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Abstract

This article summarizes and explains in statistical terminology two
papers written jointly with Eytan Ruppin, presenting a Bayesian out-
look on the performance of Hopfield-like attractor neural networks.
Restricting attention to the evaluation of performance after two iter-
ations rather than studying thermodynamical limits, we are able to
extend the analysis to more general models than those usually con-
sidered: input patterns applied to small subsets of neurons, general
connectivity architectures of the synaptic network and more efficient
use of history. We show that the optimal signal that a Bayesian neuron
should emit has a slanted sigmoidal shape as a function of its current
field value (or posterior odds), and provide an intuitive account of ac-
tivation functions with such non-monotone shapes.

1. Dedication. I studied in Berkeley at the Department of Statistics
from 1967 to 1969. During this period I was a teaching and research assis-
tant, mostly working under David Blackwell and Lester Dubins, to whom I
equally owe the light that illuminates most of what I study. I had the priv-
ilege of being Blackwell’s Ph.D. student, writing my thesis “A bargaining
problem” under his guidance. I was also fortunate to be one of his teaching
assistants in the course Stat 2, during the gestation period and writing of his
marvelous textbook “Basic Statistics”, the lucid, clear, elementary introduc-
tion to Bayesian thought. From Blackwell I learned stochastic modeling and
Dynamic Programming, and got his Bayesian attitude into my bloodstream.

The following paper is warmly and gratefully dedicated to David Black-
well. It is a summary of an attempt with Eytan Ruppin to replace some
ad-hoc dynamics transferred from the Statistical Mechanics language of spin
models of Neural Networks, to a more Blackwellian approach: neurons have
prior and posterior beliefs about their dichotomous hidden states, and these
beliefs dictate their signals and decisions.

2. Introduction. In an associative memory model, there is a storage
phase in which patterns are stored, and a retrieval stage in which distorted
versions of the patterns are presented to the network, that is expected to
recognize the correct input pattern by a sequence of “associations”.
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More formally, in the storage phase, a pattern is a vector £ of length N
(for neurons) with +1 entries. During the training period, the network is
presented M (for memories) such patterns £, @) ... ¢M ), of which only
the Hebbian weights

M
Wis=3 €M 1<i#ji <N, Wa=0 (1)
p=1
are recorded (Hebb [3]). In other words, the synapse between neurons ¢ and
j records the excess W;; of the patterns in which both neurons show the
same bit (§;¢; = 1) over those in which they show opposite sign (£¢; =
—1), by simply adding or subtracting 1 from the current weight, upon the
presentation of each new pattern. We will assume throughout the paper

Assumption 1.
The M x N pattern bits g?‘ ) ;1<i<N,1<u< M, areindependent
and identically distributed, with P(¢ = +1) = P(¢ = —1) = 1.

Assumption 1 can and should be weakened. A more realistic model (see
Tsodyks and Feigel’'man [9]) has pattern bits 1 (“fire”) and 0 (“don’t fire”)
rather than +1, and uses sparse patterns - with a small fraction of 1’s.

In the retrieval phase, the network receives a distorted version X of one
of the M patterns, say £. To keep the model simple, we assume

Assumption 2.

(i) The pattern ¢ is chosen at random, with equal probabilities 1/M,
from the collection of stored patterns.

(ii) For each 1 < i < N, the distorted bit X; is equal to & or —¢; with
respective probabilities (1 + €)/2 and (1 — €)/2, independently of everything
else.

Assumption 2(ii) will be weakened in Section 3, where only some of the
neurons (the active ones) receive the initial distorted pattern.

The problem is to recognize ¢ from X, or at least to create a pattern
much closer than X to £.

