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SUFFICIENCY AND INFLUENCE1

BY ROBERT WEISS
University of California, Los Angeles

Consider two models M\ and M2 proposed as models for the same
data. Assume that the conclusions from both models are posteriors
pι(θ\Y) and ^(^l^) of some inferential target θ given the data Y. The
unknowns θ may be parameters with identical interpretations in both
models. Under mild conditions, the difference between the two con-
clusions is reducible to a one dimensional summary h(θ) for any two
models. The result has implications for Bayesian diagnostics and sen-
sitivity analysis. Applications of influence sufficiency to case and prior
influence are illustrated, with emphasis on the influence of different
priors and calculation of Bayes factors.

1. Introduction. I start with a brief discussion of influential and out-
lying observations, influential and unsupported assumptions and Bayesian
robustness.

An observation is influential if the conclusion changes in an important
manner when the observation's likelihood contribution changes. In contrast,
outliers are observations whose responses differ from what is predicted by
the model. Outliers need not be influential (consider either a model with t
errors or regression through the origin) and influential observations need not
be outliers; consider an observation in linear regression with leverage h{ « 1.
As the number of observations increases, with all other aspects of the model
held fixed, we can usually expect the influence of individual observations to
become small.

Observations are not the only things in an analysis that can be influential.
Assumptions such as linearity, normality, constant variance or smoothness
contribute strongly to the likelihood. An assumption is influential if the con-
clusion changes when the assumption is relaxed. An assumption is outlying
if the data support a relaxation of the assumption; usually we call this an
unsupported assumption.

Classically, robustness has meant that within a range around a particular
model, the derivatives of an inference, usually narrowly defined as a point es-
timate, with respect to various inputs are 'small'. Usually only the response
variables are considered as inputs. From a Bayesian perspective, the clas-
sical definition of robustness can be encorporated into an analysis through
choice of robust likelihoods (for example, Ramsay and Novick 1980). This is
done through a priori beliefs and a posteriori data selection amongst models
for the sampling density and not a blind requirement that models should be
robust in the classical sense.
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Bayesian robustness has historically studied the sensitivity of a point es-
timate, Bayes factor or posterior to the prior. We take sets of priors and
investigate the possible ranges of the posterior or point estimate. This is
beginning to change, as researchers (for example, see Lavine 1991a, 1991b)
realize that the prior is often not the main source of information in a model,
rather, the likelihood contributes substantially more to conclusions. Another
problem with Bayesian robustness is that the perturbation sets are not nec-
essarily chosen for their a priori plausibility and support by the data. If the
most influential priors are not plausible a posteriori and usually they are not,
then it is unclear if we should be interested in their influence a posteriori.
Further, in regression and other complex models with available substantive
information, prior influence has not been extensively studied. Two examples
are Carlin, Kass, Lerch and Huguenard (1992) and Greenhouse and Wasser-
man (1996). The example in this paper illustrates aspects of prior influence
in a linear regression setup.

A Bayesian jointly models data Y and unknown parameters θ by model
Mi which specifies j>i(0, Y) = Pi(0)/i(Y|0) = pi(0|Y)/i(Y). Alternatively, a
competing model M2 is proposed with joint prior p2(θ, Y) and corresponding
prior p2(θ), sampling /2(Y|0), posterior p2(θ\Y) and prior predictive /2(Y)
distributions. Typically, models include covariates X, but dependence of Y
on X is suppressed for convenience. For influence assessment, the parameter
θ must have the same interpretation under both models. Here I assume that
Mi is the current model under consideration, while model M2 is a modified
version of Mi, the result of a change in assumptions. Which model should
be preferred? Model Mi will be used for inference if the sensitivity analysis
identifies no problems with the current model. Several means of choosing
between the two models are possible. Influence analysis advises on whether
the conclusion of our analysis changes when the assumptions change. Model
M2 must be considered only if it leads to different conclusions from Mi, and
if the data support M2 over Mi (Weiss 1996).

