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Regression rank statistics
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Abstract: This article deals with a family of implicitly defined rank statis-
tics, which are designed to make inference on general linear hypotheses
in a large class of nonparametric extensions of the classical linear model.
The new rank statistics are defined via the solutions of a continuous fam-
ily of minimization problems. For simple designs, the procedure leads to
the classical rank statistics.
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1 Introduction

For a given known c.d.f. Fo with continuous positive density /o and finite
second moment, let us first consider the classical parametric linear model

M P a r ( F 0 ) : Yi ~ F0(t - μi), μt = β'*i (1)

where Yi, 1 < i < n are independent responses and the vectors x^ represent
design conditions and covariables (we assume that the first component xn of
the Xi is 1 corresponding to the intercept and denote with X = ( x l 5 . . . , x n )
the design matrix). Usually, in such models one is interested in linear
hypotheses of the form

# o

P a r (Fo) : Cβ = 0. (2)

It is well known, that this model is not invariant w.r.t. nonlinear increasing
transformations of the response, that is, if m(t) is a nonlinear increasing
function, then the transformed responses m(Yi) in general do not follow
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a linear model of the form described above (in the following, we use the
terms invariant or ordinal invariant as short terms for invariant against
strictly increasing transformations). On the other hand, in practice it often
is obvious, that the observed responses do not come from a linear model
(1), but there might be an unknown nonlinear monotone transformation,
such that the transformed observations do.

The smallest invariant model containing MPar(i*o) is the semiparametric
transformation model

MSPaτ(Fo) : Yi ~ F0(a(t) - /*), /ϋ = β'*i, (3)

where the unknown increasing function a(t) introduces a nonparametric
component, μ = (μi, . . . , μn) is still identifiable up to an intercept, i.e. a
constant multiple of ln. The null hypothesis (2) in the context of model
M S P a r ( F 0 ) will be denoted with H$PΆr(F0).

Rank statistics for inference within this kind of model were studied
for example in Pettitt (1982, 1983, 1987), Doksum (1987), Cuzick (1988),
Tsukahara (1992), see also Bickel et al. (1993) and Chauduri et al. (1994).
They are based on different approximations of Hoeffding's formula (Hoeffd-
ing, 1951) for the partial or marginal likelihood of the ranks,

n! P,(R(Y) = r) = (

in which Un:ι is the Z-th order statistic in a sample of n i.i.d. variables
[7ni,..., Unn distributed uniformly on (0,1), and r = ( r i , . . . , rn) .

Note, that in (4) only β is unknown, that is, reduction to the maximally
invariant vector of ranks leads to a parametric likelihood, which however in
general is numerically difficult. One prominent counter-example is the pro-
portional hazards model (Fo the extreme value c.d.f.), in which (4) becomes
Cox's (1972) partial likelihood (for the case without censoring or ties)

n! P,(R(Y) = r) =

where x^) corresponds to the z-th largest response.
Pettitt treated approximations to (4) for FQ normal, whereas Doksum

and Cuzick used different approximations for the general case, which how-
ever still are numerical quite difficult. For the Fo — Φ (normal) case,
which is one of the cases with an explicit expression for the expectation of
the ranks, Pettitt also proposed an alternative to maximizing a likelihood,
namely to minimize

2 with E/9(Λ i) = l +
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2 Statistical model

In the present paper, we shall generalize (3) to a nonparametric model
MNPar(jPo), which may be regarded as the synthesis of (3) with a non-
parametric model proposed by Akritas and Arnold (1994) in the case of X
representing a factorial design. The extension compared to (4) consists in
replacing inside F$ the functions μi(t) = a{t) — β x̂  with the more general
functions μi(i) = ^β(t) where β(t) is any smooth function of £, such that
the μi(t) are strictly increasing:

M N P a r ( F 0 ) : Yi ~ F0(xJ3(t)). (5)

The semiparametric transformation model (3) is contained as special case
β(t) = α(t)eχ — /3, the Akritas-Arnold (1994) model is obtained from (5)
by choosing Fo(t) = t, the c.d.f. of the uniform distribution. However this
latter choice does not satisfy our requirement that the density /o should
be positive on the whole real line. This causes the compatibility conditions
(8)-(ll) to fail for the Akritas-Arnold model.

Introducing the link function ft = i^o"1' a n c ^ denoting with Fi the c.d.f.
of Yi, ft o F = (ft o F i , . . . , ft o Fn)\ we may state (5) also in the form that
ft o F must be continuously differentiate and satisfy for all t G M a linear
condition

ft o F(t) E L = XMp = {X/3 I β G Mp}.