One of the common methods (Hopfield (4, 5]) is the Hopfield model of
associative memory: each neuron “signals” its state, i.e., neuron j signals its
coordinate X in X, the result of which is that neuron ¢ receives a field value
fi= E;-‘J:l W;;X;. Neuron i now changes X; into sign(f;), the first associa-
tion. The process is repeated to produce successive associations, hopefully
converging to a fixed point. To see a rationale for the method, consider the
initial association, assuming all patterns to be generated by independent fair
coin tossings. Then

N N N
fi = Y WiXj= Y Z&(")E;“)Xj +& Y X (2)
Jj=1 e € j=1 Jj=1
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1 /M
~ VMNZ+ Net; = Ne[¢; + E”FZ] ,

where Z has an asymptotic standard normal distribution. As an example,
let ¢ = .5 and M = N/16. Then the term %\/g equals .5, and while the
initial pattern X had (1 —¢€)/2 = 25% errors, the new association sign(f) has
P(Z > 2) = 2.5% errors. It is not inconceivable that further associations
will improve similarity. Convergence and capacity have been extensively
studied in more general models than introduced above (Komlos & Paturi [6]).
Roughly speaking, M/N below 1/7 affords reasonable recognition, at least in
the weak sense that if € is close enough to 1, similarity does not deteriorate.
Komlos & Paturi develop in principle, for the purpose of presenting formal
convergence proofs, lower bounds on the radius of the domain of very likely
convergence to fixed points within a given tolerance from the pattern to be
recalled.

In an attempt to discover dynamics with improved capacity or perfor-
mance, we study implications of considering each neuron as a Bayesian deci-
sion maker that starts with a prior probability .5 of having a +1 in the pat-
tern to be recalled (henceforth, “being” +1), updates it to /\,(0) = (1+€X;)/2
upon receipt of the initial distorted pattern and proceeds then to update fur-
ther posterior probabilities as a function of field values. These probabilities
form the “personal history” of the individual neuron, as a function of which
the neuron may determine its signal to the network in every iteration as
well as its final decision on its own identity: Bayesian neuron i tests the
hypothesis Hy : & = +1 versus H; : { = —1 based on its personal history
as observation. Technical details appear in Meilijson & Ruppin (7, 8].

3. The model. Each of the N neurons has synaptic connections from
K of the other neurons. Let I;; = 1 or 0 depending on whether there is a
connection from neuron j to neuron i. The initial distorted pattern with
X; = %1 is received by L neurons, while all others receive input X; = 0. We
assume

Assumption 3.

(i) The L active neurons are chosen by simple random sampling from
among the set of N neurons, independently of everything else.

(ii) For each 1 < ¢ < N, the K synaptic connections into neuron i are
chosen by simple random sampling from the set of N — 1 other neurons,
independently of everything else.

With regard to Assumption 3(i), quiescent neurons are allowed in [7, 8] to
receive the distorted pattern with a distortion rate é replacing the distortion
rate € of the active neurons. The statement above that quiescent neurons
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receive X; = 0 is tantamount to assuming that § = 0. Assumption 3(ii) will
be weakened in Section 6 by allowing more general connectivity architectures.
Letting g(t) = arctanh(t) = 1 log }&¢, we may define a notion of gener-

alized field gi = g(€)X; of neuron %, that conveniently represents its prior
probability of being +1 as

© _ p(e, = +11X,) = 1

)‘z - P(ét - +1!Xz) - 1 N exp(_2g§0)) (3)
and its prior belief 050) = €X;, or degree of preference for +1 over —1, as
O,(O) = /\so) -(1- /\EO)) = 2)\50) -1= tanh(ggo)). In this context, ¢ may
be termed belief coefficient. As we shall see in (6), (7), (15) and (16), the
posterior probabilities A(l) and )\(2) that neuron ¢ assigns to being +1 are
also expressible as (3) for additively updated generalized field values g( )
and g( ), Using statistical terminology, generalized field values are (up to
multiplication by 2) prior and posterior log odds in Bayesian hypothesis

testing with normally distributed observations.
When each neuron signals its initial state X, the mean number of non—

zero signals received by each neuron is ny = LK/N, and the input field f
of neuron i is (compare with (2))

O = ZWUL, i (4)
1=1

with

E(fMen Xi) = met; (5)
VAR(fV|¢i, X;) = miM.