The next section describes an idea in influence analysis which is both
pretty and powerful. A particular value of the idea is its use in developing
procedures for assessing posterior influence and data support and in provid-
ing computational algorithms. Computational results are emphasized, and
new methodology for calculating the Bayes factor and L\ divergence between
Mi and M2 is given.

2. Sufficient Perturbation Functions. While the base material for
this section is Weiss (1996), different aspects are emphasized, and several
new methods are presented, especially in section 2.4. Consider the joint
priors pι(θ,Y) and p2(θ,Y), the assumptions of the analysis given models



Sufficiency and Influence 213

Mi and M2 respectively. Define

The function r* = τ*(θ,Y) mathematically embodies the change of assump-
tions in going from Mi to M2. Thinking of M2 as a modification or per-
turbation of Mi, then r* is the perturbation function that changes pι(θ,Y)
into p2(θ,Y). Kass, Tierney and Kadane (1989) introduced the idea of per-
turbation functions and Weiss (1996) has expanded on the idea.

A posteriori we have

Pl(θ\Y)

where Ej[g(θ)\Y] = J g(θ)Pj(θ\Y)dθ, for j = 1,2, and

(3) E1[r*(

is the Bayes factor in favor of M2 against Mi, assuming that it is well
defined. If θ = (θuθ2), Pj{θ) = Pj(θι)pj(θ2), and pj(θι) are both proper,
then if Pi(#2) = ^2(^2), even if improper, the Bayes factor is well defined as
the Bayes factor where Pj(θ2) are equal and proper but vague in the sense
that the posteriors pj(θ\Y) do not change.

2.1. Examples of perturbation functions.

2.1.1. Case deletion. What happens when we delete case i from the

sample? The perturbation function r j^ = f2i(yi) * [/(^l^?^)]" 1 is propor-

tional to the inverse sampling distribution of yι given the parameters θ and

covariates X{ and where f2i(yi) is a new sampling density for yi which does

not depend on θ.

2.1.2. Prior Perturbation. Changing the prior from pι(θ) to p2(θ) gives

2.1.3. Likelihood perturbation. Changing the sampling density from

A(Y\Θ) to f2(Y\θ) gives τ*L = f2{Y\θ)lh{Y\θ).

2.1.4. Covariate and response perturbation. We can also perturb re-
sponses yi to yi + δ{ or perturb covariates Xi or sets of responses or covari-
ates. Changing yi is useful when the observations are uncertain in ways not
accounted for by the sampling density. This happens with rounding, if im-
puted values are substituted for actual observed values or if censoring times
are substituted for unobserved responses. The presence of errors in variables
can suggest that the xfs should be perturbed.
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2.1.5. Combinations. If a set of individual perturbations are of interest,
it is probable that combinations of the perturbations are also of interest.
Virtually no work has occurred in this area. It appears to be an area where
the tools of experimental design could usefully be applied; as with multiple
case influence, combinatorial explosion problems can occur.

2.2. Sufficiency. If Mi and M2 both provide joint distributions for data

Y and parameters 0, then model M2 can be arrived at as a perturbation of

Mi, provided only that the ratio τ*(θ,Y) is finite everywhere. That is, the

joint prior of M2 should have a density relative to the joint prior of Mi.

The perturbation τ or r* contains in a real sense all of the influence of the
change from Mi to M2. In particular, given r, there is no further influence
on θ due to switching from Mi to M2. To see this, change variables from
θ to r, p where p is chosen to make the change of variables one-to-one and
measurable. Then (Weiss 1996)

(4) Pl(p\τ,Y)=P2(p\τ,Y)

The posterior of p given r is the same under both models Mi and M2. The
proof is

Pi(O\Y) Pi(r|Y)pi(p|r,Y)

Now in (5) multiply leftmost and rightmost formulae by pι(p\τ,Y) and in-
tegrate with respect to p. This gives

(6) r = !j£j£j.
Dividing (5) by equation (6) gives (4).