A natural extension of the linear hypothesis (2) is given by

H$Paτ{F0) : Cβ(t) - 0 for all t, or equivalently (6)

iίo

N P a r(Fo) : ft o F(t) G Lo = {X/3 | β G Rp, Cβ = 0} for all t (7)

These definitions imply the compatibility properties

M P a r (F 0 ) C M S P a r ( F 0 ) C M N P a r ( F 0 ) , (8)

tfo

SPar(Fo) = M S P a r (F o )Πi ί o

N P a r (Fo) 5 (9)

tfPar(F0) - M P a r (F o )Πiίo S P a r (^b) (10)

- M P a r (F o )Πίί o

N P a r (Fo) (11)

The models presented above should not be confused with the semiparamet-
ric shift m,odel M S S h f t = UF o e^M P a r (F 0 ) , T a set of real c.d.f., i.e.

MSShft :γ{ ^ F(t-μi), F eF unknown. (12)

This model is not invariant in our sense (w.r.t. monotone transformations).
It is closely related to a large class of rank tests, namely the procedures
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collected under the name "ranking after alignment" (overviews in Adichie
(1984), Puri and Sen (1985), further references see there).

For example, in the fc-sample problem, M N P a r (Fo) is larger then M S S h f t

(requiring only groupwise identical distribution but not the assumption that
the between-group differences just shift the c.d.f.), whereas the hypothesis

#oNPar(Ή)) : fo(t) = ... = βp(t) = 0 for all t

is identical with the classical hypothesis of no group differences.
Besides the property of being an invariant extension of the parametric

linear model, M S P a r (Fo) and M N P a r (Fo) have another interesting feature:
They are characterized by the property, that any discretization of the re-
sponse Y leads to the class of discrete ordinal regression models commonly
named "cumulative logit" models (but the link function need not be the
logit link, it is just h.). M S P a r (Fo) corresponds to the model with the "par-
allel regression lines" assumption (which is tested e.g. by SAS procedure
LOGISTIC). This model was considered e.g. by McCullagh (1980) and An-
derson and Philips (1981). MN P a r(Fo) corresponds to the model without
parallel regression lines assumption, which was considered e.g. by Williams
and Grizzle (1972).

E x a m p l e 1 Let us consider the 2 x 2 factorial design with a continuous

covariate x. The nonparametric transformation model (5) in this case is

< *) = F0(a(t) + 7ii(t)

a, 7ii)72j5 732j?74 smooth functions oft, and

Ho : 7 3 i j Ξ O or H

Within the semiparametric transformation model, only a may depend on
tj within the parametric submodel a{t) must be a linear function oft. The
Akritas-Arnold-model corresponds to Fo(i) = t on (0,1).

3 Regression rank statistics

We define the regression rank score β{Y%) of response Y{ by the nonlinear
regression equation

; = Σcfr - y, )x, , (13)
3=1 j=l

where c(t) = 0.5J[t = 0] + I[t > 0].
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Proposition 1 // /o is positive on M and has finite expectation, the solu-
tion of (13) exists and is unique.

Proof: The solution characterizes the minimum of the strictly convex func-
tion of β:

[W)(YY)]dt\ (14)

which is bounded from below because / |t| dFo(t) < oo. Π

The solution might be infinite if there exists μ G L such that sign(μj) =
2c(Yi—Yj) — l for all j , that is, the Xj corresponding to Yj < Y± are separated
from those corresponding to Yj > Yι by some hyperplane {x G Mp | x'/3* =
0}. We may avoid infinite solutions by replacing FQ with [(n + l)i<b — 0.5]/n
in (13) and (14).

Only in the special case of h being the logit link, (13) defines the max-
imum likelihood estimator. In the one sample case (Yι i.i.d., x̂  = 1), (13)
reduces to

3=1

= h(R(Yi)/n), R(Yi) - rank of Y{.

In the k-sample case, β(Yi) is the vector of rank scores of Yi within the k
samples,

\ \
L ^ 1 J L nk

In the general case, it might appear at the first glance that computation
of all n regression rank scores could be a time consuming task. This is not
true however, if they are computed sequentially in their natural order: If
Yn:ι < ... < Yn:n denotes the ordered sample, one should compute the or-
dered regression rank scores β(Yn:i) sequentially: β(Yn:i) is computed from
data c(Yn:i — Yj), β(Yn .i+i) is computed from data c(Yn:i+ι — Yj), which
differ from the first set only by adding 0.5 to two components. Conse-
quently, only few iterations will be necessary to compute β(Yn:i+i) when
using β(Yn:i) as starting value. Hence the actual effort for computation of
all solutions is only the effort of computing one nonlinear regression plus
O{n). The regression rank statistics we define below, do not use the so-
lutions at extreme order statistics. It is convenient to start the iteration
process at the sample median and to proceed in both directions, until the
solutions at the e x 100%- and the (1 — e) x 100%- sample quantiles are
obtained.
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In general, it is useful for both motivation and investigation of (13) , to

replace there Y{ respective Yn:i with a continuously varying parameter t:

3=1 3=1

The path t ι-> β(t) jumps at the points t{ = Yn:i = H~1(i/n), u H-» β o
H~ι{u) jumps at uι = z/n, where in the usual notation, H is the empirical
c.d.f. of the total (pooled) sample and H = n~1 J27=i -^ A key role will be
played by the regression rank score process for the transformation model,

u .-> nλ'2(β o H~\u) -βo H-λ(u)). (17)

Remark \ As it was mentioned already, (IS) is the ML-equation only if
h is the logistic link function. A worthwhile alternative to the present ap-
proach consists in replacing (13) by the ML-equation for any link function.
This could improve efficiency, but at the cost of additional assumptions, like
strong unimodality of fo, to guarantee uniqueness of the solution. Note,
that our assumptions, requiring only positivity, continuity and finite first
moment for fo, are very weak.

Remark 2 In Gutenbrunner and Jureckovά (1992), we defined regression

rank scores for the sem,iparam,etric shift model M in a different way,

due to the different nature of the statistical m,odel and the associated, invari-

ance requirements (invariance w.r.t. p-dimensional affine transformations

versus invariance w.r.t. componentwise monotone transformations). The

common name is used because of the common purpose, nam,ely to define

ra,nk statistics for the general linear model

We shall define now generalized rank statistics which are appropriate
for testing linear hypotheses H$Paτ(F0) within model M N P a r ( F 0 ) . We call
these statistics, which are linear combinations of ordered regression rank
scores, shortly regression rank statistics.

More specifically, we focus here on weighted averages

2 = 1

with weights satisfying ΣΓ=i wm = 1> ̂ m ^ 0, wni = 0 if not e < i/n < 1—e
for some e > 0.

We assume here, that the weights are generated by a score function J
via

Wni = J{ ) ~ «/(-),

n n
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and that J is the c.d.f. of a probability measure, which is concentrated on
a compact subset of the open unit interval.

To stress the dependence of T on J and its implicit dependence on the
link function h, we shall also write sometimes T = T(/ι, J). Writing H
for the empirical c.d.f. of the total sample, Yn:i = H~1{i/n) and H =
n~1 ΣiLi Fit w e have the representation

, J) = Σwniβ(Yn:ί) = fβoH-^dJiu) = ίβ(t)dJoH(t) (18)

corresponding to the functional

T(Λ, J)= ί βo H-\u)dJ(u) = ίβ(t)djo H(t). (19)

Within M S P a r ( F 0 ) , (19) reduces to

ι, J ) = ίa(t) dJo H{t)eχ - β

From (19) it is clear, that the null hypothesis (6)/(7) implies CT(/ι, J) = 0.
The two "score functions" h and J determine the rank statistic T(/ι, J)

in an asymmetric way: While h is crucial for the statistical model and must
be specified correctly in order to obtain consistent estimators and tests, J
merely determines efficiency properties like the score function of ordinary
linear rank statistics.

The basic idea, to replace one complicated estimating equation with a
continuous family of simple equations and to take a weighted average of
the family of solutions instead the one solution of the complicated equa-
tion, is not new: Koenker an Bassett (1978) extended sample quantiles to
linear shift model ΛίSShf t (12) using an analogous approach, Koenker and
Portnoy (1987) and Gutenbrunner and Jureckova (1992) considered linear
combinations of solutions.

Example 2 Taking the design from, Example 1, but without the continuous
covariate, the regression ranks take the explicit form, (15), since the m,odel
is saturated. The components of rank statistic of type T for testing Ho :

= 0 hence can be expressed directly as

1=1

where Rij{Ynu) is the rank of the l-th largest pooled observation w.r.t. the

ij-th group.
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For comparison with other rank statistics it is convenient to sum by
parts and express the statistic as a function of the ranks Rijk =
within the combined sample. This leads to

fij(h,J) = - ({

j~l L \ Ήj T -L / \nij + 1

where Rij:k is the fc-th largest rank in group ij and

. , .. , 0.5\ 7 /A;-0.5
= /i T — h

using appropriate versions of empirical c.d.f. and ranks.