Upon observing its input field, neuron ¢ updates its generalized field from
(0)
to

o =gl +efV /M (6)
and represents its posterior probability of being +1 as (see (3))
1

A = P& = +11X;, 5
( = )= 1+ exp(— 2g1))

(7)

with the corresponding posterior belief O( ) = ta.nh(g( ))

If each neuron were to choose a sign on the basis of this single association,
the optimal decision of neuron ¢ would be sign(ggl)). The similarity, or
overall probability of correct decision, can be readily seen to be

§1= Q79+ 1- P70, (®)
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where
a=M/n (9)

denotes the initial memory load and
. 1+t 9(t) 1-t g(t)
Q*(z,t) = ——2(z + ) e G - ) (10)

for £ > 0 and 0 <t < 1, expressed in terms of the standard normal cumu-
lative distribution function ®. Q*(z,t) is the probability of correct decision
for a neuron that starts with a prior probability (1 + ¢)/2 of correct de-
cision and observes an input field with signal-to-noise ratio z. Expression
(8) was derived by Englisch, Engel, Schutte & Stcherbina [2] for the case
ny; = K = L = N by searching for an optimal re-definition of W;;.

Let us now allow neuron i to signal the network some general activation
Sfunction h(g,(l), X;) depending on its personal history. The new input field
received by neuron i is (compare with (4))

N
fi(z) = ZWiinjh(g§1),Xj) . (11)

=1

In order to analyze the effect of this second association, it is necessary
to identify the asymptotic joint distribution of the input fields (f,-(l),f i(2))
given (£, X;). We have not yet proved an adequate version of the Central
Limit Theorem for this problem, but proceed with the computations under
a joint normal working paradigm. Under this model assumption, the con-
ditional variance VAR( fi(2)|§i,Xi, f,-(l)) should be constant in f,-(l) and the

corresponding conditional mean should be linear in fi(l), satisfying the usual
Linear Regression formulas, in terms of three parameters to be identified,
E(fPe:, X;), VAR(F|€;, X;) and COV(£{", £P|&, X;). This is done rig-
orously in [7] and [8]. As it turns out, the first parameter is linear and
the other two are constant. Thus, the two-association dynamics and per-
formance are fully described by four constants €*,b,a and 72, that model
respectively the conditional mean (see (5)) via the modified belief coefficient
€* and the feedback parameter b as

£

Bli-i6, X0 = 6+ X3, 12)

the regression coefficient

o = SOV, 1Pl Xi)

13
VAR(FM|&;, X:) 1)
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and the residual variance

£
7 = VAR(

i, X, £) (14)

Neuron i now updates its probability of being +1 to (see (7))
1

2D = P& = +1|1X, 1O, £ (15)
] (E I 1 fz f1, ) 1 +exp( 2912))
where the new generalized field g( ) is given by (see (6))
_ 2 €]
o = o + S ol _ux). (16)

“N

If each neuron were to choose a sign on the basis of two associations,
the optimal decision of neuron 1 would be sign(g,(z)). The overall probability
of correct decision turns out to be expressible in terms of the parameter
(compare with (9))

._ M _M
«= ny + M((e*/e — a)/T)2 ~ n} (17)
as (compare with (8))
C Mg 941 - Mot

i.e., as if there was a single association with n] rather than n; non-zero
signals received by each neuron.. S; is a decreasing function of a*. Hence,
the two-association performance is measured by the value of |¢*/e — a|/T.

4. Convergence in the Bayesian set-up. The analysis beyond two
associations becomes very complicated. However, from a conceptual point of
view, Bayesian dynamics provide a clear notion of convergence, as we shall
now see. In contrast, convergence of the Hopfield associative iterations with
a non-symmetric matrix W;;I;; is not to be taken for granted.

Whatever the activation functions be, the posterior probability process

2D = P& = +11X, £, £, -, 19y (19)

is a Martingale. Since ¥(z) = max(z,1 — z) is a bounded convex function
on [0,1], the stochastic process 1/)(/\“)) is a bounded Sub-martingale. Hence,

for Bayesian dynamics, the overall proportion S; = E(z/z(/\(t))) of neurons
with a correct decision on their identity, increases with every association.
Furthermore, by Doob’s Martingale Convergence Theorem, every neuron has
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a limiting probabilistic opinion A* = P(¢; = +1|X;, fV, £?,-..) about
its being +1.