The updating of pι(τ\Y) to p2(τ\Y) is simple, since by (6), the ratio
is proportional to r. Thus, given a histogram of samples from pi(r|Y), or
a plot of the density, we have a substantial amount of information about
the effects of the perturbation. The beauty of the perturbation function is
that T is a univariate function of θ: by investigating a univariate marginal
Pι(τ\Y) of p\(θ\Y), many of the consequences of perturbing Mi to M2 can be
explored; in particular we need not explore the high dimensional posteriors
Pι(θ\Y) and p2{θ\Y), since all conditionals pj(p\τ,Y) are equal.

The function r = τ(θ,Y), generally a function of the data and the pa-
rameters, can be called a sufficient perturbation function due to the results
above. Conditional on r, there is no further influence due to changing from
Mi to M2. Unconditionally, further influence of the perturbation on a func-
tion β = β(θ) of interest is due to the influence on pι(τ\Y) and any posterior
association between r and β. If r is a function of /?, then β is also a sufficient
perturbation function for the perturbation from Mi to M2. We distinguish
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β from τ by calling r, or any 1-1 measurable function of r, a minimally
sufficient perturbation.

2.3. Summarizing Influence. Two different approaches for summarizing
influence are numerical and graphical. The numerical approach summarizes
the differences between pι(θ\Y) and p2(θ\Y) by a numerical summary of the
differences. Discussions of these summaries often revolve around which sum-
mary is best, but a scalar summary is not required, and multiple summaries
should be considered. On the other hand, most analysts don't want to wade
through tons of influence statistics.

One approach is to summarize the influence through the change in pos-
terior expectation of some quantity of interest. Another popular approach
for summarizing the difference between pι(β(θ)\Y) and p2(β(θ)\Y) is a di-
vergence measure

where g(a) is convex and g(l) - 0. (See Csiszar 1967, Weiss and Cook 1992,
and Weiss 1996.) By (5) and (6),

(7) Dθ(g) = Dτ(g),

and by convexity of g,

(8) De(g) > Dβ{θ)(g) > 0

(Weiss 1996). Various measures that have been proposed are the L\ norm

with #L(α) = .5|α — 1|, the several Kullback divergences, for example K

with gκ(a) = —αl°g(α); functions of Hellinger distance (Geisser 1993) with

gp(a) = |α x / p - l | p , p > 1 and the χ 2 divergence with <7χ2(α) = (α - I ) 2 .

In my experience, the choice of divergence does not matter for ranking dif-

ferent perturbations especially in regards to case deletion, however, some

divergences are easier to interpret. ^From Weiss (1996), χ2 divergence is

the square of the Kass, Tierney, and Kadane (1989) maximum standardized

change (MSC) and the L\ is the maximum difference between M\ and M2

in posterior probability content of any interval. Kullback divergence with

gκ(a) is often recommended because closed form computations are some-

times possible, and because of the optimality identified by Bernardo (1979;

1985).
A graphical approach to influence summarization is a compact way of

displaying many numerical influence statistics. The primary goal of influence
analysis is to understand the difference between pι(θ\Y) and p 2 ( 0 | i θ A
graphical approach plots these two posteriors and inspects them directly.
When θ is a scalar, this is straightforward. When Pj(θ\Y) is more than 1
or 2 dimensional, this is hard. One way of easing the problem is to inspect
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marginal posteriors, but by (8) these underestimate global influence, often
drastically. Define a posterior influence plot as a plot of pι(θ\Y) and p2(θ\Y)
or of the marginals pj(β\Y) of/?. The sufficient perturbation comes into play
here. Consider inspecting a plot of pι(τ\Y) and p2(τ\Y). If we consider that
influence is properly summarized by a divergence measure, then this plot
loses nothing over inspecting pι(θ\Y) and p2(θ\Y) since the DT(g) = De(g).
If β is a non-minimal sufficient perturbation function, we can also inspect
Pι(β\Y) and p2(β\Y) without missing any influence. If β is easier than r
to interpret, its posterior influence plot may be preferable to the posterior
influence plot using r. When a not necessarily sufficient parameter β is
of particular interest in an analysis, then one should inspect pι(β\Y) and
p2(β\Y) to investigate influence. This also obviates the need for chosing a
summary influence statistic.