Example 3 (median scores): The simplest score function in our context
is the m,edian score function J{u) = I[u > 0.5]. It is particularly interesting
because our results in this case state that the proper generalization of the
m,edian test to tests for general linear hypotheses consists in a very prag-
m,atic procedure: dichotomize the continuous response at the pooled, m,edian
and compute a categorial regression (like logistic or probit regression). Our
results in Section 4 on the asymφtotics imφly that not knowing the true
m,edian (e.g. the data dependent dichotomization point) introduces an ad-
ditional random, vector to the estimator o//3(0.5), which is contained in the
linear space generated by the null hypothesis and hence does not affect test
statistics based, on contrasts orthogonal to that space. In the semiparametric
transformation m,odel MS P a r(Fo) the additional random, component asymp-
totically is proportional to the intercept, the slope components of β are not
affected. In the nonparam,etric extension MN P a r(Fo), it is proportional to
the derivative β(t) oft H-> β(t) att = ίf-^O.δ), as follows from, (25)- (28).

Example 4 (Steam data from Draper and Smith, 1981): Όoksum,
(1987) used these data to demonstrate his Monte Carlo approximation for
the MPLE (approximately maximizing Hoeffding's partial likelihood (4))
The data are an example of a, simple linear regression with a, good, fit of
the param,etric linear model, hence a, case where the ordinary least squares
estimator (LSE) is appropriate.

The response Y is pounds of steam per month needed by a power plant,
the regressor x average atmospheric temperature in degree Fahrenheit. In
the usual notation

Yi = a + βxi + σβi,
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one has to be aware that our β — (β\,β<ι) from the transformation model
is (a/σ,β/σ), because F0((t - α - z/?)/σ) = F0(t/σ - α/σ - xβ/σ) =
F0{a{ή-a/σ-xβ/σ).

We compare examples of our regression rank statistics with the LSE
and Doksum's likelihood sampling estimator. The second, third and fifth
regression rank estimators correspond to the score function J(u) = (—\) V
3(u — ^) Λ \, defining a trimmed mean type statistic. There is a remarkable
gap between the LSE and our estimators on one hand and Doksum's esti-
mator on the other hand. Also replacing estimating equation (13) by the
ML-equation for probit regression takes the estimator nearer to the LSE.

The estimates in descending order:
-.092 LSE (95%-confidenctf limits: [-.136,-.048])
-.090 trimmed mean of regression rank scores, probit link function, using

ML-equation for dichotomized data instead of (13) (trimming: 33%
from both sides).

-.084 trimmed mean of regression rank scores, logit link function (trimming:
33% from both sides).

-.082 regression rank score median, probit link function, using (13).
-.081 trimmed mean of regression rank scores, probit link function, using

(13) (trimming: 33% from both sides)
-.064 Doksum's likelihood sampling estimator

4 Asymptotic representations

In this section we show that the asymptotic representation of regression
rank statistics T(h, J) (18) shares important properties of the correspond-
ing representations for linear rank statistics as it was recently developed by
Akritas and Arnold (1994), Akritas and Brunner (1996) and others.

According to the asymptotic behaviour of the design we assume

||X||oo = o(n1'2) a s r w o o , (20)

IKn^X'X)- 1 ^ = 0(1) asn->oo, (21)
n

supn" 1 V J[||xi|| > K) -> 0 as K -> oo. (22)
n>o £ ί

For Fi(t) = Fo(x^/3(£)) we assume a continuous density fi(t). This
assumption is equivalent to continuous differentiability of β(t) w.r.t. t. We
denote the derivative w.r.t t as β(t).

Much in the spirit of Pyke and Shorak (1968), we shall expand the
regression rank process (17) into the difference of two empirical processes.
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Writing Z(ΐ) for the vector with components c{t — Ŷ ), we may write (16)

as
gt(β(t)) = 0, where

X'[F0oX/3-Z(t)], β

The derivative Όt = (d/dβ)gt(β(t)) is

Dί-X'diα^/ooX^^X. (23)

The following steps are standard calculations: Denoting with o*( ) and o*( )
convergence uniformly in t for t in compact sets,

0 = gt

= X'(F(t) - Z(t)) + Όt[β(t) - β{t)\ + o (||3(t) - β{t)\\)

hence

with the empirical process

Wn(ί) = n^D^X'CZW - F(ί)). (24)

We used here, that /o(xjj3(ί)) is bounded away from zero for t in compact
sets. The next routine step is

= Wn o g-i ί i H : ι g

= W n o ^ - 1 - V n o £ Γ - 1 + o ;(l) (25)

with the second empirical process

V»(t) = ̂ ^ ( t ) . f ( t ) / 3 ( t ) . (26)

In (25), the asymptotic replacement of ΛJU(H~1 — H~1) by —y/n^ ° ~__~* ̂
follows the argument given e.g. in Serfling (1980), sect. 2.8.3., p. 112.