Unlike the usual Bayesian updatings in which the next posterior proba-
bility in (19) is obtained as a function of the new data and the current prior,
we see in (16) that the entire history of the neuron enters into play. This is
so because neurons sample conditionally correlated rather than conditionally
ii.d. field values.

5. Optimal signaling under two associations. If the posterior prob-
abilities )\El) (see (7)) were independent, the activation function h(g,(l),Xi)
could have been taken to be constant in X;. In fact, the optimal function
would have been the posterior belief or sigmoid h(gz(l),X,‘) = tanh(gt(l)):
neurons very certain of their sign should transmit this sign and neurons very
uncertain as to their sign should be quiescent.

However, these beliefs are based on signals shared by all neurons, the
signals emitted by the neurons themselves, and the dependence this infor-
mation sharing induces on the input fields fi(l), may in principle and does in
practice influence signals and personal neuron’s decisions. We optimized the
activation function by maximizing |€* /e — a|/7 (see the end of the previous
section) in the Neyman-Pearson tradition and found that the best choice is
not even monotone in the neuron’s belief! The optimal activation function
(as a function of the normalized input field fi(l) /n1, for X; =1 or X; =0)
is a slanted sigmoid (see Figure 1), the sum of the (bounded) sigmoid and
an (unbounded) linear function with negative slope. Thus, neurons with
very strong beliefs should play “Devil’s advocate” and signal a sign opposite
to the one they so strongly believe in. Non-monotone activation functions
have been considered by Yoshizawa, Morita & Amari [10] and by De Felice,
Marangi, Nardulli, Pasquariello & Tedesco [1].

A possible rationale for the use of the slanted sigmoid as activation func-
tion is provided by a technical Lemma (see [7]) claiming that the conditional

covariance between the input fields f,-(l) and f}l) received by the two neu-

rons i and j, given their states 5,(" ) and 5;" ) in every pattern 1 < p < M, is
proportional to their synaptic weight W;;. Suppose that neuron j receives

an input field f}l) with f](l)/ (n1€) = 5 and assume that the memory loads

are such that f}l) /(n1€) should have unit variance (see (5)). For neuron j,
§; is either +1 - in which case its Gaussian field is four standard deviations
above the mean - or is —1, with a noise of six standard deviations. The
latter is so unlikely relative to the former that neuron j is convinced of be-
ing +1, and would like to transmit that to the network. However, knowing
that its field has a heavily exaggerated noise, neuron j infers that the other
neurons, with input fields correlated with its own, have exaggerated field
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Figure 1: A typical plot of the slanted sigmoid as a function of f()/n;.
Network parameters are N = 5000, K = 3000, n, = 200 and M = 50.

values as well. Neuron j should apply Regression Analysis and warn neuron
i by telling the latter to subtract from its generalized field some multiple
of the product of the synaptic weight W;; and neuron j’s input field bias.
By the above quoted Lemma, neuron j can accomplish this task by sim-
ply signaling to the network some negative multiple of its field. These two
conflicting roles, the excitatory communication of the neuron’s belief on its
identity and the inhibitory correction of the other neurons’ biases, can be
accomplished simultaneously by superimposing the decreasing linear correc-
tion on the increasing sigmoidal communication, giving rise to the slanted
sigmoid.

For the sake of balance, it has been argued that this may be an arti-
fact of the feeling of urgency we have imposed on the neurons by forcing
them to guess their identity following one more association. It should be
added, though, that this pressure justified itself. These excitatory-inhibitory
Bayesian neurons achieve after two associations a similarity S, to the input
pattern (see (18)) significantly closer than that achieved in the limit by Hop-
field dynamics.