2.4. Computations. For a single sample θ^ with / = l , . . . , i from
Pι(θ\Y) one can use

(9) B21 = Ei[τ*(0,Y)] = X-

by (3) to estimate ,621 (Weiss 1996) and to calculate Dρ(g),

1=1

by (7) to estimate influence functions of the perturbation from Mi to M2

(Weiss 1996). To calculate the change in posterior expectation of /?, one can
use
(11) V2[β\Y] - Et\β\Y] = CoY1[β,τ\Y),

where Covi[/?,r|F] is Mi's posterior covariance between β and r. In prin-
ciple, one can produce a posterior influence plot of pι(τ\Y) and ^(^I^O by
approximating a sample from ^(^I^O by reweighting θ^ by τ(θ^). This
and the results (9), (10), and (11) are importance sampling-type calcula-
tions. Samples from one density (pι(θ\Y)) are used to learn about a second
density (p2(θ\Y)). Importance sampling can be used in theory to explore any
posterior with the same support as pι(θ\Y), provided that one can integrate
arbitrary functions of θ given Mi. In practice, importance sampling gener-
ally only works if the importance density pι(θ\Y) is close to the alternative
density, P2(Θ\Y) and if special conditions are met by the density ratio r. In-
fluential perturbations are unlikely to meet these special conditions and the
caveat of integrating arbitrary functions is very strong and virtually never
met in practice.

The above calculations are the direct result of sufficiency. An alter-
nate application of sufficiency uses samples from both pj(θ\Y) is to form
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estimates pj(τ*\Y) using kernel density or other form of semiparametric
estimate. These two posteriors are one dimensional, and the curse of dimen-
sionality should be avoidable. One can then compute influence diagnostics
numerically using one dimensional Riemann integration dr applying (7). As-
suming proper priors one can compute B21 using

Any value of r* can be used, provided that both densities are accurately
estimated at that point. The log scale is often easier to work with. Since
the Jacobian cancels, the posterior of any monotone transformation of r*
could be used in place of pj(τ*\Y). The difference in posterior expectations
E2[/J|y] - Eχ[/3|y] is estimated by separately estimating the expectations
using the two samples.

Inspection of the densities βj(τ*\Y) can shed light on the accuracy of
these various calculational formulae, as illustrated in the example.

3. Housing Data. This data set was collected to help predict the
COST to rehabilitate housing in St. Paul, Minnesota, USA. It is desired
to estimate the cost to rehabilitate housing in all of St. Paul, in individual
census tracts, to compare different census tracts this year and to compare
housing stock to many years ago. The prediction is to be based on the
average ratings of external parts of the house, EAVES, WINDOWS and
YARD by three sidewalk surveyors. Ratings of EAVES and WINDOWS are
integer valued from 1 to 6, and YARD is rated either 2 or 5. Lower ratings
indicate houses in better condition. The data are given in table 1. The
COST in kilodollars is estimated by a building contractor who must enter
the house. Generally this is problematic, as it involves getting permission of
the homeowner and getting the contractor to the house when the homeowner
is present. In contrast, sidewalk surveyors' work takes only a few minutes,
their time is inexpensive, and the survey is nonintrusive. The data collection
instrument is designed to deliver consistency in ratings, but differences do
occur among raters, so multiple raters are sent to each house.

Let COST yi be modeled yi = x\β + C{ with X{ a 4-vector of covari-
ates, a one followed by the average EAVES, WINDOWS, and YARD rat-
ings from the three raters, coefficients β = (βj), j = 0,1,2,3 and errors
€i\σ2 ~ JV(0,σ2) given σ2 a priori independent and identically distributed
(ϋd).

In the original modeling, a least squares approach was used after model
selection supplemented by some case deletion diagnostics. The current model
with three predictors contains fewer predictors than are available. The au-
thor desired to do model selection to select an even more parsimonious model;
the clients did not understand model selection, and did not like the results,
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Table 1: Housing data; The COST is in 1000's of dollars. The EAVES and
WINDOWS ratings are truncated at 2 decimal points, but all computations
carried 5 digits.

