary and suffi-
cient consistency conditions, with rates, for the special case of the LI
estimator—the sample median. Compared to the general conditions es-
tablished in Mizera and Wellner (1996), our condition is specially tailored
for heteroscedastic models, since, under a very mild regularity condition

(S) the parent distribution admits a density / which is bounded, and there
are λ > 0, L > 0 such that f(x) > L for x G [—λ, λ],
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which is clearly satisfied by any unimodal parent distribution with bounded
density, it involves only the "empirical distribution" of the scaling con-
stants. The conservativeness of the model is no longer required; our results
hold, in particular, when some part of "probability mass" is allowed to "es-
cape to infinity". Let Φc be the function from (0, oo) to (0, oo) defined by
Φc(x) = 1/c if x < c and 1/x if x > c.

Theorem 3 Let Tnψ be the samφle median (that is, ψ(x) = sign(x)). If a
heteroscedastic m,odel satisfies (S), then Tnψ — θ — op(r~λ) if and only if

t n

-» oo as n —> oo, (1)

for any fixed c > 0.

Proof: See Section 3.

Note that the choice of c for Φc is inessential, due to the following elemen-
tary inequality, holding for any c < d

Φc(a ) > Φd(s) > ^Φc(x).

In other words, (1) holds for all c > 0 as soon as it holds for one c > 0.
Condition (1) implies that

1 n 1
γz 2 J ^oo asn->oo. (2)

Under a non-degeneracy assumption, together with conservativeness and
some additional regularity requirements, Sen (1968) proved an asymptotic
normality result, from which (2) follows as a necessary and sufficient con-
sistency condition. In fact, (1) and (2) are equivalent as soon as all Cni > c
for some c > 0. For the particular case of plain op(l) consistency (rn = 1),
we obtain that (1) is equivalent to

'cipni) -^ oo as n —> oo, (3)

the condition already established in Hallin and Mizera (1996). Finally,

Lemma 6 of Hallin and Mizera (1996) yields the following corollary.

Theorem 4 Under the assumptions of Theorem 3, Tnψ — θ = Op(s~λ)

if and only if (1) holds (for som,e c > 0) for any sequence rn such that

rn = o(sn) .

Proof: A direct consequence of Theorem 3 and Lemma 6 of Hallin and

Mizera (1996).
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3 Proofs

In the proofs, we write 0 = 0, without loss of generality.

Lemma 1 Suppose that the sequence Fn, n = 1,2,... is tight and that the
corresponding densities fn are unimodal with the common mode θ. Then,
for every η > 0; there is a Kη such that

fκv
l-V< fn(x)dx (4)

J —Kη

and

max{fn(-Kη)Jn(Kη)}<η (5)

for all n = 1,2,... .

Proof: First note that (4) is just the tightness condition rewritten in terms
of densities. Turning to (5), assume that it does not hold: then, there is an
η > 0 such that for all K

either fn(-K) >η or fn(K) > η. (6)

Set K = 2/η and suppose that fn(—K) > η, say. By unimodality,

/ fn(x)dx < I ηdx = 2
J-K J-K

— a contradiction; the other case in (6) is treated analogously. At this
point, we could possibly have one value of K for (4) and another one for
(5) — but the maximum of them two works at both.

Proof of Theorem 1: For any ε > 0, let

an(φ, ε) = E\n(<ψ,θ-ε) = ̂ ΣJ<ψ(x-θ + ε) dFni(x)

and

nt=ι
In view of Theorem 1 of Hallin and Mizera (1996), it is sufficient to show
that for any ε > 0, an(ψ,ε) and bn(ψ,έ) are bounded away from zero for
sufficiently large n. We give a proof for αn(/0,ε); the proof for bn(ψ,ε) is
entirely similar. In view of (H3), it is sufficient to show that, for any ε > 0
(setting again 0 = 0),

J(x + ε)-φ(x)]fn(x)dx>0 (7)
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for sufficiently large n (note that, due to monotonicity, the integrand in (7)
is non-negative).

Fix ε > 0. By (P4), there is a δ(ε/2) such that ψ(ε/2) > δ{ε/2)\ hence
we have, for all x G [—ε/2,0],

φ(x + ε) - φ(x) > φ(x + ε) > φ{\ε) > 5(§ε). (8)

Now, choose η and C > 0 such that for Kη given by Lemma 1 we have

If/n(ε/2)>C, we have by (8)

ί [ψ(x + ε) _ ^(x)] / n( x) d x > /

due to unimodality. If /n(ε/2) < C, Lemma 1 gives

/•-e/2 _ r-Kη _ r-ε/2 _

/ fn(x)dx = / / n (x)dx+ / fn(x)d
J— OO J— OO J—Kη

< η + (Kη-\ε)C<η + CKη

due to unimodality again; hence,

f° fn(x)dx>l-η-CKη
J-ε/2

and, consequently,

/ [̂ (x + ε) - ψ(x)] Jn(x)dx = ίφ(x + ε)Jn(x)dx

r-ε/2 roo

= φ(x + ε)fn(x) dx + / φ{x + ε)/n(x)
7-oo ^-e/2

> / ε -lfn(x)dx+ [°° δ(±ε)fn(x)dx
J-oo J-ε/2

> -η- CKη + δ{\έ){l -η- CKη)

> -±δ{\ε) + \δ{\ε) = \δ{\ε).

In both cases, we have that (7) is bounded from below by

which proves the statement.
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Proof of Theorem 3: Let φ{x) = sign(x), let / be a density of the parent
distribution of a heteroscedastic model satisfying (S). Then, / is bounded
by K\ without loss of generality we may suppose that K > 1.

Necessity. By Theorem 3 of Hallin and Mizera (1996), opir'1) consis-
tency implies that λ/nαn('0,r~1) —> oo as n —> oo. Proceeding similarly as
in the proof of Theorem 8 of Hallin and Mizera (1996), we obtain

1

κ±

Σ ί\rc.)-J{-y)dy+ Σ C(rc)-imdy

Σ • Σ
rnCni>l

and (1) follows.
Sufficiency. Let (S) hold with λ and L; choose Γ and c such that Γ = λc.

If 0 < ε < Γ, then, as in the proof of Theorem 7 of Hallin and Mizera (1996),

1

n

1
"" n

f(y)dy

V / f(y)dy+ 2^ I
*-^ J—ε(rncni)~1 — > J—ε(rncni)~1

• Σ ΓΣ

> Lε-
n Σ! Σ

= Lε-VΦ c (r n c n i ) .

An entirely similar argument for 6n(^, εrn

 x) and the subsequent application-
assuming (1)—of Theorems 2 and 3 of Hallin and Mizera (1996) conclude
the proof.
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