The vector H{t)~ιβ{i) may also be written as ( X ' X ^ X ' d φ , <k{t) =
(fi{t)/f.(t))ti(Fi(t)). If iϊ^P a r(Fo) is true, the derivative Cβ(t) of 0 Ξ
Cβ(t) is zero, therefore Vn(t) has the important property

CVn(t) = 0 under ίΓ^P a r(Fo).
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Hence, defining

Mi(t) = ί(I[t < s] -F i ( s ) ) (D; 1 x i -^"(s)- 1 /3(s))djoiί( s ) and

M*(ί) = J(I[t <s}- F i(S))(D7 1x i)d J o i / ( s ) ,

we have sketched the proof of the asymptotic representation stated in the
following

Theorem 1 Within model M^Faτ (Fo), if the density /o is continuous, pos-
itive on Ft and has finite expectation, the score function J is trimming and
of bounded variation and conditions (20)-(22) are satisfied, then

T(Λ, J) = T(h, J) + n-^MiiYi) + op(n-V2), (27)

and, under H$Paτ(Fo),

n

CT(/ι, J) - n - ^ C M * ^ ) + op{n-1/2). (28)

The regression rank score process (17) has the asymptotic representation

H-\u) - βoH~\u)) - W n

where o*(l) denotes approximation uniformly in u for u in compact subsets
of (0,1) and the empirical processes W n and Vn are given by (24) and
(26). D

(27) and (28) imply multivariate asymptotic normality with an asymp-
totic covariance matrix that under H^Έ>a>τ(Fo) has a simplified structure
that follows from the covariance function K(s,£) of Wn:

1, (29)

,t) = XdiαgiFo&βis A t)} - F0[x^(s)]fb[x-/3(ί)])X. (30)

Corollary 1 Under the assumptions of the theorem,, T(/ι, J) asymptoti-
cally has a multivariate normal distribution. Under H$Fa>T'(FQ) , the covari-
ance matrix of CT(/ι, J) may be estimated consistently by

where K(s,t) is obtained from, (23), (29), (30), replacing β(t) withβ(t).
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5 Extension to nonlinear models and application
to ROC analysis

In this section we briefly outline the extension of our method to nonlin-
ear models and its application to the analysis of ROC (receiver operating
characteristic) curves when covariables have to be taken into account.

Transformation models and ROC models are in close correspondence
because of their invariance. For a given statistical model

the matrix p(F) = {pij} of ROC functions

extracts the ordinal invariant part of information contained in that model.
As at the level of statistics the vector R(Y) of ranks is maximally invariant,
at the level of functionals, the matrix of ROC functions has this property:
Any ordinal invariant functional Γ*(F) may be written as a functional of

Parametric ROC models correspond to semiparametric transformation
models. For example, the parametric ROC model

{u) + μj - μi)

corresponds to M S P a r (F 0 ) (3).
On the other hand, starting instead of (3) with the heteroscedastic trans-

formation model

( ^ ^ Y μi = /3'χ;, σi = 7χ,, (31)

we arrive at the ROC model

pφ) = Fo(^-Fo-\u) + ^ i ) , (32)

which e.g. was used as starting point in Hsieh (1996) (for Fo the extreme
value c.d.f.).

Tosteson and Begg (1988) proposed to analyze the discrete-response
version of (31) respective (32) with the PLUM-program of McCullagh (they
assumed Fo to be the logistic c.d.f.). Considering the nonparametric version
of (31) (β and 7 depending on t) leads us to nonlinear nonparametric
transformation model

<t) = F0o g(χi, #(t)), 1? : M -> Θ unknown, smooth,
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where

is a known, smooth second link function and Θ a Euclidean parameter
space. In model (31) we would use #(x^,/3,7) = β ' x ^ ' x ; . The corre-
sponding family of estimating equations is

3=1 3=1

which however in general is not the gradient condition of a convex function,
hence some additional assumptions are necessary to guarantee consistent
estimators.

In an analogous manner, we may define the nonlinear regression rank
score process u ι-> n1/2(ι? o H~ι{u) — ϋ o ϋ'~1(^)), nonlinear regression
rank statistics Tx(h,J) = f g(-χ,ΰ(t))dj o H(t), corresponding to func-
tionals Tx(h,J) = f g(x,ϋ(t))dj o H(t), hypotheses Ho : #*(x,tf(t)) = 0
(<7* another known link function) and test statistics based on T£(h,J) =

d
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