Point #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

COST
15.783
12.570
19.600
8.206

15.333
14.955
13.710
11.388
4.802

12.547
13.677
9.683

16.798
25.615
15.734
13.510
13.855
3.986
5.997
9.778

18.108
10.152

EAVES
3.00
1.66
3.33
1.66
2.33
5.00
4.33
2.33
1.33
3.00
3.00
1.33
2.66
3.00
3.00
3.00
3.33
2.33
2.33
2.00
1.00
2.00

WINDOWS
2.00
2.33
2.33
1.66
2.33
3.00
3.00
2.33
1.66
2.66
3.33
2.33
3.00
3.33
3.00
3.00
3.00
1.66
2.00
2.66
1.00
3.00

YARD
2
3
2
2
5
2
2
3
2
2
2
2
4
4
2
2
2
2
2
2
2
2
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since it resulted in very few distinct predicted costs to rehabilitate homes.
It was also desired to use the prior information available from a previous
survey seven years earlier. The first analysis did not use the previous data
due to time and computing constraints. In the end, least squares was used
to estimate the parameters of a regression equation.

Three priors are used with this example; each represents a different per-
spective based on the previous discussion; a model selection prior, a flat prior,
and an informative prior. All three have p(β,σ2) = p(β)p(σ2) with p(σ2) oc
σ" 2 . The first prior is a version of the hierarchical model selection prior of
George and McCulloch (1993). Consider the prior p(βj\δj) ~ N(0,VoW

6'),
j — 1,2,3, δj ~ Bernoulli(πo). For the housing data set I selected πo = .7,
Vo = .25, and W = 16. Because of the scaling of the X's it was felt that
the same prior might reasonably be used for all three coefficients. The vari-
ances of the mixture components suggest that the coefficients are less than
1 with prior probability .95 for variance Vo = .25 and less than 4 with prior
probability .95 for prior variance VQW = 4. A coefficient of 4 would mean
that, holding everything else fixed, changing a covariate from 1 to 6 would
change a fitted value by 20,000 dollars, which was felt to be an enormous
amount. The prior for the intercept assumed βo ~ iV(0, VoW). This prior is
called the model selection (MS) prior.

The second prior, the flat (F) prior, used a noninformative prior p(β, σ) oc
cσ~2. The choice of constant c is important for calculating Bayes' factors,
and I used the volume of the smallest rectangular region with sides parallel
to the coordinate axes that covered all 2000 samples from the posterior, with
side lengths rounded up slightly. Since all three priors for σ2 are improper,
the volume for σ2 was not included. The appropriate normalizing constant
was (137024)"1.

The third prior was a proper informative (I) prior for β based on data
taken 7 years previously. The prior data has sample size 39, where one outlier
was deleted from the earlier analysis. The costs were inflated by a factor so
that the means of the earlier sample (without case deletion) and the current
sample are the same. The necessary statistics are given in table 2. The prior
is the posterior t distribution p(β\Yoid) based on an uninformative prior with
p(β,σ2)cxσ-2.

All calculations were based on samples of size 2000 from the three pos-
teriors based on the three priors. The posteriors will be named MS, F, and
I posteriors after the priors.

4. Case Influence Analysis. This section discusses case diagnostics
and the influence of the three priors on the case diagnostics. A priori, I
expected that use of a proper prior would reduce case influence, and increase
outlier statistics over a noninformative prior.

The sufficient perturbation for case deletion is independent of the prior.
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In normal linear regression it is r;(0) = τ{{x\β,σ2) = CPOi/f(yi\θ) =

(2πσ2)1/2exp (.5σ"2(^ - a;]/?)2) CPO,

where CPO; = (^[(/(ΐ/ l/^σ 2 )" 1 ^])" 1 is the conditional predictive ordinate
(Geisser 1993, p. 108).