6. Performance under two associations. Performance under a sin-
gle association as measured by the similarity S; (see (8)) depends on the
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connectivity graph only via the total number K of synaptic connections into
each neuron. Performance under two associations depends on the graph it-
self, via the probability ro that there is a synapse from neuron j to neuron
i given that there is a synapse from : to 7, the probability r3 that there is a
synapse from i to k given that there are synapses from i to j and from j to
k, and the probability 74 that there is a synapse from & to [ given that there
are synapses from 7 to each of j and k and from j to I. We should thus relax
Assumption 3(ii) to allow for connectivity architectures other than a purely
random graph.

For fully connected networks all three r;’s are equal to 1. For multi-
layered networks, r9 = r4 = 1 and r3 = 0. For d-dimensional Gaussian
connectivity, where the probability of a synapse between neurons z apart is
p exp{—z2/(2s?)}, these coefficients are ry, = p/(k%2).

As it turns out, all three parameters r9,73 and r4 affect dynamics and
decisions, but only the last two affect performance: Bayesian neurons are
fully capable of filtering out from what they learn from other neurons in
the second association the information they imparted to the network in the
first association. Skipping technical details that can be found in [7, 8], the
modified belief coefficient ¢* (see (12)) is independent of the connectivity
architecture, the regression coefficient a (see (13)) is a linear function of
r3, the feedback parameter b (see (12)) is a multiple of r and the residual
variance 72 (see (14)) is a linear function of r4 — r3.

We see that the restriction of the analysis to two associations permitted
us to expand its scope to a rather general model in terms of connectivity
architecture and initial activity. While we have not yet pursued an organized
study of the effects of activity and connectivity on optimal performance,
the second example in Section 8 is a promising beginning. This example
shows performance as a function of the network size N for a fixed number of
synaptic connections per neuron (K) and initial memory load a;. The final
similarity S is mot monotone in N: a fully connected network (N = K)
has high performance, but this performance deteriorates very rapidly as N
increases until it doubles or triples K and then improves towards sparse
connectivity. Given that nervous tissue regenerates poorly if at all, synaptic
deletion is unavoidable. Could the U-shape of the performance function
explain the evolutionary development of our big ... empty brains?

7. Qualitative comparison with Hopfield dynamics. It is com-
monly stated for (history-independent) Hopfield dynamics that fresh associ-
ations are always more effective than follow-up associations that start with
the same similarity. This is not the case for Bayesian dynamics. We built
examples in which the first association brings the network to a state that
makes the second association much more valuable. This is especially the
case for sparsely connected networks in which the initial distorted pattern is
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Figure 2: Two-iteration performance achieved with various network archi-
tectures, as a function of the network connectivity K. Network parameters
are N = 5000, L = 1000, M = 50 and € = 0.5.

received and signaled by a small fraction of the neurons (see the first example
in the next section).

For history-independent Hopfield dynamics, a single association with a
sufficiently small number of active neurons outperforms two associations
with the same total level of activity. Hence, signaling should be essentially
synchronous, unlike the firing of real neurons. In contrast, under Bayesian
history-dependent dynamics, two associations always outperform a single
association with the same total level of activity. This conforms more ade-
quately with the asynchronous nature of neuronal firing.

8. Illustration. Examples 1 and 2 illustrate performance, measured by
the final similarity S as presented in (18). Simulation results agree with
the theoretical assessments.

Example 1. The similarity S; between pattern and decision is illus-
trated in Figure 2 for various connectivity architectures, as a function of the
number K of synaptic connections into each neuron, for fixed network size
N. In this example the input pattern is received and signaled by 20% of
the network and the initial similarity of the neurons receiving the distorted
input pattern is 75% (or, € = 0.5).
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Figure 3: Two-iteration performance in a full-activity network with random
connectivity, as a function of network size N. Network parameters are n; =
K =200, M = 40 and € = 0.5.

Example 2. The similarity S; between pattern and decision is illus-
trated in Figure 3 as a function of the network size N, for a fixed number K
of synaptic connections per neuron, satisfying in this example K = n; = 5M.
As in Example 1, € = 0.5. The non-monotonicity of this function was dis-

cussed in Section 6.
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and future cooperation and Boris Tsirelson for fruitful discussions.
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