Table 3 gives three case statistics for each of the three priors. Column 1 is
the case number, columns 2-4 give CPOt , columns 5-7 give the L\ divergence
case statistic ,5/|p(0|Y) - p(θ\Y^)\dθ where Y^ denotes the case deleted
sample; and columns 8-10 give the diagnostic P(|e t | > 2σ|Y), the posterior
probability that |et | is larger than 2 * σ, proposed as an outlier statistic by
Chaloner and Brant (CB) (1988). A value of .00 indicates a number less
than .01 after rounding, but not originally equal to 0. The diagnostics based
on the MS posterior are in columns 2, 5, and 8; based on the F posterior
in columns 3, 6, and 9; and based on the I posterior in columns 4, 7, and
10. As expected, the L\ case influence statistics are smaller for the proper
priors. However, the CB outlier statistics are smaller with the MS and /
priors in 9 out of the 10 cases with a non-zero value in the flat prior. The
exception is the most outlying case. The conditional predictive ordinates
are comparable among the three models, except for the noticeable changes
for the two most outlying cases, which are less outlying with the MS and I
posteriors.

5. Prior Influence, There are three priors, so influence can be
assessed in the context of switching between any two of them. I discuss
marginal influence followed by the global affects of switching between priors
and the data support of the priors.

There is less influence on individual parameters than on the full poste-
rior by (8). The marginals based on the MS prior are particularly deceptive
as summaries of the full multivariate posterior p(/?|Y, M5), since the mul-
tivariate posterior has lumps of probability close to coordinate axes and
subspaces with some βj = 0. Figure 1 shows the marginals of the intercept,

Table 2: Prior mean βo, row 1, and XtX matrix, rows 2-5, The prior resid-
ual sum of squares is 1674-3726, and sample size is 39.

βo
XXX

intercept

-3.3697

39.000
92.8333
93.6666
81.6666

EAVES
0.9522

92.8333
270.9166
255.3888
219.9722

WINDOWS
2.4878

93.6666
255.3888
255.4444
217.7222

YARD
3.5082

81.6666
219.9722
217.7222
202.6111
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Table 3: Case diagnostics, CPO, L\ influence statistic, and Chaloner and
Brant outlier statistic P(|e, | > 2σ). Results for given for the three posteriors
MS model selection; F flat; and I informative. Posteriors are nested within
diagnostic. A .00 indicates a value greater than 0 but less than .01 after

Model
C a s e #

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

MS

.056

.081

.023

.079

.054

.070

.074

.073

.051

.083

.080

.081

.079

.014

.069

.082

.082

.026

.044

.077

.0030

.074

CPO
F

.055

.083

.022

.077

.033

.059

.070

.071

.046

.084

.080

.080

.076

.0097

.070

.083

.083

.019

.040

.078

.00061

.073

I

.054

.080

.025

.080

.035

.067

.071

.068

.056

.082

.080

.081

.071

.029

.074

.082

.082

.029

.046

.076

.0013

.071

MS

.10

.08

.20

.07

.19

.12

.10

.08

.10

.08

.08

.08

.09

.30

.08

.08

.08

.19

.09

.08

.45

.09

F

.14

.08

.27

.09

.37

.19

.12

.08

.18

.09

.09

.09

.10

.49

.10

.08

.08

.29

.15

.09

.74

.11

I

.11

.08

.19

.07

.29

.12

.09

.08

.09

.07

.08

.07

.10

.25

.07

.07

.07

.19

.09

.08

.58

.09

MS

0
0
0.09
0
0.01
0
0
0
0.00
0
0
0
0
0.26
0
0
0
0.07
0.00
0
0.72
0

CB
F

0.00
0
0.12
0
0.05
0.01
0.00
0
0.01
0
0
0
0
0.25
0
0
0
0.17
0.01
0
0.69
0

I

0
0
0.07
0
0.04
0.00
0
0
0.00
0
0
0
0
0.06
0
0
0
0.05
0.00
0
.78
0
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Table 4: Influence on parameter posteriors, estimates, and sd's; joint influ-
ence on the posterior. The last three lines give estimated Bayes factors in
favor of the second model against the first model using equation (12) for BF
and equation (9) for BF-j, j = 1,2.

model(s)

parameter

intercept
EAVES

WINDOWS
YARD
sigma

mean cost
posterior

BF
BF-1
BF-2

MS/F

.48

.20

.28

.17

.19

.10

.65

9.3
13.
9.0

MS/I

.50

.05

.19

.26

.04

.16

.57

21000
21000
21000

F/I

.35

.17

.24

.20

.17

.21

.49

2500
2300
2800

MS

.85
1.41

1.31
2.09
4.69
12.1

mean
F

.19
1.65
1.09
2.41
5.16
12.3

I

-2.09
1.46
1.91
2.83
4.72
12.4

MS

1.784
1.04
1.34

0.99
.91
.96

sd
F

5.44
1.60
2.43
1.37
1.17
1.18

I

2.73
1.11
1.62

.97

.86

.75

coefficients of EAVES, WINDOWS and YARD, and σ. The solid curves are
the MS marginals, the dashed curves are the posterior marginals based on
the I prior and the dotted curves are those based on the F marginals. As
might be expected, the F marginals are less peaked and have more variance,
and the MS marginals have bumps near zero. The plot labeled Mean Cost is
the posterior estimated cost to rehabilitate an average house with EAVES,
WINDOWS and YARD coefficients of 2.47, 2.41, and 2.22 respectively; the
average ratings of the 40 + 22 houses in the prior and current samples. Table
4 summarizes these plots with the L\ norm between the various marginals
and the posterior means and standard deviations. Rather surprising is the
amount of influence on the intercept, which approaches the influence on
the joint posterior, given in the line labeled 'posterior'. Also surprisingly,
plausible values of σ decrease slightly with the MS and I priors.

The global effect of switching priors is substantial. For switching be-
tween any two priors, the L\ norm between posteriors are estimated to be
.65, .57 and .49, all quite large. These were calculated using a 1-d numerical
integration of kernel density estimates of pι(logτ\Y) and p2(logτ\Y). These
densities are plotted in Figure 2's left hand column (LHC). The solid, dashed
and dotted densities are from the MS, I and F posteriors respectively. The
choice of kernel density estimator mattered by .02 in the second digit. The
importance sampling equality (10) gives two additional calculations each,
depending on which sample is used. Of these six calculations, two for each
pair of priors, four roughly agreed with the table figures; the two comparing
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the MS and F priors differed by .1 from table 4. From the LHC of Figure
2, we see that comparing MS and F posteriors, the F posterior might be
reweighted to give the MS posterior but not vice-versa. The F posterior's
reweighted L\ was .55, while the MS posterior's reweighted posterior calcula-
tion gave .43, an underestimate. Inspecting the MS and I posteriors suggest
that neither should work well for estimating under the other. Still, the L\
calculations were .58 (MS) and .60 (I). Comparing the F and I priors gave
L\ values of .55 (I) and .49 (F), not too terrible, given that the plot suggests
that the F posterior should work ok, while the I might not.

The data have a preference for the informative prior. The Bayes factor
in favor of the I prior is around 2500 over the F prior, and around 21000
over the MS prior. These Bayes factors were calculated using formula (12).
Table 4 gives median calculations using a range of r* values, plotted in the
right hand column of Figure 2. If calculations were perfect, each of these
figures should be a straight line across at the actual value of the Bayes factor.
Clearly numerical problems still exist some of which may be due to bias from
the kernel density estimates and to sampling variability. The last three rows
of table 4 gives the Bayes factor calculations. The calculations range by a
factor of roughly 1.5. The last row uses the second of the listed densities,
the next to last uses the first of the listed posteriors. It is good that the data
support the informative prior over the other two. The F prior's normalizing
constant was chosen to favor the F prior. If other methods had been used
to select a constant, chances are the Bayes factors would have favored the
informative prior even less than it was already favored.

Acknowledgement. Thanks to Charlie Zhang for help with the plots
and to two anonymous referees for helpful comments.
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discussion by

JULIAN D E LA HORRA

Uniυersidad Autόnoma de Madrid

I would like to comment some possible extensions of the ideas in this
interesting paper.

a) Let us consider the case in which our main interest is to predict the
next observation z, given past observations y, where x and y are inde-
pendent given θ. The ratio of posterior densities P2(0\y) and pι(θ\y)
(coming from M<ι and Mi, respectively) is given by

= Λθ,y)
Pί(θ\y) £ i [ r (*,j,)|j,] n ' y h

where τ*(θ,y) is the perturbation function that multiplies P\{θ,y) to
give P2(θ,y) (case deletion, prior perturbation, ... ), and the expecta-
tion is taken with respect to Pi(θ\y).

If f2(x\θ) = fi(x\θ) (the sampling model for the next observation is
the same under the two models), the ratio of posterior predictives is
given by:

ΛOΦ) feM
I&M^)r*(θ,y)Pl(θ\y)dθ/E1[τ*(θ,y)\y}

fΘf1(x\θ)pι(θ\y)dθ

fΘτ*(θ,y)Pl(θ\x,y)dθ

E1[τ*(θ,y)\y]

Ei[τ (θ,y)\x,y]

Ei[τ*(θ,y)\y] '

This result is similar to that obtained in Weiss (1995) for a function
of θ, v(θ), that captures the goals of the analysis:

P2{y\y)
 =
 E

x
[τ*{θ,y)\v,y)

Pί
{u\y)

b) It could be interesting to study the influence of a perturbation on the

posterior distribution, when the prior is of mixed type. This is the

usual prior when we are interested in testing θ = ΘQ versus θ φ θo
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For the model Mi, suppose that y is a set of observations from the
density /i(y|#), and the prior distribution is given by a mass TΓI on ΘQ
and a density pι(θ\θ φ θ0) spreading the rest of the mass over Θ-{0o}
The posterior distribution is given by the mass on θo , Pι(θo\y), and by
the density spreading the rest of the mass over Θ — {#o}> Pi(θ\y > θ φ #o)

Consider now a perturbed model M2 with elements /2(y|0), π 2 and
p2(θ\θ φ θ0). The posterior distribution is given by P2(θ0\y) and
P2(θ\y^θ φ ΘQ). The influence of this perturbation is usually mea-
sured by a function of the ratio P2(θo\y)/Pι(θo\y). This is suitable if
we are interested in testing θ — ΘQ versus θ φ ΘQ. But, perhaps, we can
sometimes need a measurement of the influence of the perturbation on
the whole posterior distribution. This influence can be measured by
the variation distance [this influence measure is considered in Weiss
(1995) and is equivalent to L\ distance between densities, when they
exist]:

[
BQθ

= max{P2(0o |ίO -

+ / ([1-P2(θo\y)]p2(θ\y,θφθo)-[1-P1(θo\y)]pί(θ\y,θφθo))dθ,
JB*

L
B*

JBβ\ - P2(θo\y))P2(θ\y,θϊ e0) - [1 - Pi(θo\y)}pi(θ\y,θφ θo))dθ},

where

B* = {θ € Θ : [1-P2(θo\y)]p2(θ\y,θφ 0 o )-[l-Pi(0 o | ίO]j>i(%,0 ?έ θ0) > 0}.

c) As the author points out, a popular approach for summarizing the dif-
ference between pι(θ\y) and P2(θ\y) is to use a divergence measure. In
a recent paper, Dey and Birmiwal (1994) consider the local curvature
for a divergence measure (small values of curvature indicating robust-
ness). They obtain the local curvature of the divergence between the
posterior coming from a baseline prior p\{θ) and a posterior coming
from either

Γα = {P2(θ) : P2(θ) = (1 - ε)Pl(θ) + εq(β\ q G Q}

or

Γ s = {P2(θ) : P2(θ) = c(ε)p\-ε(θ)qε(θ),q € Q).

It could be interesting to study the application of this approach to other
types of perturbations of the model (other classes of priors, different
sampling models, etc).
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